JP3610396B2 - Hydrodynamic bearing - Google Patents

Hydrodynamic bearing Download PDF

Info

Publication number
JP3610396B2
JP3610396B2 JP26088595A JP26088595A JP3610396B2 JP 3610396 B2 JP3610396 B2 JP 3610396B2 JP 26088595 A JP26088595 A JP 26088595A JP 26088595 A JP26088595 A JP 26088595A JP 3610396 B2 JP3610396 B2 JP 3610396B2
Authority
JP
Japan
Prior art keywords
spherical surface
mirror
convex spherical
shaft
hydrodynamic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26088595A
Other languages
Japanese (ja)
Other versions
JPH0979251A (en
Inventor
喜則 西
康雄 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP26088595A priority Critical patent/JP3610396B2/en
Publication of JPH0979251A publication Critical patent/JPH0979251A/en
Application granted granted Critical
Publication of JP3610396B2 publication Critical patent/JP3610396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、軸端部を球面接触構造とし且つ表面に動圧溝を形成して回転させる動圧軸受に関する。
【0002】
【従来の技術】
軸端部に凸球面を設けると共に該凸球面部を凹球面で受ける球面接触構造の動圧軸受では、凸球面或いは凹球面のいずれか一方の表面に動圧溝を形成して回転させる。このような球面接触構造とした動圧軸受の支持構造は、図5に示すように、軸1の端部の球部10の表面に動圧溝3を形成し、受部材2に該球部10を嵌め入れる凹球面21を形成してA、A点(実際はこの二点を含む円状の線)で接触させて支持する構造か、或いは、図6(A)に示すように、軸1の端部の球部10の表面に動圧溝3を形成し且つ該球部10を嵌め入れる受部材2の凹球面21にはその曲率半径を該球部10の半径よりわずかに大きくして形成しB点で支持する構造か、のいずれかである場合が多い。また、これらの球部10の表面及び凹球面21の表面は、通常、動圧溝3を除いてラップ仕上げにより鏡面状に仕上げ加工し、図6(B)に示すように、一定の粗さRmax ≦0.4の範囲内に収められている。
【0003】
【発明が解決しようとする課題】
球面接触構造の動圧軸受は、上記するように図5に示すようなA、A点での接触支持か或いは図6(A)に示すようなB点のみでの接触支持とすると、軸1自体に垂直或いは水平方向に荷重がかかっているため起動時及び停止時接触部の圧力が高くなり、これらの部分が摩耗しやすい状態にある。従って、このような球面接触部では潤滑剤による潤滑状態が悪いと焼付やすくなり軸受寿命が低下するという問題がある。また、前記球部10或いは凹球面21の表面は鏡面状に加工するが、このような鏡面状の軸受面には磨耗粉等により疵が付きやすいという問題があった。
【0004】
この発明は上記する課題に着目してなされたものであり、起動或いは停止時摩耗が生じにくく、また、潤滑剤の保持能力も高く軸受寿命を長く維持することのできる球面接触構造の動圧軸受を提供することを目的としている。
【0005】
【課題を解決するための手段】
即ち、この発明は上記する課題を解決するために、▲1▼軸の一部を凸球面に形成し、受部材に該凸球面を嵌め入れる凹球面を形成し、これら凸球面若しくは凹球面のいずれか一方に動圧溝を形成してなる球面接触構造の動圧軸受において、前記軸端部に形成した凸球面及び該凸球面を嵌め入れる受部材に形成した凹球面に鏡面仕上げを施し、更に、いずれか一方の表面にアルミナ粉末やダイヤモンド粉末等の硬質の微粉末により梨地を形成したことを特徴とする。
また、▲2▼前記鏡面仕上げ面がRmax ≦0.4の粗さに形成されていることを特徴とする。
【0006】
【発明の実施の形態】
以下、この発明の具体的実施の形態について図面を参照しながら説明する。
図1(A)は従来の動圧軸受の縦断面図であり、図1(B)はこの発明の動圧軸受部分の縦断面図を示す。尚、重複記載を避けるため同一要素部分には従来技術で説明した符号と同一の符号を使用して説明する。
軸1の端部は凸球面11が形成してあり、該軸1は該凸球面11を受部材2に形成された凹球面21に嵌合させて支持するようにしてある。通常、これらの凸球面11及び凹球面21は鏡面状に加工してある。更に、該凸球面11には動圧溝3が形成され、軸1或いは受部材2の回転時のポンピング作用による動圧で該軸1は受部材2に球面支持される。尚、前記動圧溝3は凹球面21側に形成してもよい。
【0007】
図2は、前記軸1の端部の凸球面11を鏡面仕上げした状態の表面粗さを示す表面の模式図であるが、粗さは表面の凹凸が一定の範囲となるようにラップ仕上げ等により鏡面研磨加工が施されている。
【0008】
次に、前記軸1に形成した凸球面11の動圧溝3以外の部分の鏡面には、図1(B)に示すように、梨地状態の加工が施される。即ち、該凸球面11は鏡面仕上げ加工し動圧溝3を形成した後(或いは加工前)の残りの鏡面部分に、アルミナ粉末やガラスの微粉末或いは粉末ダイヤモンド等の硬質の微粉末により微細な孔の梨地11aが形成されるようにバレル加工を施す。即ち、前記軸1の凸球面11には、鏡面としての精度は維持し且つその鏡面状表面に微細な凹凸の梨地11aが形成されることになる。従って、この場合の梨地とは、一般的に言われる鏡面状態(一定面積当たりの凹凸が少なく乱反射の少ない状態)とは逆の『一定面積当たりの凹凸が多く、そのため乱反射が多く曇って見える状態のことをいう。但し、粗さ的には上記するように鏡面仕上げと同程度である。
【0009】
図3は、前記軸1の端部の凸球面11を鏡面仕上げし且つ該鏡面に梨地11aとなるように加工を施した状態の表面粗さを示す表面の模式図である。前記軸1の端部の凸球面11を鏡面状にラップ仕上げを施し、更に、硬質の微粉末によりバレル加工を施すと粗さは表面の凹凸が一定の範囲に維持され且つその粗さ範囲でその表面に微細な凹凸が形成される。かかる凹凸には潤滑剤Gが良く保持されるようになるので潤滑性能が向上し摩耗も少なくなる。
【0010】
図4は前記受部材2の凹球面21に梨地加工を施した場合の斜視図を示す。即ち、上記実施例では軸1の端部に形成した凸球面11を鏡面仕上げして動圧溝3と梨地11aとを形成したが、前記軸1に形成する凸球面11は鏡面仕上げに動圧溝3を形成した状態とし、且つ受部材2に形成した凹球面21をラップ仕上げによる鏡面状とし、更に該鏡面状の凹球面21に硬質の微粉末によりバレル加工を施し梨地21aを形成する。この場合でも凹球面21は鏡面状の粗さを維持しながら梨地21aが形成されることになる。
【0011】
以上詳述するように、この発明では球面接触構造の動圧軸受において、軸1端部の端部の動圧溝3を設けた凸球面11に鏡面仕上げを施し、更に、アルミナ粉末や微細なダイヤモンド粉末等の硬質の微粉末によるバレル加工により梨地11aを形成するか、或いは該軸1を受ける受部材2の前記凸球面11を嵌合する凹球面21に鏡面仕上げを施し、梨地21aを形成するものである。従来においても、例えば特公昭60−18850号で開示されるように、光沢面のある冷間圧延鋼板から取り出した帯鋼に薬剤やショットピ−ニング或いはショットブラスト等により表面を梨地とするもの、或いは特開平3−86458号で開示されているような回転体若しくは該回転体をスラスト支持する支持体の一方の面に対し荒加工を施し面粗度を3〜5Sとした後、ラップ加工を施して面粗度を2〜3Sとする発明等が知られているが、この発明の球面接触構造の動圧軸受はこれらの先行例とも異なるものである。
【0012】
【発明の効果】
以上詳述したようにこの発明の動圧軸受によれば、動圧軸受を構成する凸球面或いは凹球面における梨地での潤滑剤の保持能力が向上し、起動時或いは停止時圧力が高くなる部分があっても微小摩耗が少なくなる。そして発生する微小な摩耗粉も極めて少なくなり軸受面に与える影響も小さくなる。また、軸受寿命も長くなり部品交換のための停止や整備の必要性も少なくなる。
【図面の簡単な説明】
【図1】図1(A)は従来の動圧軸受の縦断面図であり、図1(B)はこの発明の動圧軸受部分の縦断面図を示す図である。
【図2】従来の動圧軸受を構成する軸の端部の凸球面を鏡面仕上げした状態の表面粗さを示す表面の模式図である。
【図3】この発明の動圧軸受を構成する軸の端部の凸球面を鏡面仕上げし、更にバレル加工した梨地状態の表面粗さを示す表面の模式図である。
【図4】この発明の動圧軸受の変形実施例を示すものであって、受部材の凹球面に鏡面仕上げして梨地加工を施した場合の斜視図である。
【図5】従来の動圧軸受の凸球面を凹球面が所定の線上で支持する場合の縦断面図である。
【図6】図6(A)は従来の動圧軸受の凸球面を凹球面の一点で支持する場合の縦断面図であり、図6(B)はその場合の表面粗さを示す表面の模式図である。
【符号の説明】
1 軸
11 凸球面
11a 梨地
2 受部材
21 凹球面
21a 梨地
3 動圧溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing that has a shaft contact portion having a spherical contact structure and a hydrodynamic groove formed on the surface thereof for rotation.
[0002]
[Prior art]
In a hydrodynamic bearing having a spherical contact structure in which a convex spherical surface is provided at the shaft end and the convex spherical surface is received by a concave spherical surface, a dynamic pressure groove is formed on one surface of the convex spherical surface or the concave spherical surface and rotated. As shown in FIG. 5, the dynamic pressure bearing support structure having such a spherical contact structure has a dynamic pressure groove 3 formed on the surface of the ball portion 10 at the end of the shaft 1, and the ball portion is formed in the receiving member 2. A concave spherical surface 21 into which 10 is fitted is formed and supported by contacting at points A and A (actually a circular line including these two points), or as shown in FIG. In the concave spherical surface 21 of the receiving member 2 in which the dynamic pressure groove 3 is formed on the surface of the sphere 10 at the end of the sphere 10 and the sphere 10 is fitted, the radius of curvature is slightly larger than the radius of the sphere 10. In many cases, the structure is formed and supported at the point B. Further, the surface of the spherical portion 10 and the surface of the concave spherical surface 21 are usually finished into a mirror surface by lapping except for the dynamic pressure grooves 3, and have a certain roughness as shown in FIG. It is stored in the range of R max ≦ 0.4.
[0003]
[Problems to be solved by the invention]
As described above, the hydrodynamic bearing having the spherical contact structure has a shaft 1 when the contact support at points A and A as shown in FIG. 5 or the contact support only at point B as shown in FIG. Since the load is applied in the vertical or horizontal direction to itself, the pressure of the contact part at the time of starting and stopping becomes high, and these parts are easily worn. Therefore, in such a spherical contact portion, there is a problem that if the lubrication state by the lubricant is poor, seizure easily occurs and the life of the bearing is reduced. Further, the surface of the spherical portion 10 or the concave spherical surface 21 is processed into a mirror surface, but there is a problem that such a mirror-like bearing surface is easily wrinkled by wear powder or the like.
[0004]
The present invention has been made by paying attention to the above-mentioned problems, and is a hydrodynamic bearing having a spherical contact structure that is less likely to be worn during starting or stopping, has a high ability to retain a lubricant, and can maintain a long bearing life. The purpose is to provide.
[0005]
[Means for Solving the Problems]
That is, in order to solve the above-mentioned problems, the present invention forms a part of the shaft (1) into a convex spherical surface, and forms a concave spherical surface into which the convex spherical surface is fitted into the receiving member. In a hydrodynamic bearing having a spherical contact structure formed with a dynamic pressure groove on either one, a mirror surface finish is applied to the convex spherical surface formed on the shaft end and the concave spherical surface formed on the receiving member into which the convex spherical surface is fitted, Furthermore, it is characterized in that a satin finish is formed on one of the surfaces with hard fine powder such as alumina powder or diamond powder.
(2) The mirror-finished surface is formed to have a roughness of R max ≦ 0.4.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a longitudinal sectional view of a conventional dynamic pressure bearing, and FIG. 1B is a longitudinal sectional view of a fluid dynamic bearing portion of the present invention. In addition, in order to avoid duplication description, it demonstrates using the same code | symbol as the code | symbol demonstrated by the prior art for the same element part.
A convex spherical surface 11 is formed at the end of the shaft 1, and the shaft 1 is configured to fit and support the convex spherical surface 11 to a concave spherical surface 21 formed on the receiving member 2. Usually, the convex spherical surface 11 and the concave spherical surface 21 are processed into a mirror surface. Further, a dynamic pressure groove 3 is formed on the convex spherical surface 11, and the shaft 1 is spherically supported on the receiving member 2 by dynamic pressure due to a pumping action when the shaft 1 or the receiving member 2 rotates. The dynamic pressure groove 3 may be formed on the concave spherical surface 21 side.
[0007]
FIG. 2 is a schematic diagram of the surface showing the surface roughness in a state in which the convex spherical surface 11 at the end of the shaft 1 is mirror-finished. The roughness is lapped so that the surface unevenness is in a certain range. Thus, mirror polishing is applied.
[0008]
Next, as shown in FIG. 1B, the surface of the convex surface of the convex spherical surface 11 other than the dynamic pressure groove 3 formed on the shaft 1 is processed in a matte state. That is, the convex spherical surface 11 is finely polished with hard fine powder such as alumina powder, glass fine powder, or powder diamond on the remaining mirror surface portion after mirror finishing and forming the dynamic pressure groove 3 (or before machining). Barrel processing is performed so that the pear texture 11a is formed. That is, the convex spherical surface 11 of the shaft 1 maintains the accuracy as a mirror surface, and a fine uneven surface 11a is formed on the mirror surface. Therefore, the satin in this case is the opposite of the generally specular state (the state where there are few irregularities per area and less irregular reflection) "the state where there are many irregularities per area, and therefore the irregular reflection appears cloudy I mean. However, the roughness is comparable to the mirror finish as described above.
[0009]
FIG. 3 is a schematic diagram of the surface showing the surface roughness in a state in which the convex spherical surface 11 at the end of the shaft 1 is mirror-finished and the mirror surface is processed so as to have a satin finish 11a. When the convex spherical surface 11 at the end of the shaft 1 is mirror-finished and further barreled with hard fine powder, the roughness of the surface is maintained within a certain range and the roughness range is within that range. Fine irregularities are formed on the surface. Since the lubricant G is well held on the unevenness, the lubricating performance is improved and wear is reduced.
[0010]
FIG. 4 shows a perspective view when the concave spherical surface 21 of the receiving member 2 is subjected to a satin finish. That is, in the above embodiment, the convex spherical surface 11 formed at the end of the shaft 1 is mirror finished to form the dynamic pressure groove 3 and the satin 11a. However, the convex spherical surface 11 formed on the shaft 1 is dynamic pressure applied to the mirror finishing. The groove 3 is formed, and the concave spherical surface 21 formed on the receiving member 2 is mirror-finished by lapping, and the mirror-like concave spherical surface 21 is barrel processed with hard fine powder to form a satin finish 21a. Even in this case, the concave spherical surface 21 is formed with a satin finish 21a while maintaining a mirror-like roughness.
[0011]
As described in detail above, according to the present invention, in the hydrodynamic bearing having a spherical contact structure, the convex spherical surface 11 provided with the hydrodynamic groove 3 at the end of the shaft 1 is mirror-finished, and further, alumina powder or fine particles are provided. A satin finish 11a is formed by barrel processing with hard fine powder such as diamond powder, or a mirror finish is applied to the concave spherical surface 21 to which the convex spherical surface 11 of the receiving member 2 receiving the shaft 1 is fitted to form a satin finish 21a. To do. Conventionally, as disclosed in, for example, Japanese Examined Patent Publication No. 60-18850, a steel strip taken out of a cold-rolled steel plate having a glossy surface has a textured surface by chemicals, shot pinning, shot blasting, or the like, or Roughing is performed on one surface of a rotating body as disclosed in Japanese Patent Laid-Open No. 3-86458 or a support that thrust supports the rotating body to a surface roughness of 3 to 5S, and then lapping is performed. However, the invention with a surface roughness of 2 to 3S is known, but the hydrodynamic bearing having a spherical contact structure according to the present invention is different from these preceding examples.
[0012]
【The invention's effect】
As described above in detail, according to the hydrodynamic bearing of the present invention, the holding capacity of the lubricant in the matte surface on the convex spherical surface or concave spherical surface constituting the hydrodynamic bearing is improved, and the pressure at the time of starting or stopping is increased. Even if there is, there is less micro-abrasion. Further, the generated minute wear powder is extremely reduced and the influence on the bearing surface is reduced. In addition, the life of the bearing is increased, and the necessity for stopping or maintaining the parts is reduced.
[Brief description of the drawings]
1A is a longitudinal sectional view of a conventional hydrodynamic bearing, and FIG. 1B is a longitudinal sectional view of a hydrodynamic bearing portion of the present invention.
FIG. 2 is a schematic view of the surface showing the surface roughness in a state where the convex spherical surface at the end of the shaft constituting the conventional hydrodynamic bearing is mirror-finished.
FIG. 3 is a schematic view of the surface showing the surface roughness in a matte state in which the convex spherical surface at the end of the shaft constituting the hydrodynamic bearing of the present invention is mirror-finished and further barrel processed.
FIG. 4 shows a modified embodiment of the hydrodynamic bearing according to the present invention, and is a perspective view in the case where the concave surface of the receiving member is mirror-finished and subjected to a satin finish.
FIG. 5 is a vertical cross-sectional view when a concave spherical surface of a conventional hydrodynamic bearing supports a convex spherical surface on a predetermined line.
FIG. 6 (A) is a longitudinal sectional view when a convex spherical surface of a conventional dynamic pressure bearing is supported at one point of a concave spherical surface, and FIG. 6 (B) is a surface surface showing the surface roughness in that case. It is a schematic diagram.
[Explanation of symbols]
1 axis 11 convex spherical surface 11a satin 2 receiving member 21 concave spherical surface 21a satin 3 dynamic pressure groove

Claims (2)

軸の一部を凸球面に形成し、受部材に該凸球面を嵌め入れる凹球面を形成し、これら凸球面若しくは凹球面のいずれか一方に動圧溝を形成してなる球面接触構造の動圧軸受において、前記軸端部に形成した凸球面及び該凸球面を嵌め入れる受部材に形成した凹球面に鏡面仕上げを施し、更に、いずれか一方の表面に硬質の微粉末により梨地を形成したことを特徴とする動圧軸受。A spherical contact structure is formed by forming a part of the shaft into a convex spherical surface, forming a concave spherical surface into which the convex spherical surface is fitted into the receiving member, and forming a dynamic pressure groove on either the convex spherical surface or the concave spherical surface. In the pressure bearing, the convex spherical surface formed on the shaft end portion and the concave spherical surface formed on the receiving member into which the convex spherical surface is fitted are mirror-finished, and further, a satin finish is formed on one of the surfaces with hard fine powder. A hydrodynamic bearing characterized by that. 鏡面仕上げ面がRmax ≦0.4の粗さに形成されていることを特徴とする請求項第1項記載の動圧軸受。The hydrodynamic bearing according to claim 1, wherein the mirror-finished surface is formed to have a roughness of R max ≦ 0.4.
JP26088595A 1995-09-12 1995-09-12 Hydrodynamic bearing Expired - Fee Related JP3610396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26088595A JP3610396B2 (en) 1995-09-12 1995-09-12 Hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26088595A JP3610396B2 (en) 1995-09-12 1995-09-12 Hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JPH0979251A JPH0979251A (en) 1997-03-25
JP3610396B2 true JP3610396B2 (en) 2005-01-12

Family

ID=17354109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26088595A Expired - Fee Related JP3610396B2 (en) 1995-09-12 1995-09-12 Hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP3610396B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097313A (en) * 2016-12-16 2018-06-21 日本電産サンキョー株式会社 Oscillation type actuator and optical unit wit anti-tremor correction function

Also Published As

Publication number Publication date
JPH0979251A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US5503481A (en) Bearing surfaces with isotropic finish
USH974H (en) Thrust bearing and method of manufacturing thereof
EP0219301B2 (en) Improved microfinishing apparatus and method
US4380355A (en) Gas-lubricated bearings
US6302769B1 (en) Method for chamfering a wafer
US5051004A (en) Radial ball bearing having a curved chamfer between a raceway groove and its shoulder
JP2728202B2 (en) Hemispherical type fluid bearing
US5333954A (en) Rolling/sliding part
JPS6124818A (en) Rolling body of bearing
US20030012477A1 (en) Roller bearing
US7484890B2 (en) Rolling slide member
WO1997019279A1 (en) Mechanical part
JPH06241235A (en) Roller bearing
US20050107230A1 (en) Rolling tool and roller for rolling, particularly deep rolling, a work piece
JP3610396B2 (en) Hydrodynamic bearing
JP2010265926A (en) Roller bearing
JPS5877918A (en) Plain bearing
JP2010169182A (en) Roller bearing
KR100774237B1 (en) Self-aligning roller bearing and method of processing the same
JPH0160687B2 (en)
JP2857304B2 (en) Bearing device and method of manufacturing the same
JP2001304267A (en) Sliding member and its manufacturing method
JPH07103243A (en) Rolling bearing
JP4520223B2 (en) Method for forming nitriding sliding surface
JP5927960B2 (en) Roller bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees