JP3610151B2 - mobile phone - Google Patents

mobile phone Download PDF

Info

Publication number
JP3610151B2
JP3610151B2 JP04161896A JP4161896A JP3610151B2 JP 3610151 B2 JP3610151 B2 JP 3610151B2 JP 04161896 A JP04161896 A JP 04161896A JP 4161896 A JP4161896 A JP 4161896A JP 3610151 B2 JP3610151 B2 JP 3610151B2
Authority
JP
Japan
Prior art keywords
antenna
circularly polarized
satellite
flying
mobile phone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04161896A
Other languages
Japanese (ja)
Other versions
JPH09232842A (en
Inventor
明弘 勝呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP04161896A priority Critical patent/JP3610151B2/en
Publication of JPH09232842A publication Critical patent/JPH09232842A/en
Application granted granted Critical
Publication of JP3610151B2 publication Critical patent/JP3610151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain communication with excellent sensitivity and to ensure a long speech time by using an antenna turn device to direct the direction of a circularly polarized wave antenna providing an excellent directivity into a flying direction of a satellite. SOLUTION: A circularly polarized antenna section is turned in a direction of providing an excellent radiation characteristic to allow the user of a portable telephone set to make comfortable communication without notifying an azimuth of a flying satellite. Thus, a geared rotary connector 31 is provided between the antenna and a radio equipment circuit section and the antenna side is turned by an electric motor (e.g. a stepping motor) 32 or the like. In order to control the rotary angle of the antenna, a rotary angle control means 42 controls the number of revolutions of the electric motor 32 provided with the gear 32a so as to maximize the reception signal based on a detection signal from the reception signal intensity detector 41. The antenna is driven in this way to direct the direction offering the beast antenna directivity to an azimuth of the flying of an orbital satellite.

Description

【0001】
【発明の属する技術分野】
本発明は、周回衛星を利用した衛星通信に有効な衛星追尾アンテナを具備した携帯電話に関する。
【0002】
【従来技術及びその課題】
近年、中軌道や低軌道の地球を周回する周回衛星を用いた携帯電話の構想が各社から提案されており、それらの周波数帯は、地上の携帯電話から衛星へは1.6GHz帯が、衛星から地上の携帯電話へは2.4GHz帯が割当てられており、また1.6GHz帯は地上から衛星、衛星から地上の双方向の通信に用いる周波数帯としても割当てられている。アンテナ構成としては、たとえば図4より、衛星通信には送信用マイクロストリップライン平面アンテナ202と受信用マイクロストリップライン平面アンテナ203を用いる折りたたみアンテナアレイ204(ITU研究 世界の非静止衛星通信システム No.261/262 新日本ITU 協会 1993年8月刊行 P.36)を携帯電話201に取り付け、折りたたみアンテナアレイ204の折りたたみ角αを調節してアンテナを周回衛星方向に向けようとするものが提案されているが、周回衛星の飛翔している方向にアンテナアレイ204の方位を合わせることは困難であるし、最良の通信を行うためにはアンテナアレイ204の放射パターンの最良方向をそれに一致させるように使用者自身が携帯電話を持った状態で回転しなければならない。
【0003】
【課題を解決するための手段】
本発明の携帯電話は、衛星通信用の送受信を行う円偏波アンテナの回転手段と、受信信号強度検出手段と、アンテナ回転角制御手段とを具備する。
【0004】
【発明の実施の形態】
上述の課題を解決するため、携帯電話に搭載した円偏波用のヘリカルアンテナまたはマイクロストリップライン平面アンテナ(以下平面アンテナと称す)を携帯電話に適切に配置し、前記アンテナを回転させ、アンテナ指向性の最良な方向を周回衛星の飛翔する方位に向けることにより通信品質を向上させ、かつ通話中の回線切断防止を目的とし、少なくとも対向する第1の面(正面)及び第2の面(背面)を有し無線機部と受話器と送話器を収納する筐体と、受話器が筐体の第1の面に固定され、第2の面の上端近傍にヘリカルアンテナまたは平面アンテナを無線機部に電気的に接続する第1の同軸線との間に回転自在のコネクタ手段(たとえばロータリーコネクタ)とアンテナを回転させる電気原動機(たとえばステッピングモーター)とを備え衛星の周回方向に追従させる。
【0005】
図1〜図3は本発明の実施の形態を示す。図1(a)は円偏波用のヘリカルアンテナを搭載する携帯電話の斜視図、図1(b)は円偏波用の平面アンテナを搭載する携帯電話の斜視図で、同じ部位は同じ符号で示し、1は携帯電話、2は表示部、3は受話部、4は操作部、aは筺体の第1の面(正面)、bは筺体の第2の面(背面)、cは筺体の第3の面(上面)である。図1(a)において11はヘリカルアンテナ、図1(b)において21は平面アンテナでそれぞれ天頂方向に円偏波にて放射を行う。
【0006】
図2はアンテナ放射パターンの例で、図2(a)は円偏波用ヘリカルアンテナの放射パターン、図2(b)は円偏波用平面アンテナの放射パターンを示す。
【0007】
図3は本発明に係りヘリカルアンテナ11を回転させる装置構成例で、12が第1の給電点である。まず、衛星通信のために円偏波を発生するヘリカルアンテナ11について動作と特性を説明し、次にヘリカルアンテナ11を回転させることによる効果を説明する。ヘリカルアンテナ11は放射素子と通常の導体線とを兼用する同軸線13と導線14よりなり、給電点12において同軸線13の中心導体と導線14とを電気的に結合し、導線14の巻終わり端15において同軸線13の外部導体13aを電気的に結合する。
【0008】
最初に、ヘリカルアンテナ11を流れる高周波電流に基づきヘリカルアンテナの動作を説明する。ヘリカルアンテナ11の給電点12はアンテナの先端部に位置し、第1の同軸線13の外部導体13aには、なんらアンテナ素子になるものは接続されていない。給電点12より流れ出た高周波電流は巻き終り端15から同軸線13の外部導体13aの外壁側の下から上に向かって流れる。一方、同軸線13の外部導体13aの内壁側では逆方向の電流が流れている。従って同軸線13の外部導体13aには見かけ上高周波電流は流れない。
【0009】
ところで、同軸線13は中心導体と外部導体13aを隔てる内部誘電体13b(ポリエチレン等)が充填されている。また外部導体13aを保護する外部誘電体(図示せず)と前記内部誘電体13b等により高周波エネルギーが消費され、図2(a)に示す放射パターンはヘリカルアンテナ11を構成する線材のうち同軸線13が支配的な方向はアンテナの放射利得が導線14の支配的な方向に比較して3dB程度の劣化を生じていることを示している。また、方向によっては6dBもの劣化を生じている。このパターンは、同軸線13の内部誘電体13bとして比誘電率2.3、誘電体損3×10−4を使用し、外部導体13aの被覆にポリ塩化ビニルを使用してた同軸線を用いた例で、アンテナの長さは23cm、アンテナの直径は4cm、巻き数は2ターンである。以上の構成によるヘリカルアンテナを垂直に立て、ヘリカルアンテナ11の軸を中心にした放射パターンが図2(a)である。
【0010】
ここで、携帯電話の使用者が衛星の飛翔している方位を意識することなく、快適に通信するには、円偏波アンテナの放射特性が良好な方向にアンテナ部を回転させる。この為に、アンテナ部と無線機回路部の間に歯車付きのロータリーコネクタ31を設け、アンテナ側を電気原動機(例えば、ステッピングモータ)32等により回転させる。アンテナの回転角度を制御するためには、歯車32aを備えた電気原動機32の回転を受信信号強度検出器41からの検出信号により受信信号が最大になるように回転角度制御手段42により制御を行う。
【0011】
図1(b)により本発明の他の実施形態を説明する。図1(b)において平面アンテナ21は、パッチ状の導体22、板状の誘電体基板23、地導体板24、給電ピン25で構成される。この平面アンテナ21を回転させる機構装置例は、図3と同様にできるため図示及びその説明を省略する。
【0012】
平面アンテナ21の構成は誘電体基板23の上面に放射素子となるパッチ状の導体22を印刷する。このときパッチ状の導体22は縦横の長さが若干異なる長方形であり、長方形の長辺では周波数fL で直線偏波アンテナとして動作し、短辺では周波数fH で交差した直線偏波アンテナとして動作し、この周波数fL と周波数fH の間で円偏波アンテナとして動作する。
【0013】
ところで、平面アンテナを仰角0度の状態で放射パターンを測定すると図2(b)のように感度が最大と最小で5dB程度差が生じている。この感度劣化を補うために、ヘリカルアンテナと同様に回転機構を設け、回転角度を制御する。
【0014】
【発明の効果】
以上のように、本発明はアンテナ回転装置により円偏波アンテナの指向特性が良好な方向を衛星の飛翔する方向に向けるので良好な感度で通信が可能となる。さらには携帯電話からの送信電力の節約にもなり、通話の長時間化にも効果がある。
【図面の簡単な説明】
【図1】(a)は本発明の実施形態でヘリカルアンテナを取り付けた携帯電話の斜視図、(b)は他の実施形態で平面アンテナを取り付けた携帯電話の斜視図。
【図2】仰角0度の時の放射パターンで(a)はヘリカルアンテナ、(b)は平面アンテナの測定例。
【図3】ヘリカルアンテナの回転機構を説明する図。
【図4】従来の実施例を示す斜視図。
【符号の説明】
a:筺体の第1の面(正面)
b:筺体の第2の面(背面)
c:筺体の第3の面(上面)
1:携帯電話
2:表示部
3:受話部
4:操作部
5:送話部
11:ヘリカルアンテナ
12:給電点
13:同軸線
13a:同軸線の外部導体
13b:同軸線の内部誘電体
14:導線
15:第1の同軸線と導線の巻き終り端
16:誘電体円筒
21:マイクロストリップライン平面アンテナ(平面アンテナ)
22:パッチ状の導体
23:地導体板
24:誘電体基板
25:給電ピン
26:地導体板の給電ピン用の貫通孔
27:同軸線
31:歯車付きのロータリーコネクタ
32:電気原動機(ステッピングモーター)
32a:歯車
41:受信信号強度検出器
42:回転角度制御手段
201:携帯電話
202:送信用マイクロストリップライン平面アンテナ
203:受信用マイクロストリップライン平面アンテナ
204:折りたたみアンテナアレイ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile phone provided with a satellite tracking antenna effective for satellite communication using an orbiting satellite.
[0002]
[Prior art and its problems]
In recent years, mobile phones using orbiting satellites orbiting the earth in medium or low orbit have been proposed by various companies, and those frequency bands are 1.6 GHz from the ground mobile phone to the satellite. A 2.4 GHz band is allocated from the mobile phone to the ground mobile phone, and the 1.6 GHz band is also allocated as a frequency band used for bidirectional communication from the ground to the satellite and from the satellite to the ground. As an antenna configuration, for example, as shown in FIG. 4, a folding antenna array 204 using a transmitting microstrip line planar antenna 202 and a receiving microstrip line planar antenna 203 for satellite communication (an ITU research world non-stationary satellite communication system No. 261 / 262 New Japan ITU Association August 1993 P.36) is attached to the cellular phone 201, and the antenna is directed toward the orbiting satellite by adjusting the folding angle α of the folding antenna array 204. However, it is difficult to align the orientation of the antenna array 204 in the direction in which the orbiting satellite is flying, and for the best communication, the user should match the best direction of the radiation pattern of the antenna array 204 with it. If you don't rotate with your phone No et al.
[0003]
[Means for Solving the Problems]
The cellular phone of the present invention includes a circularly polarized antenna rotating means for transmitting and receiving for satellite communication, a received signal strength detecting means, and an antenna rotation angle control means.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
To solve the problems described above, and properly position the helical antenna or a microstrip line planar antenna for circularly polarized wave in mobile phones (hereinafter referred to as plane antenna) to the mobile phone, by rotating the antenna, antenna directivity The first surface (front surface) and the second surface (rear surface) facing each other are aimed at improving communication quality by directing the best direction to the direction in which the orbiting satellite flies and preventing line disconnection during a call. ) Having a radio unit, a receiver, and a transmitter, the receiver is fixed to the first surface of the housing, and a helical antenna or a planar antenna is installed near the upper end of the second surface. A connector means (for example, a rotary connector) that is rotatable between the first coaxial cable and an electric motor (for example, a stepping motor) that rotates the antenna. To follow the circumferential direction of the satellite with the.
[0005]
1 to 3 show an embodiment of the present invention. 1 (a) is a perspective view of a mobile phone mounting a helical antenna for circularly polarized wave, and FIG. 1 (b) is a perspective view of a mobile phone mounting a planar antenna for circularly polarized wave, the same site the same reference numerals 1 is a mobile phone , 2 is a display unit, 3 is a receiver, 4 is an operation unit, a is a first surface (front) of the housing, b is a second surface (back) of the housing, and c is a housing. This is the third surface (upper surface). In FIG. 1 (a), 11 is a helical antenna, and in FIG. 1 (b), 21 is a planar antenna that emits radiation in a zenith direction by circular polarization.
[0006]
2A and 2B show examples of antenna radiation patterns. FIG. 2A shows a radiation pattern of a circularly polarized helical antenna, and FIG. 2B shows a radiation pattern of a circularly polarized flat antenna.
[0007]
FIG. 3 shows an apparatus configuration example for rotating the helical antenna 11 according to the present invention, wherein 12 is a first feeding point. First, the operation and characteristics of the helical antenna 11 that generates circularly polarized waves for satellite communication will be described, and then the effect of rotating the helical antenna 11 will be described. The helical antenna 11 is composed of a coaxial line 13 and a conductive wire 14 that serve both as a radiating element and a normal conductor line. The helical conductor 11 electrically couples the central conductor of the coaxial line 13 and the conductive wire 14 at the feeding point 12, and ends the winding of the conductive wire 14. At the end 15, the outer conductor 13 a of the coaxial line 13 is electrically coupled.
[0008]
First, the operation of the helical antenna will be described based on the high-frequency current flowing through the helical antenna 11. The feeding point 12 of the helical antenna 11 is located at the tip of the antenna, and the outer conductor 13a of the first coaxial line 13 is not connected to anything that becomes an antenna element. The high-frequency current flowing out from the feeding point 12 flows from the bottom end 15 toward the top from the bottom on the outer wall side of the outer conductor 13 a of the coaxial line 13. On the other hand, a reverse current flows on the inner wall side of the outer conductor 13 a of the coaxial line 13. Therefore, apparently no high frequency current flows through the outer conductor 13a of the coaxial line 13.
[0009]
By the way, the coaxial line 13 is filled with an internal dielectric 13b (polyethylene or the like) that separates the center conductor and the external conductor 13a. Further, high frequency energy is consumed by an external dielectric (not shown) that protects the external conductor 13a, the internal dielectric 13b, and the like, and the radiation pattern shown in FIG. 2 (a) is a coaxial line among the wires constituting the helical antenna 11. The direction in which 13 is dominant indicates that the radiation gain of the antenna is deteriorated by about 3 dB as compared with the direction in which the conductor 14 is dominant. Further, depending on the direction, the degradation is as much as 6 dB. This pattern uses a coaxial wire using a relative dielectric constant of 2.3 and a dielectric loss of 3 × 10 −4 as the inner dielectric 13b of the coaxial wire 13, and using polyvinyl chloride as a coating for the outer conductor 13a. In this example, the length of the antenna is 23 cm, the diameter of the antenna is 4 cm, and the number of turns is 2 turns. FIG. 2A shows a radiation pattern centering on the axis of the helical antenna 11 with the helical antenna configured as described above standing vertically.
[0010]
Here, in order for the user of the cellular phone to communicate comfortably without being aware of the direction in which the satellite is flying, the antenna unit is rotated in a direction in which the radiation characteristic of the circularly polarized antenna is good. For this purpose, a rotary connector 31 with a gear is provided between the antenna unit and the radio circuit unit, and the antenna side is rotated by an electric prime mover (for example, a stepping motor) 32 or the like. In order to control the rotation angle of the antenna, the rotation of the electric prime mover 32 provided with the gear 32a is controlled by the rotation angle control means 42 so that the reception signal is maximized by the detection signal from the reception signal intensity detector 41. .
[0011]
Another embodiment of the present invention will be described with reference to FIG. In FIG. 1B, the planar antenna 21 includes a patch-like conductor 22, a plate-like dielectric substrate 23, a ground conductor plate 24, and feed pins 25. Since an example of a mechanism device for rotating the planar antenna 21 can be the same as that shown in FIG. 3, illustration and description thereof are omitted.
[0012]
The planar antenna 21 is configured by printing a patch-like conductor 22 serving as a radiating element on the upper surface of a dielectric substrate 23. At this time, the patch-like conductor 22 has a rectangular shape with slightly different vertical and horizontal lengths. The long side of the rectangle operates as a linearly polarized antenna at the frequency fL, and the short side operates as a linearly polarized antenna intersected at the frequency fH. The antenna operates as a circularly polarized antenna between the frequency fL and the frequency fH.
[0013]
By the way, when the radiation pattern is measured with the planar antenna at an elevation angle of 0 degree, a difference of about 5 dB occurs between the maximum and minimum sensitivity as shown in FIG. In order to compensate for this sensitivity deterioration, a rotation mechanism is provided in the same manner as the helical antenna, and the rotation angle is controlled.
[0014]
【The invention's effect】
As described above, according to the present invention, since the antenna rotating device directs the direction in which the circularly polarized antenna has good directivity characteristics to the direction in which the satellite flies, communication can be performed with good sensitivity. In addition, the transmission power from the mobile phone can be saved, and the call can be made longer.
[Brief description of the drawings]
FIG. 1A is a perspective view of a mobile phone to which a helical antenna is attached in an embodiment of the present invention, and FIG. 1B is a perspective view of a mobile phone to which a planar antenna is attached in another embodiment.
FIGS. 2A and 2B show a radiation pattern at an elevation angle of 0 degree, where FIG. 2A is a measurement example of a helical antenna, and FIG.
FIG. 3 is a diagram illustrating a rotating mechanism of a helical antenna.
FIG. 4 is a perspective view showing a conventional example.
[Explanation of symbols]
a: First surface (front) of the housing
b: Second surface (back surface) of the housing
c: Third surface (upper surface) of the housing
1: mobile phone 2: display unit 3: receiving unit 4: operating unit 5: transmitting unit 11: helical antenna 12: feeding point 13: coaxial line 13a: outer conductor 13b of coaxial line: inner dielectric 14 of coaxial line: Conductor 15: first coaxial line and winding end 16 of conductor: Dielectric cylinder 21: microstrip line planar antenna (planar antenna)
22: Patch-like conductor 23: Ground conductor plate 24: Dielectric substrate 25: Feed pin 26: Through hole 27 for the feed pin of the ground conductor plate: Coaxial line 31: Rotary connector 32 with gears: Electric motor (stepping motor) )
32a: gear 41: received signal strength detector 42: rotation angle control means 201: mobile phone 202: transmitting microstrip line planar antenna 203: receiving microstrip line planar antenna 204: folding antenna array

Claims (2)

衛星通信用の送受信を行う円偏波アンテナと、該円偏波アンテナをアンテナ軸を中心に回転させる回転手段と、該回転手段に動力を伝達する駆動手段と、前記円偏波アンテナの受信信号強度を検出する検出手段と、該検出手段の検出結果が最大となるように前記駆動手段を制御する回転角度制御手段とを筐体に備えたことを特徴とする携帯電話Circularly polarized antenna for transmitting and receiving for satellite communication, rotating means for rotating the circularly polarized antenna around the antenna axis, driving means for transmitting power to the rotating means, and received signal of the circularly polarized antenna A cellular phone comprising: a casing including detection means for detecting intensity; and a rotation angle control means for controlling the driving means so that a detection result of the detection means is maximized. 前記回転手段がロータリーコネクタで構成され、該ロータリーコネクタが円偏波アンテナと無線回路部とを接続する前記アンテナ軸を構成する同軸線路途中に具備されたことを特徴とする請求項1記載の携帯電話2. The mobile phone according to claim 1, wherein the rotating means is constituted by a rotary connector, and the rotary connector is provided in the middle of a coaxial line constituting the antenna shaft for connecting the circularly polarized antenna and the radio circuit unit. Phone .
JP04161896A 1996-02-28 1996-02-28 mobile phone Expired - Fee Related JP3610151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04161896A JP3610151B2 (en) 1996-02-28 1996-02-28 mobile phone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04161896A JP3610151B2 (en) 1996-02-28 1996-02-28 mobile phone

Publications (2)

Publication Number Publication Date
JPH09232842A JPH09232842A (en) 1997-09-05
JP3610151B2 true JP3610151B2 (en) 2005-01-12

Family

ID=12613337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04161896A Expired - Fee Related JP3610151B2 (en) 1996-02-28 1996-02-28 mobile phone

Country Status (1)

Country Link
JP (1) JP3610151B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758070B1 (en) * 2006-01-24 2007-09-11 엘에스전선 주식회사 Antenna systems within portable phones and controlling method thereof
US8731503B2 (en) 2010-04-29 2014-05-20 Nokia Corporation RF performance improvement

Also Published As

Publication number Publication date
JPH09232842A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
EP0847103B1 (en) Shared antenna and portable radio device using the same
KR100523092B1 (en) HANDHELD RADIO COMMUNICATION UNIT INCLUDING AN ANTENNA FOR FREQUENCIES IN EXCESS OF 200 MHz
RU2160946C2 (en) Portable radio communication device
US6025816A (en) Antenna system for dual mode satellite/cellular portable phone
KR100637346B1 (en) Antenna system for a radio communication device
JP3442389B2 (en) Antenna for portable communication device
JP3439772B2 (en) Composite antenna device
EP1608085A2 (en) Mobile terminal having satellite signal receiving antenna
WO1998028814A9 (en) Antenna system for dual mode satellite/cellular portable phone
JPS6125304A (en) Small-sized adaptive array antenna
EP1732232A1 (en) Portable telephone with broadcast receiver
JP4857439B2 (en) Antenna and radio receiving system including the same
JP2007214961A (en) Antenna system
US6046700A (en) Antenna arrangement
US6987494B2 (en) Antenna assemblies for wireless communication devices
JPH06204908A (en) Radio equipment antenna
JP3610151B2 (en) mobile phone
EP0876688B1 (en) ANTENNA FOR FREQUENCIES IN EXCESS OF 200 MHz
KR100278462B1 (en) Retractable Antenna for Mobile Phones
JP3180784B2 (en) Portable terminal device having a reflector
JP4971212B2 (en) Helical whip antenna
JPH08288895A (en) Portable communication equipment
JP4626398B2 (en) Portable wireless terminal device
RU2159489C2 (en) Composite antenna
JP3898101B2 (en) Spiral antenna

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees