JP3609959B2 - Screen bowl type decanter type centrifuge - Google Patents

Screen bowl type decanter type centrifuge Download PDF

Info

Publication number
JP3609959B2
JP3609959B2 JP16332099A JP16332099A JP3609959B2 JP 3609959 B2 JP3609959 B2 JP 3609959B2 JP 16332099 A JP16332099 A JP 16332099A JP 16332099 A JP16332099 A JP 16332099A JP 3609959 B2 JP3609959 B2 JP 3609959B2
Authority
JP
Japan
Prior art keywords
conveyor
filter medium
crystal
centrifuge
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16332099A
Other languages
Japanese (ja)
Other versions
JP2000350946A (en
Inventor
孝治 藤本
俊幸 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Tomoe Engineering Co Ltd
Original Assignee
Mitsui Chemicals Inc
Tomoe Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Tomoe Engineering Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP16332099A priority Critical patent/JP3609959B2/en
Publication of JP2000350946A publication Critical patent/JP2000350946A/en
Application granted granted Critical
Publication of JP3609959B2 publication Critical patent/JP3609959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/205Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl with special construction of screw thread, e.g. segments, height

Description

【0001】
【発明の属する技術分野】
本発明は、外側回転筒及び該外側回転筒内に相対回転自在に設けられたスクリューコンベヤを有すると共に、前記外側回転筒は、大径の平行部と、該平行部より固形物排出側に設けられた小径の平行部と、両平行部を接続する傾斜部とからなり、前記小径の平行部は、これに濾液排出孔が形成され、その内壁に円筒状の濾材を配設して濾材部を構成し、該濾材部の部位において処理物の洗浄を行うための洗浄ノズルを設けてなるスクリーンボウル型デカンタ型遠心分離機に関する。
【0002】
【従来の技術】
従来型のデカンタ型遠心分離機の一例を図8に示す。同図に示す遠心分離機は、通称ソリッドボウル型といわれており、左端にいわゆるダムと称する清澄液の溢流口5が設けられた大径の平行部1と、これに接続されて右端に固形物の排出口6が設けられたいわゆるビーチを含む傾斜部2とからなる高速回転する外側回転筒4を有し、該外側回転筒4の内部に、僅かな半径方向隙間を保持して螺旋状のコンベヤ羽根8を有するスクリューコンベヤ7が相対回転自在に設けられている。
【0003】
上記ソリッドボウル型遠心分離機内に結晶性の固形物と溶媒からなる処理物スラリーを投入した場合、図9に示すように回転による遠心力にて処理物である結晶性固形物が外側回転筒4の内壁面に沈降し、その表面に、処理物生成過程における不純物を付着していたり、処理物スラリーの溶媒を付着していたりした結晶性固形物は、外側回転筒4と同一軸上にあり、該外側回転筒4とは異なる速度で回転するスクリューコンベヤ7により、傾斜部2に送られ、ビーチをあがった該傾斜部2において脱液作用を受ける。処理物スラリーを形成する溶媒と沈降しきれない結晶性固形物の一部は、大径の平行部1の左端に設けられた溢流口5から溢流して外部に排出される。
【0004】
ソリッドボウル型遠心分離機より排出される結晶性固形物は、一般的にその製品結晶の製造過程においてできる不純物、または溶媒そのものをその結晶表面に付着させている。この不純物、または溶媒の付着度を下げるために、新鮮な溶媒で再スラリー化したり、別な溶媒と置換したりすることで固液分離を数回繰り返し行い、製品純度を上げる方法がとられているのが普通である。このように結晶性固形物表面に付着する不純物、または溶媒の付着度を下げ、さらに、脱液を行うという用途に遠心分離機を使用するに際し、結晶性固形物の洗浄に対して、洗浄溶媒が処理溶媒である分離液と混合しても差し支えない場合は、図9に示すように、ビーチをあがった傾斜部2の部位におけるコンベヤ内部に洗浄室13を設け、処理スラリーを外側回転筒4内に導くようにした固定のフィードチューブ11の一部に洗浄液通路12を設け、外部から洗浄液を上記洗浄室13内に導き、コンベヤ胴9に取り付けられた洗浄液ノズル14等にて、傾斜部2の部位に導入された不純物を含まない水などの洗浄液により処理物である結晶性固形物を洗うことが一般的に行われている。
【0005】
しかし洗浄の効果を高めるため、ビーチをあがった傾斜部2の上部から固形物排出口6近く迄処理物に洗浄液をかけ続けるようにすると、製品結晶の脱液度が悪化してしまうため、製品結晶が液層からでた直後、またはその近くでの洗浄だけに制限することが考えられるが、これでは洗浄液が結晶と接触する時間が短いため、ある程度製品純度はよくなるものの分離機段数を低減できるほどの有効な洗浄効果はえられないという実状にある。
【0006】
ソリッドボウル型遠心分離機における製品結晶の脱液度及び洗浄効果の改善を図るものとして、図10に示すように、ビーチをあがった傾斜部2に接続して小径の平行部3を設け、該小径の平行部3に多数の濾液排出孔3aを形成し、その内壁にバースクリーン等の円筒状濾材3bを配設して濾材部10を構成し、該濾材部10において遠心濾過を行うようにした遠心分離機が既に開発されており、これは通称スクリーンボウル型遠心分離機と呼ばれている。このスクリーンボウル型遠心分離機は、その濾材部10における円筒状の濾材3bとしてメッシュスクリーンや多孔質セラミック等の濾材を使用することも可能である。
【0007】
スクリーンボウル型遠心分離機においては、外側回転筒4の一端からフィードチューブ11を介して導入された処理物スラリーが、高速回転する外側回転筒4の大径の平行部1内で、遠心力により結晶性固形物と分離液とに分けられ、スクリューコンベヤ7により傾斜部2に送られ、そのビーチをあがった結晶性固形物が傾斜部2の部位において脱液作用を受けて固液分離される分離のメカニズムは、前述したソリッドボウル型と同じであるが、そのボウルが大径の平行部1と小径の平行部3との2段になっており、なお且つ、小径の平行部3の内壁に円筒状の濾材3bを保持させて濾材部10を構成している点で相違しており、該構成に基づいてこの小径の平行部3の始まり部位において、前述のフィードチューブ11の一部を洗浄液通路12として利用し、外部から洗浄液を導入しコンベヤ内部の洗浄室13において、コンベヤ胴9に取り付けられた洗浄液ノズル14等により洗浄液を結晶性固形物にかけることにより結晶性固形物の洗浄を行い、さらに、小径の平行部3における濾材部10の後半部分にて結晶性固形物の表面に付着する液分の脱液を行うことが可能である。この洗浄作用により結晶表面に付着した液分を含んだ洗浄液は、濾材部10における濾材3bの濾過開口を通り抜け小径の平行部3に設けられた濾液排出孔3aまたはスロットを通して遠心分離機の外部へ排出される。
【0008】
このようにスクリーンボウル型遠心分離機では、ビーチをあがった傾斜部2での一次脱液の他に、小径の平行部3におけ濾材部3bでの二次脱液による濾過脱液作用を受けるため、結晶形状が比較的丸い、単純な表面状態で濾材面を移動しやすい処理物である場合や、洗浄液により結晶が溶け易い処理物のように濾材とマッチした場合は、脱液性能、洗浄性能の面でソリッドボウル型に比較して優れた性能を示すものである。
【0009】
【発明が解決しようとする課題】
しかしながら、スクリーンボウル型遠心分離機では、小径の平行部3における濾材部10にて濾過脱液を行うには、結晶の粒径、形状、磨耗性等の物性に注意を払い、濾材3bを選定する必要があることに加えて、濾材部10からの結晶の逃げがあることは、濾材濾過を行うものである以上避けられず、この結晶の逃げを極力減らすために、目開きの小さなバースクリーンやメッシュスクリーンを使用した場合では、濾材3bの濾過開口に結晶が詰まることとなって濾過は短時間しか行えないため、この濾過部10が有効に使用できなくなるという問題が生じた。そしてこの結晶の逃げは、ソリッドボウル型遠心分離機に比較してかえってその結晶回収効率の悪化を招く結果となった。
【0010】
また、スクリューコンベヤ7のコンベヤ羽根8と濾材部10の内壁面との間に、半径方向隙間が設けられているので、ある程度の厚さの残層ができるのは機構的にやむを得ないところであり、この残層の厚さを若干大きくとっても結晶性固形物の粒体内部摩擦の如何により、表面の摩擦係数の小さな濾材3bを適宜選定することで残層を動きやすくする工夫が行われてきた。
【0011】
一方、この小径の平行部3における濾材部10に相対する結晶性固形物搬送用のコンベヤ羽根8を図11に示す如く一部分切り欠き、コンベヤ羽根8と濾材部3bの内壁との間の半径方向隙間を大きく取った構造にした場合、スクリューコンベヤ7により送られた結晶性固形物は、この隙間により作られる平面に留まって残層Dが形成され、コンベヤ羽根8により送られなくなる。この残層Dの部分がコンベヤ羽根8による結晶性固形物の搬送性等の物性によっても異なるが、停滞時間が長くなると圧密状を呈し、洗浄液が透過できなくなってしまうこととなり、前記残層Dの厚さを大きくとることが必ずしも全ての結晶性固形物に対して有効と言うわけではなかった。前記残層Dの厚さを大きくとった場合、停滞した結晶性固形物は、コンベヤ羽根8により搬送される大部分の結晶が濾材部3bから結晶性固形物が逃げることを防ぐ結晶濾過の状態となるが、一方、この残層結晶性固形物が同位置に停滞し続けると、回転による遠心力により、またコンベヤ羽根8の先端部端面の接触により、残層結晶が圧密され、その結果残層結晶性固形物による濾過効果が損なわれてしまうという問題を生じていた。すなわち、スクリーンボウル型遠心分離機の場合、濾材部10における濾材3bの濾過開口からの結晶性固形物の逃げの問題と、残層圧密による脱液効果の低下の問題とを生じていた。
【0012】
スクリーンボウル型に限らず、デカンタ型遠心分離機全般についていえることであるが、スクリューコンベヤ7のコンベヤ羽根8と小径の平行部3の内壁との間の半径方向隙間は、スクリューコンベヤ7と外側回転筒4とが異なる速度で回転するものである以上必ず必要であるが、残層Dは、厚い隙間aによる場合よりも薄い隙間bによる場合の方が洗浄による濾過効果が高く、さらに脱液に対して有利であるため、この隙間をできるだけ小さくする方がよいという考えが一般的であった。しかし、この残層Dの厚さが薄すぎると、図12に示すようにコンベヤ羽根8で搬送される結晶性固形物の搬送断面積の高さHが大となって洗浄液は結晶性固形物の表面を流れ下り薄い隙間bによる残層を通して機外に排出されるので、洗浄効果が減殺されるという問題を生じていた。
【0013】
本発明は、上記した諸問題に鑑みてなされたもので、その目的は、外側回転筒の小径の平行部に濾液排出孔が形成され、その内壁に円筒状の濾材を配設して濾材部を構成し、該濾材部の部位において処理物の洗浄を行うための洗浄ノズルを設けてなるスクリーンボウル型デカンタ型遠心分離機において、その濾材部の部位にあるスクリューコンベヤに改良を施し、濾材部表面を移動する結晶性固形物の洗浄溶媒は、処理物溶媒と分離して機外に取り出すことが可能であり、この時、連続的安定的に結晶濾過を行うことにより、濾液中への逃げ結晶性固形物量を極力小さくすることにより結晶性固形物回収率を上げ、さらに、濾材の濾過開口を比較的大きなものに選定することで結晶性固形物の内部閉塞を起こすことなく、不純物洗浄の効果を上げることができ、機能の簡素化、周辺設備低減を図ったスクリーンボウル型デカンタ型遠心分離機を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明によるスクリーンボウル型デカンタ型遠心分離機は、特許請求の範囲の各請求項に記載されたところを特徴とするものであるが、特に独立項としての請求項1に係る発明によるスクリーンボウル型デカンタ型遠心分離機は、外側回転筒及び該外側回転筒内に相対回転自在に設けられたスクリューコンベヤを有すると共に、前記外側回転筒は、大径の平行部と、該平行部より固形物排出側に設けられた小径の平行部と、両平行部を接続する傾斜部とからなり、前記小径の平行部は、これに濾液排出孔が形成され、その内壁に円筒状の濾材を配設して濾材部を構成し、該濾材部において処理物の洗浄を行うための洗浄ノズルを設けてなるスクリーンボウル型デカンタ型遠心分離機において、前記濾材部におけるスクリューコンベヤが、そのコンベヤ羽根と前記濾材部の内壁との間の半径方向隙間を大とした主コンベヤと、該主コンベヤのピッチ間に配設されて、そのコンベヤ羽根と前記濾材部の内壁との間の半径方向隙間を前記主コンベヤのそれに比して小とした少なくとも1本の副コンベヤとで構成されていることを特徴とするものである。
【0015】
【作用】
本発明によれば、小径の平行部に構成されている濾材部における正副両コンベヤが、常に外側回転筒との間で相対回転を行うことにより、コンベヤフィード口から連続していてその半径方向隙間が大きくとれた主コンベヤ羽根に対して、副コンベヤ羽根は、それと濾材部内壁との間の半径方向隙間が小さくなっているため、正及び副の両コンベヤは、それぞれの隙間分だけ結晶性固形物を残層として持つこととなり、それぞれのコンベヤ羽根は隙間の差分だけ軸方向の搬送力を結晶性固形物に与えることとなる。これら正及び副の両コンベヤ羽根は、一枚のコンベヤ羽根で送るのと同等の軸方向搬送力を持つこととなり、連続的に遠心力場にさらされることなく、またコンベヤ羽根の端部により押さえつけられることによる圧密をされることもなく、平滑化した結晶性固形物の搬送形態で洗浄液による洗浄を受けることとなる。
【0016】
従来の1枚のコンベヤ羽根の搬送形態は図12に示すとおり、コンベヤ羽根で押される部分が高い、高さHのほぼ三角形に近い状態で送られるため、洗浄液は三角形の斜面を流れ下り、結晶のより薄い残層部分に流れることとなる。これに対し、図5で示したような本発明による正及び副の両コンベヤ羽根を用いた場合、それぞれのコンベヤ羽根8a,8bの間にケーキ洗浄用ノズル14を設けることにより、結晶洗浄を行うと、洗浄液のかかる面が図12の場合に比べて平滑化されることになるため、搬送される結晶性固形物中に洗浄液が浸透し、より効果的に洗浄が行える。また平らな結晶層が濾過効果のある場合、結晶を濾材から逃がすことをより減少させることができる。
【0017】
また、この結晶濾過の状態では、目開きを、結晶粒径に比較して大きな開口を選定することができ、結晶を開口に閉塞させることなく洗浄脱液が行えることとなる。
【0018】
【発明の実施の形態】
本発明の実施例を、図1ないし図5にて説明すると以下の通りである。なお、以下の実施例は、小径の平行部3に構成された濾材部10の部位におけるコンベヤ羽根数を主コンベヤ羽根8aと副コンベヤ羽根8bの2枚としているものについて説明する。
【0019】
本実施例によるスクリーンボウル型遠心分離機は、外側回転筒4及び該外側回転筒4内に相対回転自在に設けられたスクリューコンベヤ7を有すると共に、前記外側回転筒4は、大径の平行部1と、該平行部1より固形物排出口6側に設けられた小径の平行部3と、両平行部1及び3を接続する傾斜部2とからなり、前記小径の平行部3は、これに濾液排出孔3aが形成され、その内壁に円筒状の濾材3bを配設して濾材部10を構成し、該濾材部10において処理物の洗浄を行うための洗浄ノズル14を設けてなるスクリーンボウル型遠心分離機において、前記濾材部10におけるスクリューコンベヤ7が、コンベヤ羽根8aと前記濾材部10の内壁との間の半径方向隙間aを大とした主コンベヤと、該主コンベヤのピッチ間に配設されて、コンベヤ羽根8bと前記濾材部10の内壁との間の半径方向隙間bを前記主コンベヤのそれに比して小とした1本の副コンベヤとの正副2本のコンベヤで構成されている。
【0020】
図3に示すように、スクリューコンベヤ7のコンベヤ羽根8に連続するものとして、適切な残層厚みができるように濾材部10に相対するコンベヤ羽根の半径方向を、適当な高さ分短くするか切り欠くかして、濾材部10との半径方向隙間を大きく保持させた主コンベヤ羽根8aを配設する。
【0021】
さらに、副コンベヤとして、半径方向隙間小の副コンベヤ羽根8bを図のように前記半径方向隙間大の主コンベヤ羽根8aのピッチ間に巻くことにより、傾斜部2を上った結晶は、この半径方向隙間大の主コンベヤ羽根8aの半径方向隙間aの部分のみ、もう一方の半径方向隙間小の副コンベヤ羽根8bが回転してくるまで搬送されない状態となる。この切り欠きのある半径方向隙間大の主コンベヤ羽根8aにより形成された残層は、もう一方の半径方向隙間小の副コンベヤ羽根8bにより送られることとなり、その結晶搬送形態は、図5に示されるように、コンベヤ羽根が1本の図12に示す結晶搬送形態に比べて一段と平滑化されることとなる。
【0022】
なお、半径方向隙間大の主コンベヤ羽根8a及び半径方向隙間小の副コンベヤ羽根8bと洗浄液ノズル14とは、図2のように配設される。
【0023】
この半径方向隙間大の主コンベヤ羽根8aの切り欠き高さ、また半径方向隙間aは、他方の切り欠きのない半径方向隙間小の副コンベヤ羽根8bの送り結晶量を決めることになり、このそれぞれ主副2枚のコンベヤ羽根8a,8bの結晶の送り高さがほぼ同じ程度になるように決定する。また、それぞれのコンベヤ羽根8a,8b相互の間隔は、図6に示すように結晶がコンベヤ羽根8a,8b間にブリッジEを作ってしまうと搬送を行えなくなるため、結晶搬送量により適切なコンベヤ羽根ピッチ間隔を決める必要があり、これは結晶性固形物の物性等も考慮に入れて適宜設計により定める。
【0024】
この状況で、図12に示すように同一ピッチの1枚だけのコンベヤ羽根8からなるスクリューコンベヤの結晶搬送形態と比較して、結晶搬送形態が平滑化されることとなり、結晶濾過部分の面積が広くなることより洗浄液が均一に結晶層に浸透し、有効な結晶洗浄効果が得られる。また、図12と比べて図5に示すとおり、残層の薄い部分bが狭いため、結晶濾過の部分を広くとることができ、濾材部10からの結晶の逃げを減少させることが可能となる。
【0025】
また、コンベヤ羽根ピッチ間隔が十分に広い場合には、この主副2枚のコンベヤ羽根8a,8bの他に、さらに図7中半径方向隙間をb, c及びaとして示すとおり固形物搬送方向に階段状に大と設定する第2の副コンベヤ羽根8cを設けることにすれば、さらに結晶搬送形態がより平滑化され、洗浄効果は高くなることが予想される。
【0026】
一方、図12に示す半径方向隙間を若干大きくとったコンベヤ羽根8のみの場合で、結晶の残層部分を作ることは可能であり、濾材3a全面にて結晶濾過が可能なようであるが、結晶の残層部分を軸方向に押す力がコンベヤ羽根8と結晶性固形物との間のせん断力のみであり弱いために、半径方向隙間を大にすると残層部分が濾材部10の内壁面における同一位置に停滞してしまう結果となり、前記したように圧密され濾過効果を著しく低下させることとなる。
【0027】
また、洗浄部分を図2に示されるように、濾材部10の部位での搬送始まり部分に設定する場合、その後半部分において洗浄を行わない部分を設け、この部分において洗浄液と置換された結晶表面液分の脱液を行うようにすれば、残留する不純分をさらに少なくすることが可能である。
【0028】
【発明の効果】
化学工業、食品工業にて製造される製品結晶は、その製造過程において未重合物質やスラリーを構成する溶媒を結晶表面に付着している。この付着物は、ある特定の別な溶媒にて、洗浄置換可能である。スクリーンボウル型遠心分離機における濾材部の部位において、半径方向隙間の異なる複数のコンベヤ羽根を使用するようにした本発明によれば、濾材表面を移動する結晶をコンベヤ胴に設けた洗浄液ノズル等でかける洗浄溶媒は、処理物溶媒と分離して遠心分離機外に取り出すことが可能であると共に、スクリューコンベヤの改善によりこの種の従来機に比べて、より一層連続的安定的に結晶濾過を行うことができ、濾液中の結晶の逃げる量を極力小さくすることにより結晶の回収率を上げ、さらに濾材の濾過開口を比較的大きくすることができ結晶の内部閉塞を起こすことなく、付着物洗浄の効果を上げることができ、機能の簡素化、周辺設備低減の効果が得られる。
【図面の簡単な説明】
【図1】本発明実施例によるスクリーンボウル型遠心分離機の側断面図。
【図2】本発明実施例による濾材部の部位での搬送始まり部分における主副コンベヤ羽根間に洗浄液ノズルを配設した部分断面図。
【図3】本発明実施例による大径の平行部、傾斜部及び小径の平行部からなる外側回転筒内に配設されるスクリューコンベヤの側面図。
【図4】本発明実施例によるスクリューコンベヤにおける主及び副2枚のコンベヤ羽根の説明図。
【図5】本発明実施例における主及び副の2枚コンベヤ羽根による結晶搬送形態説明図。
【図6】主及び副の2枚コンベヤ羽根によるピッチの狭い場合の結晶搬送形態説明図。
【図7】本発明の他の実施例における主1枚及び副2枚の3枚コンベヤ羽根による結晶搬送形態説明図。
【図8】従来技術によるソリッドボウル型遠心分離機の側断面図。
【図9】ソリッドボウル型遠心分離機における傾斜部ビーチにおける固形物洗浄を示す部分断面図。
【図10】従来技術による1枚コンベヤ羽根スクリーンボウル型遠心分離機の側断面図。
【図11】1枚コンベヤ羽根スクリーンボウル型遠心分離機において濾材部に形成される残層を示す部分断面図。
【図12】濾材部における1枚コンベヤ羽根による結晶搬送形態説明図。
【符号の説明】
1…大径の平行部
2…傾斜部
3…小径の平行部
3a…濾液排出孔またはスロット
3b…濾材
4…外側回転筒
5…清澄液溢流口
6…固形物出口
7…スクリューコンベヤ
8…コンベヤ羽根
8a…主コンベヤ羽根
8b…副コンベヤ羽根
8c…第2の副コンベヤ羽根
9…コンベヤ胴
10…濾材部
11…フィードチューブ
12…洗浄液通路
13…洗浄室
14…洗浄液ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention has an outer rotating cylinder and a screw conveyor provided in the outer rotating cylinder so as to be relatively rotatable, and the outer rotating cylinder is provided on a solid discharge side from a parallel portion having a large diameter and the parallel portion. A small-diameter parallel portion and an inclined portion connecting the parallel portions. The small-diameter parallel portion has a filtrate discharge hole formed therein, and a cylindrical filter medium is provided on the inner wall of the parallel filter section. And a screen bowl type decanter type centrifugal separator provided with a cleaning nozzle for cleaning the processed material at the portion of the filter medium part.
[0002]
[Prior art]
An example of a conventional decanter centrifuge is shown in FIG. The centrifuge shown in the figure is commonly referred to as a solid bowl type, and has a large-diameter parallel portion 1 provided with a clarification liquid overflow port 5 called a dam at the left end and a right end connected to the large-diameter parallel portion 1. It has an outer rotating cylinder 4 which rotates at a high speed and is formed of a sloped part 2 including a so-called beach provided with a solid material discharge port 6, and is spirally held inside the outer rotating cylinder 4 with a slight radial clearance. A screw conveyor 7 having a conveyor blade 8 is provided so as to be relatively rotatable.
[0003]
When a processed product slurry comprising a crystalline solid and a solvent is introduced into the solid bowl centrifuge, the crystalline solid that is a processed product is removed from the outer rotating cylinder 4 by centrifugal force caused by rotation as shown in FIG. The crystalline solid matter that settles on the inner wall surface and adheres impurities in the process product generation process or the solvent of the process slurry on the surface is on the same axis as the outer rotating cylinder 4. The screw conveyor 7 that rotates at a speed different from that of the outer rotating cylinder 4 is sent to the inclined portion 2 and is subjected to a liquid removal action at the inclined portion 2 that has gone up the beach. A part of the crystalline solid that cannot be settled with the solvent forming the treated slurry overflows from the overflow port 5 provided at the left end of the large-diameter parallel portion 1 and is discharged to the outside.
[0004]
The crystalline solid matter discharged from the solid bowl centrifuge generally has impurities produced in the production process of the product crystal, or the solvent itself attached to the crystal surface. In order to reduce the degree of adhesion of this impurity or solvent, a method of increasing the product purity by repeating solid-liquid separation several times by re-slurrying with a fresh solvent or replacing with another solvent is taken. It is normal. In this way, when using a centrifuge for the purpose of lowering the degree of adhesion of impurities or solvent adhering to the surface of the crystalline solid, and further performing liquid removal, the washing solvent is used for washing the crystalline solid. 9 may be mixed with a separation liquid as a processing solvent, as shown in FIG. 9, a cleaning chamber 13 is provided inside the conveyor at the site of the inclined portion 2 where the beach is raised, and the processing slurry is supplied to the outer rotating cylinder 4. A cleaning liquid passage 12 is provided in a part of a fixed feed tube 11 that is guided into the interior, the cleaning liquid is guided into the cleaning chamber 13 from the outside, and the inclined portion 2 is fixed by a cleaning liquid nozzle 14 or the like attached to the conveyor drum 9. In general, it is common practice to wash the crystalline solid material, which is a processed product, with a cleaning liquid such as water that does not contain impurities.
[0005]
However, in order to enhance the cleaning effect, if the cleaning liquid is continuously applied to the processed material from the upper part of the inclined portion 2 that rises on the beach to the vicinity of the solid material discharge port 6, the degree of liquid removal of the product crystals deteriorates. Although it is conceivable to limit the washing to the crystal immediately after it comes out of the liquid layer or close to it, the time for the washing liquid to contact the crystal is short, so the product purity is improved to some extent, but the number of separator stages can be reduced. The actual cleaning effect is not as good.
[0006]
As shown in FIG. 10, as shown in FIG. 10, a small-diameter parallel part 3 is provided in connection with an inclined part 2 that rises on the beach, in order to improve the liquid crystal drainage and the cleaning effect in the solid bowl centrifuge. A large number of filtrate discharge holes 3a are formed in the parallel part 3 having a small diameter, and a cylindrical filter medium 3b such as a bar screen is disposed on the inner wall thereof to constitute the filter medium part 10, and centrifugal filtration is performed in the filter medium part 10. Such a centrifuge has already been developed, which is commonly called a screen bowl centrifuge. In this screen bowl type centrifuge, a filter medium such as a mesh screen or porous ceramic can be used as the cylindrical filter medium 3 b in the filter medium section 10.
[0007]
In the screen bowl type centrifuge, the processed material slurry introduced from one end of the outer rotating cylinder 4 via the feed tube 11 is subjected to centrifugal force in the large-diameter parallel portion 1 of the outer rotating cylinder 4 rotating at high speed. The crystalline solid and the separated liquid are separated and sent to the inclined portion 2 by the screw conveyor 7, and the crystalline solid that has gone up the beach is subjected to a liquid removal action at the portion of the inclined portion 2 to be separated into solid and liquid. The separation mechanism is the same as that of the solid bowl type described above, but the bowl has two stages of a large-diameter parallel part 1 and a small-diameter parallel part 3, and the inner wall of the small-diameter parallel part 3 The filter medium part 10 is formed by holding the cylindrical filter medium 3b, and a part of the feed tube 11 described above is formed at the start of the small-diameter parallel part 3 based on the structure. Cleaning fluid passage In the cleaning chamber 13 inside the conveyor, the crystalline solid is washed by applying the cleaning liquid to the crystalline solid by the cleaning liquid nozzle 14 attached to the conveyor drum 9 and the like. Furthermore, it is possible to remove the liquid adhering to the surface of the crystalline solid in the latter half of the filter medium part 10 in the small-diameter parallel part 3. The cleaning liquid containing the liquid adhering to the crystal surface by this cleaning action passes through the filtration opening of the filter medium 3b in the filter medium section 10 and passes through the filtrate discharge hole 3a or slot provided in the small-diameter parallel section 3 to the outside of the centrifuge. Discharged.
[0008]
As described above, in the screen bowl type centrifuge, in addition to the primary drainage at the inclined portion 2 that goes up the beach, the parallel drainage 3 is subjected to the filtration drainage by the secondary drainage at the filter medium portion 3b. Therefore, if the crystal shape is relatively round and the processed material is easy to move on the surface of the filter medium in a simple surface state, or if the crystal is matched with the filter medium such as a processed material in which the crystal is easily dissolved by the cleaning liquid, In terms of performance, it shows superior performance compared to the solid bowl type.
[0009]
[Problems to be solved by the invention]
However, in the screen bowl type centrifuge, in order to perform filtration drainage with the filter medium part 10 in the parallel part 3 with a small diameter, pay attention to the physical properties such as the crystal grain size, shape, and wear properties, and select the filter medium 3b. In addition to the necessity to do so, it is inevitable that there is crystal escape from the filter medium part 10 as long as the filter medium is filtered. In order to reduce this crystal escape as much as possible, a bar screen with a small opening When the mesh screen is used, crystals are clogged in the filtration opening of the filter medium 3b, and the filtration can be performed only for a short time. This causes a problem that the filtration unit 10 cannot be used effectively. This crystal escape resulted in a deterioration of the crystal recovery efficiency compared to the solid bowl centrifuge.
[0010]
In addition, since a radial gap is provided between the conveyor blade 8 of the screw conveyor 7 and the inner wall surface of the filter medium part 10, it is inevitable mechanically that a residual layer with a certain thickness is formed, Even if the thickness of the remaining layer is slightly increased, an effort has been made to make the remaining layer easy to move by appropriately selecting the filter medium 3b having a small friction coefficient on the surface depending on the internal friction of the crystalline solid particles.
[0011]
On the other hand, as shown in FIG. 11, the conveyor blade 8 for conveying the crystalline solid matter facing the filter medium portion 10 in the small-diameter parallel portion 3 is partially cut away, and the radial direction between the conveyor blade 8 and the inner wall of the filter medium portion 3b. In the case of a structure having a large gap, the crystalline solid material sent by the screw conveyor 7 remains on the plane formed by this gap, and a residual layer D is formed, and is not sent by the conveyor blade 8. Although the portion of the remaining layer D varies depending on the physical properties such as the transportability of the crystalline solid matter by the conveyor blade 8, it becomes compacted when the stagnation time becomes long, and the cleaning liquid cannot pass therethrough. It was not necessarily effective for all crystalline solids to have a large thickness. When the thickness of the residual layer D is increased, the stagnant crystalline solid is a state of crystal filtration in which most of the crystals conveyed by the conveyor blade 8 prevent the crystalline solid from escaping from the filter medium part 3b. On the other hand, if the residual crystalline solid remains stagnant at the same position, the residual crystal is consolidated by the centrifugal force due to the rotation and by the contact of the end face of the conveyor blade 8, and as a result, the residual crystal There has been a problem that the filtration effect of the layered crystalline solid is impaired. That is, in the case of the screen bowl type centrifuge, the problem of the escape of the crystalline solid from the filtration opening of the filter medium 3b in the filter medium part 10 and the problem of the reduction of the liquid removal effect due to the residual layer compaction occurred.
[0012]
This is true not only for the screen bowl type but also for decanter type centrifuges in general. The radial clearance between the conveyor blades 8 of the screw conveyor 7 and the inner wall of the small-diameter parallel part 3 is the same as that of the screw conveyor 7 and the outside rotation. As long as the cylinder 4 rotates at a different speed, it is absolutely necessary. However, the residual layer D has a higher filtering effect due to washing in the case of the thin gap b than in the case of the thick gap a. In general, it is advantageous to make the gap as small as possible. However, if the thickness of the remaining layer D is too thin, as shown in FIG. 12, the height H of the transport cross-sectional area of the crystalline solid material conveyed by the conveyor blade 8 becomes large, and the cleaning liquid becomes a crystalline solid material. This causes a problem that the cleaning effect is diminished because it is discharged to the outside through the remaining layer by the thin gap b.
[0013]
The present invention has been made in view of the above-described problems, and its purpose is to form a filtrate discharge hole in a small-diameter parallel portion of the outer rotating cylinder, and to dispose a cylindrical filter medium on the inner wall of the filter medium section. In the screen bowl type decanter type centrifuge provided with a cleaning nozzle for cleaning the processed material at the filter medium part, the screw conveyor at the filter medium part is improved, and the filter medium part The washing solvent for the crystalline solid moving on the surface can be separated from the treated solvent and taken out of the machine. At this time, the crystal is continuously and stably filtered to escape into the filtrate. By reducing the amount of crystalline solids as much as possible, the recovery rate of crystalline solids is increased, and by selecting a relatively large filtration opening for the filter medium, impurities can be washed without causing internal clogging of the crystalline solids. Effect It can gel, simplified function is to provide a screen bowl type decanter centrifuge which attained the peripheral facilities reduced.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the screen bowl type decanter type centrifuge according to the present invention is characterized by what is described in each claim, and in particular, claim 1 as an independent claim. The screen bowl type decanter centrifuge according to the invention has an outer rotating cylinder and a screw conveyor provided in the outer rotating cylinder so as to be relatively rotatable, and the outer rotating cylinder includes a large-diameter parallel portion; The parallel portion includes a small-diameter parallel portion provided on the solid discharge side and an inclined portion connecting the parallel portions, and the small-diameter parallel portion has a filtrate discharge hole formed therein, and has a cylindrical shape on its inner wall. In a screen bowl type decanter type centrifuge in which a filter medium part is arranged to form a filter medium part and a cleaning nozzle is provided for cleaning the processed material in the filter medium part. A Lieu conveyor is disposed between a main conveyor having a large radial gap between the conveyor blade and the inner wall of the filter medium part, and between the pitch of the main conveyor, the conveyor blade and the inner wall of the filter medium part; It is comprised by the at least 1 sub conveyor which made the radial direction space | interval of between smaller than that of the said main conveyor.
[0015]
[Action]
According to the present invention, the primary and secondary conveyors in the filter medium part formed in the parallel part having a small diameter are continuously rotated from the conveyor feed port by always performing relative rotation with the outer rotating cylinder, and the radial clearance between them. In contrast to the main conveyor blade that has a large clearance, the secondary conveyor blade has a smaller radial gap between it and the inner wall of the filter medium. As a result, each conveyor blade imparts an axial conveying force to the crystalline solid by the difference in the gap. Both the primary and secondary conveyor blades have the same axial conveying force as that sent by a single conveyor blade, and are not continuously exposed to the centrifugal force field, but are pressed by the end of the conveyor blade. Without being compacted, it is washed with the washing liquid in the form of transporting the smoothed crystalline solid.
[0016]
As shown in FIG. 12, the conventional conveying form of one conveyor blade is sent in a state where the portion pushed by the conveyor blade is high and is almost in the shape of a height H, so that the cleaning liquid flows down the triangular slope, It flows into the thinner remaining layer portion. On the other hand, when both the primary and secondary conveyor blades according to the present invention as shown in FIG. 5 are used, the crystal cleaning is performed by providing the cake cleaning nozzle 14 between the respective conveyor blades 8a and 8b. Then, since the surface on which the cleaning liquid is applied is smoothed as compared with the case of FIG. 12, the cleaning liquid penetrates into the conveyed crystalline solid, and cleaning can be performed more effectively. Further, when the flat crystal layer has a filtering effect, it is possible to further reduce the escape of crystals from the filter medium.
[0017]
Further, in this crystal filtration state, an opening having a larger opening than the crystal grain size can be selected, and washing and draining can be performed without blocking the crystal in the opening.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. 1 to 5 as follows. In addition, the following example demonstrates what has set the number of the conveyor blade | wings in the site | part of the filter medium part 10 comprised in the parallel part 3 of small diameter as 2 sheets of the main conveyor blade | wing 8a and the sub conveyor blade | wing 8b.
[0019]
The screen bowl type centrifuge according to the present embodiment has an outer rotating cylinder 4 and a screw conveyor 7 provided in the outer rotating cylinder 4 so as to be relatively rotatable, and the outer rotating cylinder 4 has a large-diameter parallel portion. 1, a small-diameter parallel portion 3 provided closer to the solid material discharge port 6 than the parallel portion 1, and an inclined portion 2 that connects both the parallel portions 1 and 3. A filter discharge hole 3a is formed on the inner wall, and a cylindrical filter medium 3b is disposed on the inner wall thereof to constitute a filter medium part 10, and a cleaning nozzle 14 for cleaning the processed material in the filter medium part 10 is provided. In the bowl-type centrifuge, the screw conveyor 7 in the filter medium part 10 is arranged between the main conveyor having a large radial gap a between the conveyor blade 8a and the inner wall of the filter medium part 10, and the pitch of the main conveyor. Arranged It is composed of duplicate two conveyors with one sub-conveyor that is smaller than the radial gap b between the conveyor blades 8b and the inner wall of the filtration portion 10 on it of the main conveyor.
[0020]
As shown in FIG. 3, the radial direction of the conveyor blade relative to the filter medium part 10 should be shortened by an appropriate height so that an appropriate remaining layer thickness can be obtained, assuming that it is continuous with the conveyor blade 8 of the screw conveyor 7. The main conveyor blades 8a that maintain a large radial clearance with the filter medium part 10 are arranged.
[0021]
Further, as a secondary conveyor, the secondary conveyor blades 8b having a small radial clearance are wound between the pitches of the main conveyor blades 8a having a large radial clearance as shown in FIG. Only the portion in the radial gap a of the main conveyor blade 8a having a large directional gap is not conveyed until the other sub-conveyor blade 8b having a smaller radial gap is rotated. The remaining layer formed by the main conveyor blades 8a having a large radial gap with the notches is sent by the other sub-conveyor blades 8b having a small radial gap, and the crystal conveyance mode is shown in FIG. As shown in the figure, the conveyor blades are smoothed more than the single crystal conveyance mode shown in FIG.
[0022]
The main conveyor blade 8a having a large radial clearance, the sub-conveyor blade 8b having a small radial clearance, and the cleaning liquid nozzle 14 are disposed as shown in FIG.
[0023]
The notch height of the main conveyor blade 8a having a large radial gap and the radial gap a determine the feed crystal amount of the other conveyor vane blade 8b having a small radial gap without the other notch. The crystal feed heights of the two main and sub conveyor blades 8a and 8b are determined to be approximately the same. Further, the interval between the respective conveyor blades 8a and 8b is such that, as shown in FIG. 6, if the crystal forms a bridge E between the conveyor blades 8a and 8b, it cannot be transported. It is necessary to determine the pitch interval, which is appropriately determined by design taking into consideration the physical properties of the crystalline solid.
[0024]
In this situation, as shown in FIG. 12, the crystal transfer mode is smoothed compared to the crystal transfer mode of the screw conveyor consisting of only one conveyor blade 8 of the same pitch, and the area of the crystal filtration portion is reduced. The widening of the cleaning liquid uniformly penetrates into the crystal layer, and an effective crystal cleaning effect is obtained. Further, as shown in FIG. 5 as compared with FIG. 12, since the thin portion b of the remaining layer is narrow, the crystal filtration portion can be widened, and the escape of crystals from the filter medium portion 10 can be reduced. .
[0025]
In addition, when the conveyor blade pitch interval is sufficiently wide, in addition to the main and sub two conveyor blades 8a and 8b, in addition to the radial gaps in FIG. If the second sub-conveyor blade 8c that is set to be large in a staircase shape is provided, it is expected that the crystal conveyance form is further smoothed and the cleaning effect is enhanced.
[0026]
On the other hand, in the case of only the conveyor blade 8 having a slightly larger radial gap as shown in FIG. 12, it is possible to make the remaining layer portion of the crystal, and it seems that crystal filtration is possible on the entire surface of the filter medium 3a. Since the force that pushes the residual layer portion of the crystal in the axial direction is only the shearing force between the conveyor blades 8 and the crystalline solid material and is weak, if the radial gap is increased, the residual layer portion becomes the inner wall surface of the filter medium portion 10. Result in stagnation at the same position, and as described above, it is consolidated and the filtration effect is significantly reduced.
[0027]
In addition, as shown in FIG. 2, when the cleaning portion is set as the conveyance start portion at the site of the filter medium portion 10, a portion that is not cleaned is provided in the latter half portion, and the crystal surface replaced with the cleaning liquid in this portion. If liquid removal is performed, it is possible to further reduce the remaining impurities.
[0028]
【The invention's effect】
Product crystals produced in the chemical and food industries have unpolymerized substances and a solvent constituting a slurry attached to the crystal surface during the production process. This deposit can be washed and replaced with certain other solvents. According to the present invention in which a plurality of conveyor blades having different radial gaps are used at the portion of the filter medium portion in the screen bowl type centrifuge, the crystal moving on the surface of the filter medium is applied by a cleaning liquid nozzle provided on the conveyor cylinder. The washing solvent can be separated from the treated solvent and taken out of the centrifuge, and crystal filtration can be performed more continuously and stably than the conventional machine of this type by improving the screw conveyor. The crystal recovery rate can be increased by minimizing the escape amount of crystals in the filtrate, and the filtration opening of the filter medium can be made relatively large. The effect of simplification of functions and reduction of peripheral equipment can be obtained.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a screen bowl centrifuge according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view in which cleaning liquid nozzles are disposed between main and sub conveyor blades at a conveyance start portion at a filter medium portion according to an embodiment of the present invention.
FIG. 3 is a side view of a screw conveyor disposed in an outer rotating cylinder including a large-diameter parallel portion, an inclined portion, and a small-diameter parallel portion according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of two main and sub conveyor blades in a screw conveyor according to an embodiment of the present invention.
FIG. 5 is an explanatory diagram of a crystal conveyance form by main and sub two conveyor blades in the embodiment of the present invention.
FIG. 6 is an explanatory diagram of a crystal transport mode when the pitch is narrow by the main and sub two conveyor blades.
FIG. 7 is an explanatory diagram of a crystal conveyance mode by a main 1 sheet and sub 2 sheet three conveyor blades in another embodiment of the present invention.
FIG. 8 is a side sectional view of a solid bowl centrifuge according to the prior art.
FIG. 9 is a partial cross-sectional view showing solids cleaning on an inclined beach in a solid bowl centrifuge.
FIG. 10 is a cross-sectional side view of a single conveyor blade screen bowl centrifuge according to the prior art.
FIG. 11 is a partial cross-sectional view showing a remaining layer formed in a filter medium part in a single conveyor blade screen bowl type centrifuge.
FIG. 12 is an explanatory diagram of a crystal conveyance form by a single conveyor blade in the filter medium part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Large-diameter parallel part 2 ... Inclined part 3 ... Small-diameter parallel part 3a ... Filtrate discharge hole or slot 3b ... Filter medium 4 ... Outer rotating cylinder 5 ... Clear liquid overflow port 6 ... Solid matter outlet 7 ... Screw conveyor 8 ... Conveyor blade 8a ... Main conveyor blade 8b ... Sub-conveyor blade 8c ... Second sub-conveyor blade 9 ... Conveyor cylinder 10 ... Filtering part 11 ... Feed tube 12 ... Washing liquid passage 13 ... Washing chamber 14 ... Washing liquid nozzle

Claims (2)

外側回転筒及び該外側回転筒内に相対回転自在に設けられたスクリューコンベヤを有すると共に、前記外側回転筒は、大径の平行部と、該平行部より固形物排出側に設けられた小径の平行部と、両平行部を接続する傾斜部とからなり、前記小径の平行部は、これに濾液排出孔が形成され、その内壁に円筒状の濾材を配設して濾材部を構成し、該濾材部の部位において処理物の洗浄を行うための洗浄ノズルを設けてなるスクリーンボウル型デカンタ型遠心分離機において、
前記濾材部におけるスクリューコンベヤが、そのコンベヤ羽根と前記濾材部の内壁との間の半径方向隙間を大とした主コンベヤと、該主コンベヤのピッチ間に配設されて、そのコンベヤ羽根と前記濾材部の内壁との間の半径方向隙間を前記主コンベヤのそれに比して小とした少なくとも1本の副コンベヤとで構成されていることを特徴とするスクリーンボール型デカンタ型遠心分離機。
The outer rotary cylinder has a screw conveyor provided in the outer rotary cylinder so as to be relatively rotatable. It consists of a parallel part and an inclined part connecting both parallel parts. In a screen bowl type decanter type centrifuge provided with a cleaning nozzle for cleaning the processed material at the site of the filter medium part,
The screw conveyor in the filter medium part is disposed between a main conveyor having a large radial gap between the conveyor blade and the inner wall of the filter medium part, and the pitch between the main conveyor, the conveyor blade and the filter medium A screen ball type decanter type centrifuge characterized by comprising at least one sub-conveyor in which a radial clearance between the inner wall of the section is smaller than that of the main conveyor.
前記濾材部の部位におけるスクリューコンベヤとして、前記半径方向隙間大の主コンベヤのピッチ間に、その半径方向隙間を固形物搬送方向に階段状に順次大とした複数本の副コンベヤを配設したことを特徴とする請求項1に記載のスクリーンボウル型デカンタ型遠心分離機。As the screw conveyor in the part of the filter medium part, between the pitches of the main conveyor having a large radial gap, a plurality of sub-conveyors having the radial gap sequentially increased stepwise in the solid material conveying direction The screen bowl type decanter type centrifuge according to claim 1.
JP16332099A 1999-06-10 1999-06-10 Screen bowl type decanter type centrifuge Expired - Lifetime JP3609959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16332099A JP3609959B2 (en) 1999-06-10 1999-06-10 Screen bowl type decanter type centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16332099A JP3609959B2 (en) 1999-06-10 1999-06-10 Screen bowl type decanter type centrifuge

Publications (2)

Publication Number Publication Date
JP2000350946A JP2000350946A (en) 2000-12-19
JP3609959B2 true JP3609959B2 (en) 2005-01-12

Family

ID=15771610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16332099A Expired - Lifetime JP3609959B2 (en) 1999-06-10 1999-06-10 Screen bowl type decanter type centrifuge

Country Status (1)

Country Link
JP (1) JP3609959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084318A (en) * 2014-07-17 2014-10-08 赵来宁 Rotating cage and spiral solid-liquid separator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518531B2 (en) * 2001-09-27 2010-08-04 孝治 大塚 Rinse decanter
WO2004058410A1 (en) * 2002-12-26 2004-07-15 Tomoe Engineering Co., Ltd. Centrifugal machine
GB2410709B (en) 2004-02-07 2007-04-18 Broadbent & Sons Ltd Thomas Improving washing of separated solids in solid bowl and screen bowl decanting centrifuges
WO2006101813A1 (en) * 2005-03-16 2006-09-28 Arkema Inc. Use of decanter centrifuge in polymer processing
JP5667724B1 (en) * 2014-08-20 2015-02-12 巴工業株式会社 Decanter centrifuge and operation method of decanter centrifuge
CN111871623A (en) * 2020-07-30 2020-11-03 吴迎莉 Centrifugal slurry dehydrator and dehydration treatment method
CN116854186B (en) * 2023-07-11 2024-03-08 山东九曲圣基新型建材有限公司 Ore dressing water supply circulation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084318A (en) * 2014-07-17 2014-10-08 赵来宁 Rotating cage and spiral solid-liquid separator

Also Published As

Publication number Publication date
JP2000350946A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
EP0897752B1 (en) Centrifuge with cake churning
JPH0258965B2 (en)
JP3609959B2 (en) Screen bowl type decanter type centrifuge
CN209790932U (en) Extraction filter equipment
JPH1128320A (en) Solid-liquid separation treatment device
WO1998017396A1 (en) Solid bowl centrifuge with beach having dedicated liquid drainage
CN111569516B (en) Building sewage treatment plant
US4714456A (en) Solid bowl centrifuge with terminal clarification device
JPH0724223A (en) Separator
JP4319747B2 (en) Decanter centrifuge with rinse function
EP1579918B1 (en) Centrifugal machine
WO2001058596A1 (en) Centrifugal separator
JP2001198489A (en) Basket type centrifugal filter apparatus and centrifugal filtering method
CN212018210U (en) Food production wastewater treatment centrifuge
EP1106258A1 (en) Decanter type centrifugal separator
JP4518531B2 (en) Rinse decanter
JPH08243319A (en) Screen device
JPH08192077A (en) Centrifuge
JPH02126908A (en) Continuous solid-liquid separator
JP2002526676A (en) Method and apparatus for concentrating fiber suspension
JP2718418B2 (en) Decanter centrifuge
JPH0889848A (en) Sludge centrifugal separator
JPH08215519A (en) Solid-liquid separation and device therefor
JPH04219156A (en) Washing method of filter medium of centrifugal separator
JP3771536B2 (en) Centrifuge with basket

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Ref document number: 3609959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term