JP3607179B2 - Sealing plate safety valve device and manufacturing method of sealing plate safety valve - Google Patents

Sealing plate safety valve device and manufacturing method of sealing plate safety valve Download PDF

Info

Publication number
JP3607179B2
JP3607179B2 JP2000247392A JP2000247392A JP3607179B2 JP 3607179 B2 JP3607179 B2 JP 3607179B2 JP 2000247392 A JP2000247392 A JP 2000247392A JP 2000247392 A JP2000247392 A JP 2000247392A JP 3607179 B2 JP3607179 B2 JP 3607179B2
Authority
JP
Japan
Prior art keywords
safety valve
sealing plate
rubber
plate safety
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000247392A
Other languages
Japanese (ja)
Other versions
JP2002063885A (en
Inventor
和広 在里
昌明 小峪
但 国政
理 大久保
澄雄 前川
明 垣内
忠孝 山崎
明治 佐々木
Original Assignee
大東ポリマー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大東ポリマー工業株式会社 filed Critical 大東ポリマー工業株式会社
Priority to JP2000247392A priority Critical patent/JP3607179B2/en
Publication of JP2002063885A publication Critical patent/JP2002063885A/en
Application granted granted Critical
Publication of JP3607179B2 publication Critical patent/JP3607179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型二次電池に用いられる封口板安全弁装置と封口板安全弁の製造方法に関するものである。
【0002】
【従来の技術】
この種の密閉型二次電池は、充放電を繰り返して使用されるものであるが、使用の際あるいは使用後に急激な過電流が流れると発熱し、電池内部の電解液の温度上昇により電池内部にガスが発生する。異常にガスが発生した場合は、発生したガスが高圧となり電解液漏れを生じる場合がある。これを防止し、また急激な昇圧を防止する目的で、二次電池の外装缶の開口部に封口板安全弁装置を設けることが従来より行われている。
【0003】
この封口板安全弁装置は、ガス抜き孔を有する封口板と、ガス抜き孔からガスが抜けるときの圧力方向に1対の平行面を有し、その片面でガス抜き孔を塞ぐゴム弾性を有する高分子材料からなる安全弁と、この安全弁を覆うと共にガス抜きされたガスを排出する排出孔を有するキャップとからなり、前記安全弁を、キャップと封口板との間に形成された空間内にキャップと封口板との間で圧縮されるようにして収容している。安全弁は、金型によって加工された成形体が使用されている。
【0004】
安全弁の基本機能を本実施形態を示す図1と図2を参酌して説明すれば、電池内部で異常なガスが発生すると、キャップ8内に圧縮状態で収容された安全弁6は、ガス発生による圧力上昇に応動して上方に圧縮変形してガス抜き孔5を開き、破線矢印で示すように、ガス7をガス抜き孔5からキャップ8の排出口8aを通じて外部に排出させる。ガス7が抜けるときの圧力(作動圧)は、安全弁6の弾性係数と厚み(作動圧がかかる方向の厚み)寸法精度に左右される。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の封口板安全弁装置は、安全弁を成形する高分子材料がたとえ高い精度の弾性係数のものであっても、それを成形体に加工した場合に、成形体の厚み寸法のばらつきが大きく寸法選別をしない限り安定した作動圧が得られないという課題があった。
【0006】
【課題を解決するための手段】
本発明の封口板安全弁の製造方法は、上記課題を達成するために、ゴム弾性を有する高分子材料からなり、所定の厚みに成形された円筒状体を、円筒外形を有するマンドレルに拡径状態で装着し、前記円筒状体の外面を回転砥石で前記円筒状体が設定された厚みになるまで円筒研磨し、次いで円筒研磨後の円筒状体をカットして帯状シート体になるように展開した後、この帯状シート体からカッティングまたは打ち抜きにより所定形状の封口板安全弁を多数得ることを特徴とする。また本発明の封口板安全弁装置は上記課題を達成するために、ガス抜き孔を有する封口板と、ガス抜き孔からガスが抜けるときの圧力方向に1対の平行面を有し、その片面でガス抜き孔を塞ぐゴム弾性を有する高分子材料からなる安全弁と、この安全弁を覆うと共にガス抜きされたガスを排出する排出孔を有するキャップとからなり、前記安全弁を、キャップと封口板内との間に形成された空間内にキャップと封口板との間で圧縮されるようにして収容した封口板安全弁装置において、安全弁として上記封口板安全弁の製造方法で得られた封口板安全弁を用い、安全弁の前記1対の平行面の少なくとも1面を、研磨加工面としたことを特徴とする。
【0007】
上記発明によれば、安全弁の1対の平行面のうち少なくとも1面を研磨加工面としているので、封口板のガス抜き孔からガスが抜けるときの作動圧方向における厚みの寸法精度が向上し、極めて安定した高精度の作動圧を示すことができる。そして上記封口板安全弁装置を用いて密閉型二次電池を構成すると、高い安全性、信頼性を得ることができる。
【0008】
【発明の実施の形態】
本発明の封口板安全弁装置は、封口板と安全弁とキャップとが合体して高精度な作動圧を示すことができ、その作動圧方向の一対の平行面の1面となる研磨加工面は、1面の場合よりも平行面両方2面の場合がまた、研磨は1回より2回以上の方がより高精度の寸法精度を得ることができる。
【0009】
ゴム弾性を有する高分子材料としては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、フッ素ゴム、エチレン−プロピレンゴム、エピクロルヒドリンゴム、ウレタンゴム等および、これらの内2種類以上のポリマーをブレンドした加硫ゴムを用いることができる。また架橋剤の添加を必要としないポリオレフィン系、ポリスチレン系、ポリブタジエン系、ポリウレタン系、ポリエステル系、ポリアミド系、フッ素系等の熱可塑性エラストマーを用いることもできる。さらに前記加硫ゴムと熱可塑性エラストマーにブレンドする樹脂としてポリオレフィン、ポリウレタン、ポリスチレン等を用いることもできる。
【0010】
本発明が適用される密閉型二次電池は、上記各封口板安全弁装置を用いてなるニッケル水素電池、ニッケルカドミウム電池等の二次電池であり、高い安全性を得ることができる。
【0011】
【実施例】
以下、本発明の実施例について図1〜図4を用いて詳細に説明する。
【0012】
本発明の実施例に用いる封口板安全弁装置2は図1に示すように、密閉型二次電池1の外装缶3の開口部に絶縁ガスケット4を介して気密にカシメ固定されており、円板状で中央部にガス抜き孔5aを有する封口板5と、直方体でガス抜き孔5aからガスが抜けるときの作動圧方向に1対の平行面6aを有し、その片面でガス抜き孔5aを塞ぐ弾性ゴムからなる安全弁6と、この安全弁6を皿型の安全弁収容部8bで覆うと共に外周縁を封口板5に溶着し、側壁にガス7(図2に破線矢印で示す。)を排出する排出孔8aを有するキャップ8とから構成される。安全弁6は、キャップ8と封口板5との間に形成された空間つまり前記安全弁収容部8b内にキャップ8と封口板5との間で圧縮されるようにして収容されている。
【0013】
封口板安全弁装置2の基本機能を図2を参照して説明すれば、二次電池1の内部で異常なガスが発生すると、キャップ8内に圧縮状態で収容された安全弁6は、ガス発生による圧力上昇に応動して上方に圧縮変形してガス抜き孔5を開き、破線矢印で示すように、ガス7をガス抜き孔5からキャップ8の排出口8aを通じて外部に排出させる。ガス7が抜けるときの作動圧は、安全弁6の弾性係数と厚み(作動圧がかかる方向の厚み)寸法精度に左右される。本実施例では1対の平行面6aの少なくとも1面を、研磨加工面6bとすることにより寸法精度を向上させている。
【0014】
以下実施例参考例において、安全弁6を成形する高分子材料や製造方法の異なる2つの例で説明する。
【0015】
実施例
上記封口板安全弁装置2を構成する安全弁6の製造方法について、図3に示す実施例に基づき説明する。この安全弁6に用いる高分子材料としての加硫ゴムは、天然ゴム100重量部、カーボンブラック50重量部、石油系プロセスオイル10重量部、フェニル−α−ナフチルアミン2重量部、ステアリン酸1重量部、ジクミルパーオキサイド5重量部をオープンロールで混練しゴム組成物を得た。
【0016】
次に金型に充填し160℃×10分で成形加硫を行い、図3(a)に示すように中心径D1 が100mm、厚みT1 が4mm、長さが100mm、硬さが60度(JISスプリング式硬度計)の円筒状のゴム加硫体9を作成した。次に図3(b)に示すように、ゴム加硫体9を拡径して外径D2 が108mmのマンドレル12に装着し、円筒外面を回転砥石で厚みを3.8mmまで研磨し、研磨加工面6bを形成した。尚、ゴム加硫体9を裏返して両面を研磨することも可能であるし、研磨を2回以上行っても良い。
【0017】
そして研磨されたゴム加硫体9を長手方向にカットし、図3(c)に示す厚みT2 が3.8mmの帯状のシート10を作成した。このシート10を切断刃を用いて縦横2方向より図3(d)に示すように順次カットし、図3(e)に示すように長さが4mm、巾が4mm、厚みT2 が3.8mmで、上面に研磨加工面6bが形成された直方体を多数作成した。尚、前記厚みT2 は直方体が封口板安全弁装置2の安全弁6を構成したとき、作動圧方向の厚みとなる。個々の直方体において前記厚み寸法精度を測定した結果、下記の表1に示すように厚みムラ(最大値と最小値との寸法差)が片面研磨では0.02mm以下、両面研磨では0.01mm以下の精度を得た。
【0018】
【表1】

Figure 0003607179
【0019】
参考例
前記安全弁6の製造方法について、図4に示す参考例に基づき説明する。この安全弁6に用いる高分子材料としてのゴム−樹脂組成物は、スチレン−ブタジエンゴム100重量部、ポリスチレン20重量部、ステアリン酸1重量部、カーボンブラック40重量部、石油系プロセスオイル15重量部、フェニル−α−ナフチルアミン2重量部、ジクミルパーオキサイド5重量部を熱オープンロールで加熱混練し、ゴム−樹脂組成物を得た。
【0020】
次に金型に充填し160℃×10分で成形加硫を行い、図4(a)に示すように長さが100mm、巾が300mm、厚みT1 が4mm、硬さ60度のゴム−樹脂組成物のシート11を作成した。次にこのシート11を図示しない平面板用の研磨機で厚みT2 が3.8mmまで高精度研磨を行い、研磨加工面6bを形成した(図4(b))。尚、シート11を裏返して両面を研磨することも可能であるし、同じ面に2回研磨を行っても良い。
【0021】
そして研磨されたシート11を、切断刃を用いて縦横2方向より図4(c)に示すように順次カットし、図4(d)に示すように長さが4mm、巾が4mm、厚みT2 が3.8mmで1面に研磨加工面6bが形成された実施例と同様の直方体(安全弁6)を多数作成した。個々の直方体において厚み寸法精度を測定した結果、上記表1に示すように厚みムラが片面研磨では0.03mm以下、両面研磨では0.02mm以下の精度を得た。
【0022】
以上のように実施例は安全弁6のゴム加硫物の円筒研磨の例であり、参考例はゴム−樹脂組成物の平面研磨の例である。これら実施例、参考例と従来製法における厚み寸法精度の結果を示す上記表1により比較すると、シート10、11の片面ないし両面を研磨することにより高精度の厚み寸法を得ることができ、また側面を研磨することによりカット巾方向での寸法精度も向上する。
【0023】
上記実施例によって作成された直方体により構成された安全弁6は、研磨加工面6bが形成されているので作動圧方向の厚み寸法精度が向上し、その安全弁6を組込んだ封口板安全弁装置2における作動圧を著しく高精度化することができる。この封口板安全弁装置2における作動圧の安定性を、従来品との比較した実験例によれば、従来品では±20%の作動圧ばらつきがあったのに対し、本実施例の研磨品は±5%の作動圧ばらつきに改善することが可能になった。尚、試料は長さが4mm、巾が4mm、厚みが3.8mmの直方体を用い、作動圧の測定方法は試料を圧縮し、二次電池内部の下方向からガスを昇圧させながら(図2参照)、試料に圧力をかけ、ガスが外部に排出され内圧が下がったときの圧力の値を作動圧とした。
【0024】
本発明は上記実施例に示すほか種々の態様に構成することができ、例えば、安全弁を成形する高分子材料は上記実施例以外に、他の一般ゴム、熱可塑性エラストマー、異種ポリマーをブレンドした加硫ゴムを材料として用いることができる。また、安全弁の形状は前記厚み方向の1対の平行面を有し、その少なくとも1面が研磨されている限り、上記実施例に示す形状に限定されず、またその製造方法もカッティングの他、打ち抜きを採用しても良い。
【0025】
【発明の効果】
本発明によれば、以上説明したように封口板安全弁装置を構成する安全弁に研磨加工面を設けることにより、ガスの作動圧方向における厚みの寸法精度が向上し、極めて安定した高精度の作動圧を示すことができ、この封口板安全弁装置を用いて密閉型二次電池を構成すると、高い安全性、信頼性を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例における密閉型二次電池を示し、(a)はその縦断側面図、(b)はその平面図。
【図2】本発明の実施例における封口板安全弁装置の基本機能図。
【図3】本発明の実施例における安全弁の製造方法を示す概略図。
【図4】参考例における安全弁の製造方法を示す概略図。
【符号の説明】
1 密閉型二次電池
2 封口板安全弁装置
5 封口板
5a ガス抜き孔
6 安全弁
6a 平行面
6b 研磨加工面
7 ガス
8 キャップ
8a 排出孔
8b 安全弁収容部
9 ゴム加硫体(加硫ゴム)
11 シート(ゴム−樹脂組成物)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of the sealing plate safety valve device and the sealing plate a safety valve used in the sealed secondary batteries.
[0002]
[Prior art]
This type of sealed secondary battery is used by repeatedly charging and discharging, but generates heat when a sudden overcurrent flows during or after use, and the internal temperature of the battery rises due to a rise in the electrolyte temperature inside the battery. Gas is generated. When the gas is abnormally generated, the generated gas may become high pressure and electrolyte leakage may occur. In order to prevent this, and to prevent sudden pressure increase, it has been conventionally practiced to provide a sealing plate safety valve device at the opening of the outer can of the secondary battery.
[0003]
This sealing plate safety valve device has a sealing plate having a gas venting hole, a pair of parallel surfaces in the pressure direction when gas escapes from the gas venting hole, and has a rubber elasticity that closes the gas venting hole on one side. A safety valve made of a molecular material and a cap that covers the safety valve and has a discharge hole for discharging the degassed gas. The safety valve is placed in a space formed between the cap and the sealing plate. It is accommodated by being compressed between the plates. As the safety valve, a molded body processed by a mold is used.
[0004]
The basic function of the safety valve will be described with reference to FIGS. 1 and 2 showing the present embodiment. When an abnormal gas is generated inside the battery, the safety valve 6 accommodated in a compressed state in the cap 8 In response to the pressure increase, the gas is compressed and deformed upward to open the gas vent hole 5, and the gas 7 is discharged from the gas vent hole 5 to the outside through the discharge port 8 a of the cap 8 as indicated by the broken line arrow. The pressure (working pressure) when the gas 7 is released depends on the elastic coefficient and thickness (thickness in the direction in which the working pressure is applied) of the safety valve 6 and the dimensional accuracy.
[0005]
[Problems to be solved by the invention]
However, in the conventional sealing plate safety valve device, even if the polymer material forming the safety valve is a highly accurate elastic coefficient, when the molded material is processed into a molded product, the thickness dimension of the molded product varies greatly. There is a problem that a stable operating pressure cannot be obtained unless dimension selection is performed.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the manufacturing method of the sealing plate safety valve of the present invention is a state in which a cylindrical body made of a polymer material having rubber elasticity and having a predetermined thickness is expanded to a mandrel having a cylindrical outer shape. The cylindrical body is cylindrically polished with a rotating grindstone until the cylindrical body reaches the set thickness, and then the cylindrical body after the cylindrical polishing is cut to develop a belt-like sheet body. After that, a large number of sealing plate safety valves having a predetermined shape are obtained from the belt-like sheet body by cutting or punching. Moreover, the sealing plate safety valve device of the present invention has a sealing plate having a gas vent hole and a pair of parallel surfaces in the pressure direction when the gas escapes from the gas vent hole in order to achieve the above-mentioned problem. A safety valve made of a polymer material having rubber elasticity that closes the gas vent hole, and a cap that covers the safety valve and has a discharge hole that exhausts the degassed gas, and the safety valve is disposed between the cap and the sealing plate. In a sealing plate safety valve device accommodated in a space formed between the cap and the sealing plate so as to be compressed, the sealing plate safety valve obtained by the manufacturing method of the sealing plate safety valve is used as a safety valve. At least one of the pair of parallel surfaces is a polished surface.
[0007]
According to the above invention, since at least one of the pair of parallel surfaces of the safety valve is a polished surface, the dimensional accuracy of the thickness in the operating pressure direction when the gas escapes from the vent hole of the sealing plate is improved. An extremely stable and highly accurate operating pressure can be shown. When a sealed secondary battery is configured using the sealing plate safety valve device, high safety and reliability can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the sealing plate safety valve device of the present invention, the sealing plate, the safety valve, and the cap can be combined to show a high-accuracy operating pressure, and the polished surface that becomes one of a pair of parallel surfaces in the operating pressure direction is In the case of both two parallel surfaces than in the case of one surface, the polishing can be performed more than twice, so that higher dimensional accuracy can be obtained.
[0009]
The polymeric material having a rubber elasticity, natural rubber, isoprene rubber, butadiene rubber, styrene - butadiene rubber, nitrile rubber, butyl rubber, acrylic rubber, fluorine rubber, ethylene - propylene rubber, epichlorohydrin rubber, urethane rubber and, of these Vulcanized rubber obtained by blending two or more of these polymers can be used . In addition, thermoplastic elastomers such as polyolefin-based, polystyrene-based, polybutadiene-based, polyurethane-based, polyester-based, polyamide-based, and fluorine-based which do not require the addition of a crosslinking agent can also be used. Further, polyolefin, polyurethane, polystyrene or the like can be used as a resin blended with the vulcanized rubber and the thermoplastic elastomer.
[0010]
The sealed secondary battery to which the present invention is applied is a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery using the respective sealing plate safety valve devices, and can provide high safety.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
[0012]
As shown in FIG. 1, a sealing plate safety valve device 2 used in an embodiment of the present invention is airtightly fixed to an opening of an outer can 3 of a sealed secondary battery 1 via an insulating gasket 4, And a sealing plate 5 having a gas vent hole 5a at the center and a pair of parallel surfaces 6a in the operating pressure direction when gas escapes from the gas vent hole 5a in a rectangular parallelepiped, and the gas vent hole 5a is formed on one side thereof. The safety valve 6 made of elastic rubber to be closed, the safety valve 6 is covered with a dish-shaped safety valve housing 8b, the outer peripheral edge is welded to the sealing plate 5, and the gas 7 (indicated by a broken line arrow in FIG. 2) is discharged to the side wall. And a cap 8 having a discharge hole 8a. The safety valve 6 is accommodated in a space formed between the cap 8 and the sealing plate 5, that is, in the safety valve accommodating portion 8b so as to be compressed between the cap 8 and the sealing plate 5.
[0013]
If the basic function of the sealing plate safety valve device 2 is described with reference to FIG. 2, when abnormal gas is generated inside the secondary battery 1, the safety valve 6 accommodated in a compressed state in the cap 8 is caused by gas generation. In response to the pressure increase, the gas is compressed and deformed upward to open the gas vent hole 5, and the gas 7 is discharged from the gas vent hole 5 to the outside through the discharge port 8 a of the cap 8 as indicated by the broken line arrow. The operating pressure when the gas 7 is released depends on the elastic coefficient and thickness of the safety valve 6 (thickness in the direction in which the operating pressure is applied) dimensional accuracy. In this embodiment, the dimensional accuracy is improved by making at least one of the pair of parallel surfaces 6a a polished surface 6b.
[0014]
In the following examples and reference examples , two examples of different polymeric materials for molding the safety valve 6 and different manufacturing methods will be described.
[0015]
( Example )
A method for manufacturing the safety valve 6 constituting the sealing plate safety valve device 2 will be described based on the embodiment shown in FIG. The vulcanized rubber as the polymer material used for the safety valve 6 is 100 parts by weight of natural rubber, 50 parts by weight of carbon black, 10 parts by weight of petroleum-based process oil, 2 parts by weight of phenyl-α-naphthylamine, 1 part by weight of stearic acid, A rubber composition was obtained by kneading 5 parts by weight of dicumyl peroxide with an open roll.
[0016]
Next, the mold is filled and molded and vulcanized at 160 ° C. for 10 minutes. As shown in FIG. 3A, the center diameter D 1 is 100 mm, the thickness T 1 is 4 mm, the length is 100 mm, and the hardness is 60. A cylindrical rubber vulcanizate 9 having a degree (JIS spring type hardness tester) was prepared. Next, as shown in FIG. 3 (b), the outer diameter D 2 and expanded rubber vulcanizates 9 is mounted on a mandrel 12 of 108 mm, polished thickness to 3.8mm cylindrical outer surface with grinding wheel, A polished surface 6b was formed. It is possible to turn the rubber vulcanized body 9 upside down and polish both sides, or the polishing may be performed twice or more.
[0017]
Then, the polished rubber vulcanized body 9 was cut in the longitudinal direction, and a belt-like sheet 10 having a thickness T 2 of 3.8 mm shown in FIG. This sheet 10 is sequentially cut from two directions, as shown in FIG. 3D, using a cutting blade, as shown in FIG. 3E, and has a length of 4 mm, a width of 4 mm, and a thickness T 2 of 3. A large number of rectangular parallelepipeds having an upper surface and a polished surface 6b of 8 mm were formed. The thickness T 2 is the thickness in the operating pressure direction when the rectangular parallelepiped forms the safety valve 6 of the sealing plate safety valve device 2. As a result of measuring the thickness dimensional accuracy in each rectangular parallelepiped, as shown in Table 1 below, the thickness unevenness (dimensional difference between the maximum value and the minimum value) is 0.02 mm or less for single-side polishing, and 0.01 mm or less for double-side polishing. Obtained accuracy.
[0018]
[Table 1]
Figure 0003607179
[0019]
( Reference example )
A method of manufacturing the safety valve 6 will be described based on a reference example shown in FIG. The rubber-resin composition as a polymer material used for the safety valve 6 is 100 parts by weight of styrene-butadiene rubber, 20 parts by weight of polystyrene, 1 part by weight of stearic acid, 40 parts by weight of carbon black, 15 parts by weight of petroleum-based process oil, 2 parts by weight of phenyl-α-naphthylamine and 5 parts by weight of dicumyl peroxide were heat-kneaded with a hot open roll to obtain a rubber-resin composition.
[0020]
Next, the mold is filled and molded and vulcanized at 160 ° C. for 10 minutes. As shown in FIG. 4A, a rubber having a length of 100 mm, a width of 300 mm, a thickness T 1 of 4 mm, and a hardness of 60 degrees A resin composition sheet 11 was prepared. Next, the sheet 11 was polished with high precision to a thickness T 2 of 3.8 mm using a flat plate polishing machine (not shown) to form a polished surface 6b (FIG. 4B). It is possible to turn the sheet 11 upside down and polish both sides, or the same side may be polished twice.
[0021]
Then, the polished sheet 11 is sequentially cut from two directions, as shown in FIG. 4C, using a cutting blade, as shown in FIG. 4D, and has a length of 4 mm, a width of 4 mm, and a thickness T as shown in FIG. A large number of rectangular parallelepipeds (safety valves 6) similar to the example in which 2 is 3.8 mm and the polished surface 6b is formed on one surface were prepared. As a result of measuring the thickness dimension accuracy in each rectangular parallelepiped, as shown in Table 1 above, the thickness unevenness was 0.03 mm or less in single-side polishing and 0.02 mm or less in double-side polishing.
[0022]
As described above, the examples are examples of cylindrical polishing of a rubber vulcanizate of the safety valve 6, and the reference example is an example of flat polishing of a rubber-resin composition. Comparing these Examples, Reference Examples and Table 1 showing the results of the thickness dimensional accuracy in the conventional manufacturing method, it is possible to obtain a highly accurate thickness dimension by polishing one or both sides of the sheets 10 and 11. The dimensional accuracy in the cut width direction is also improved by polishing.
[0023]
Safety valve 6 constituted by a rectangular parallelepiped created by the above embodiments, the polishing surface so 6b is formed to improve operating pressure direction thickness dimensional precision, sealing plate safety valve device 2 incorporating the safety valve 6 The operating pressure can be remarkably improved. According to the experimental example in which the stability of the operating pressure in the sealing plate safety valve device 2 is compared with the conventional product, the operating product has a variation of ± 20% in the conventional product, whereas the polished product of the present example is It became possible to improve the operating pressure variation of ± 5%. Note that the sample is a rectangular parallelepiped having a length of 4 mm, a width of 4 mm, and a thickness of 3.8 mm. The method for measuring the operating pressure is to compress the sample and increase the gas from below in the secondary battery (FIG. 2). Reference), pressure was applied to the sample, the value of the pressure when the gas was discharged to the outside and the internal pressure decreased was taken as the operating pressure.
[0024]
The present invention can be configured in various modes in addition to those shown in the above examples. For example, the polymer material for molding the safety valve is not limited to the above examples, but is a blend of other general rubber, thermoplastic elastomer, and different polymers. Sulfur rubber can be used as a material. The shape of the safety valve has a pair of parallel surfaces in the thickness direction, and is not limited to the shape shown in the above embodiment as long as at least one surface is polished. Punching may be used.
[0025]
【The invention's effect】
According to the present invention, as described above, by providing a polished surface on the safety valve constituting the sealing plate safety valve device, the dimensional accuracy of the thickness in the gas operating pressure direction is improved, and the highly stable operating pressure is extremely stable. When a sealed secondary battery is configured using this sealing plate safety valve device, high safety and reliability can be obtained.
[Brief description of the drawings]
FIG. 1 shows a sealed secondary battery according to an embodiment of the present invention, in which (a) is a longitudinal side view thereof and (b) is a plan view thereof.
FIG. 2 is a basic functional diagram of a sealing plate safety valve device according to an embodiment of the present invention.
FIG. 3 is a schematic diagram showing a method for manufacturing a safety valve in an embodiment of the present invention.
FIG. 4 is a schematic view showing a method for manufacturing a safety valve in a reference example .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sealed type secondary battery 2 Sealing plate safety valve device 5 Sealing plate 5a Gas vent hole 6 Safety valve 6a Parallel surface 6b Polishing surface 7 Gas 8 Cap 8a Discharge hole 8b Safety valve housing part 9 Rubber vulcanizate (vulcanized rubber)
11 Sheet (Rubber-resin composition)

Claims (3)

ゴム弾性を有する高分子材料からなり、所定の厚みに成形された円筒状体を、円筒外形を有するマンドレルに拡径状態で装着し、前記円筒状体の外面を回転砥石で前記円筒状体が設定された厚みになるまで円筒研磨し、次いで円筒研磨後の円筒状体をカットして帯状シート体になるように展開した後、この帯状シート体からカッティングまたは打ち抜きにより所定形状の封口板安全弁を多数得ることを特徴とする封口板安全弁の製造方法。A cylindrical body made of a polymer material having rubber elasticity and having a predetermined thickness is attached to a mandrel having a cylindrical outer shape in an expanded state, and the outer surface of the cylindrical body is a rotating grindstone, and the cylindrical body is After cylindrical polishing until the set thickness is achieved, then the cylindrical body after cylindrical polishing is cut and developed to form a belt-like sheet body, and then a sealing plate safety valve of a predetermined shape is formed by cutting or punching from the belt-like sheet body A method for manufacturing a sealing plate safety valve, characterized in that a large number are obtained. ガス抜き孔を有する封口板と、ガス抜き孔からガスが抜けるときの圧力方向に1対の平行面を有し、その片面でガス抜き孔を塞ぐゴム弾性を有する高分子材料からなる安全弁と、この安全弁を覆うと共にガス抜きされたガスを排出する排出孔を有するキャップとからなり、前記安全弁を、キャップと封口板との間に形成された空間内にキャップと封口板との間で圧縮されるようにして収容した封口板安全弁装置において、安全弁として請求項1記載の封口板安全弁の製造方法で得られた封口板安全弁を用い、安全弁の前記1対の平行面の少なくとも1面を、研磨加工面としたことを特徴とする封口板安全弁装置。A sealing plate having a vent hole, a safety valve made of a polymer material having rubber elasticity having a pair of parallel surfaces in the pressure direction when gas escapes from the vent hole and closing the vent hole on one side thereof, The safety valve is covered with a cap having a discharge hole for discharging the degassed gas, and the safety valve is compressed between the cap and the sealing plate in a space formed between the cap and the sealing plate. In the sealing plate safety valve device accommodated as described above, the sealing plate safety valve obtained by the manufacturing method of the sealing plate safety valve according to claim 1 is used as a safety valve, and at least one of the pair of parallel surfaces of the safety valve is polished. A sealing plate safety valve device characterized by having a machined surface. 高分子材料は、加硫ゴム、熱可塑性エラストマー、ゴム−樹脂組成物を含むものである請求項2記載の封口板安全弁装置。The sealing plate safety valve device according to claim 2, wherein the polymer material includes vulcanized rubber, thermoplastic elastomer, and rubber-resin composition.
JP2000247392A 2000-08-17 2000-08-17 Sealing plate safety valve device and manufacturing method of sealing plate safety valve Expired - Fee Related JP3607179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247392A JP3607179B2 (en) 2000-08-17 2000-08-17 Sealing plate safety valve device and manufacturing method of sealing plate safety valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247392A JP3607179B2 (en) 2000-08-17 2000-08-17 Sealing plate safety valve device and manufacturing method of sealing plate safety valve

Publications (2)

Publication Number Publication Date
JP2002063885A JP2002063885A (en) 2002-02-28
JP3607179B2 true JP3607179B2 (en) 2005-01-05

Family

ID=18737496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247392A Expired - Fee Related JP3607179B2 (en) 2000-08-17 2000-08-17 Sealing plate safety valve device and manufacturing method of sealing plate safety valve

Country Status (1)

Country Link
JP (1) JP3607179B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135070A (en) * 2004-11-05 2006-05-25 Nichicon Corp Aperture sealing plate having a pressure valve and electronic component using the same
JP5181454B2 (en) * 2006-10-16 2013-04-10 パナソニック株式会社 Capacitor
CN201037564Y (en) * 2007-04-16 2008-03-19 比亚迪股份有限公司 Battery safety valve

Also Published As

Publication number Publication date
JP2002063885A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
KR100814778B1 (en) Pressure-discharged venting system for rechargable battery
JP5160559B2 (en) Bend-shaped lithium-ion battery with improved safety
CN110311065B (en) Cylindrical battery
CN108140769B (en) Elastic plate and battery cell assembly including the same
JPWO2012147150A1 (en) Battery pack and single battery
US20080102366A1 (en) End cap seal for an electrochemical cell
JP4770735B2 (en) Nickel metal hydride storage battery
WO2006098508A1 (en) Enclosed battery
JP3607179B2 (en) Sealing plate safety valve device and manufacturing method of sealing plate safety valve
US20040247995A1 (en) Electrical storage battery
CN114303278A (en) Pouch type battery case, apparatus for manufacturing pouch type battery case, and pouch type secondary battery
KR20210066096A (en) Method of checking defect of lithium ion secondary battery and lithium ion secondary battery manufactured by the same method
KR100800533B1 (en) Nickel-metal hydride storage battery
JP5228274B2 (en) Nickel metal hydride storage battery
US20170098811A1 (en) Elastic bladder and battery cell assemblies including same
EP4246644A1 (en) All-solid-state battery
EP3561904B1 (en) Alkaline secondary battery
US20160204482A1 (en) Rechargeable battery
JPH03159057A (en) Safety valve device of sealed alkaline accumulator
JP2002110123A (en) Control valve type lead-acid battery
JP2003045395A (en) Hermetically sealed storage battery
GB2085218A (en) Vent for electric storage battery
US20210351462A1 (en) Sheath material for battery
JP7407335B2 (en) pressure regulating valve
JP2560845Y2 (en) Safety valve device for prismatic sealed battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees