JP3606789B2 - Thermal storage deodorizer - Google Patents

Thermal storage deodorizer Download PDF

Info

Publication number
JP3606789B2
JP3606789B2 JP2000177904A JP2000177904A JP3606789B2 JP 3606789 B2 JP3606789 B2 JP 3606789B2 JP 2000177904 A JP2000177904 A JP 2000177904A JP 2000177904 A JP2000177904 A JP 2000177904A JP 3606789 B2 JP3606789 B2 JP 3606789B2
Authority
JP
Japan
Prior art keywords
flow path
combustion chamber
gas
exhaust
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000177904A
Other languages
Japanese (ja)
Other versions
JP2001355979A (en
Inventor
邦広 船本
修 尾西
高吉 小峰
政美 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2000177904A priority Critical patent/JP3606789B2/en
Publication of JP2001355979A publication Critical patent/JP2001355979A/en
Application granted granted Critical
Publication of JP3606789B2 publication Critical patent/JP3606789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、塗装工場や印刷工場などから排出される気体中の有機溶剤や塗料ミストなどの臭気成分を燃焼処理、つまり、酸化分解処理するための装置で、詳しくは、被処理気体中の臭気成分を燃焼処理する燃焼室を設け、前記燃焼室へ被処理気体を導入するための第1流路を形成すると共に、前記燃焼室からの排気を外部へ排出するための第2流路を形成し、蓄熱材を充填した複数の通気路を周方向に並置形成すると共に、前記複数の通気路のうち、燃焼室からの排気を前記第2流路を介して通過させることにより蓄熱する排気通過状態であった物が被処理気体通過状態となり、かつ、前記排気により蓄熱した熱量で前記第1流路を介して通過させる被処理気体を予熱する被処理気体通過状態であった物が排気通過状態となるように前記通気路に沿った軸芯周りに駆動回転自在に構成してある蓄熱体を設けて、熱交換部を構成してある蓄熱型脱臭装置に関する。
【0002】
【従来の技術】
従来、この種の蓄熱型脱臭装置としては、燃焼室へ被処理気体を導入する第1流路を形成する流路断面、及び、燃焼室からの排気を外部へ排出する第2流路を形成する流路断面は同じ大きさに形成されていた。
【0003】
【発明が解決しようとする課題】
第1流路を介して燃焼室1内へ導入された被処理気体Gは、被処理気体G中の臭気成分を燃焼処理するために燃焼室1内でバーナ1Aにより加熱処理される。この加熱処理された処理気体が熱膨張するだけでなくバーナ1Aの排ガスも加わるため燃焼室1から第2流路22を介して外部に排出される排気gの体積は、第1流路21を介して燃焼室1内へ導入された被処理気体Gの体積よりも増大しているのであるが、上述した従来の蓄熱型脱臭装置Sによれば、例えば、図9に示すように、燃焼室1へ被処理気体Gを導入する第1流路21を形成する流路断面と、燃焼室1からの排気gを外部へ排出する第2流路22を形成する流路断面とを同じ大きさに形成してあるため、第1流路21を介して燃焼室1へ導入される被処理気体Gの体積に比して燃焼室1内で増大した処理ガス及びバーナの排ガスとからなる排気gを、同じ流路断面に形成してある第2流路22を介して外部へ排出しようとした場合、圧損による抵抗が高くなるため第2流路22内の内圧が上昇し易くなる。
このとき、排気gが熱交換器室3内に設置された第2流路22に連通する蓄熱材2Cを充填した複数の通気路2a内を通ることなく熱交換器室3内に漏れてしまうと蓄熱材2Cに熱量を蓄熱できなくなる可能性が生じるため、熱交換器室3内の圧力を高くして第2流路22と通気路2aとの連通箇所Rから排気gが漏れないようにガスシールが設けられているが、体積の増大した排気gにより内圧がこのガスシール圧よりも上昇すると、排気gが第2流路22と通気路2aとの連通箇所Rから熱交換器室3内へ漏れてしまうので蓄熱できなくなる。このため、シールファン24の動力を上げて熱交換器室3内の内圧を第2流路22及び複数の通気路2aにおける内圧よりも高くして、熱交換器室3内へ排気gが漏れないようにする必要が生じるから、シールファン24の動力エネルギー消費が余分に必要になるため不経済なものとなっていた。
【0004】
従って、本発明の目的は、上記問題点を解消し、第2流路を介して外部へ排出する排気の圧損を抑制して第2流路及び複数の通気路における内圧の上昇を抑制し、シールファンの動力を上げることなく第2流路と通気路との連通箇所から熱交換器室内へ排気が漏れるのを防止できる蓄熱型脱臭装置を提供するところにある。
【0005】
【課題を解決するための手段】
〔構成〕
請求項1の発明の特徴構成は図8に例示するごとく、被処理気体G中の臭気成分を燃焼処理する燃焼室1を設け、前記燃焼室1へ被処理気体Gを導入するための第1流路21を形成すると共に、前記燃焼室1からの排気gを外部へ排出するための第2流路22を形成し、蓄熱材2Cを充填した複数の通気路2aを周方向に並置形成すると共に、前記複数の通気路2aのうち、燃焼室1からの排気gを前記第2流路22を介して通過させることにより蓄熱する排気通過状態であった物が被処理気体通過状態となり、かつ、前記排気gにより蓄熱した熱量で前記第1流路21を介して通過させる被処理気体Gを予熱する被処理気体通過状態であった物が排気通過状態となるように前記通気路2aに沿った軸芯P周りに駆動回転自在に構成してある蓄熱体2Cを設けて、熱交換部3Aを構成してある蓄熱型脱臭装置であって、前記第1流路21を形成する流路断面に比して前記第2流路22を形成する流路断面を大に形成してあり、前記燃焼室1と前記第1流路21、及び、前記燃焼室1と前記第2流路22は、双方より流路断面が小さい絞り流路を介して夫々連通接続してあり、前記燃焼室1における前記第1流路21の接続部と第2流路22の接続部との間の内壁に、燃焼室1内で前記内壁に対向する対向内壁側へ突出状態に仕切部が設けてあるところにある。
【0007】
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。
【0008】
〔作用及び効果〕
請求項1の発明により、前記第1流路を形成する流路断面に比して前記第2流路を形成する流路断面を大に形成してあるから、第2流路及び複数の通気路における内圧の上昇を抑制することができる。
つまり、第1流路を介して燃焼室内へ導入された被処理気体の体積よりも増大している排気を、第1流路を形成する流路断面よりもその流路断面を大に形成してある第2流路を介して外部へ排出するため、第1流路と同じ流路断面に形成したものに比して圧損を抑制し易くなって第2流路及び複数の通気路における内圧の上昇を抑制することができる。
その結果、シールファンの動力を上げることなく第2流路と通気路との連通箇所から熱交換器室内へ排気が漏れるのを防止することができるため、経済性及び蓄熱時の信頼性を向上させることができるようになった。
【0010】
【発明の実施の形態】
以下に本発明の実施形態の一例である蓄熱型脱臭装置Sを図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。
【0011】
蓄熱型脱臭装置Sは、図1,2に示すように、被処理気体G中の臭気成分を燃焼処理する燃焼室1、燃焼室1へ被処理気体Gを導入するための第1流路21、燃焼室1からの排気gを外部へ排出するための第2流路22、排気gから蓄熱した熱量で被処理気体Gを予熱する熱交換部3Aを備えた熱交換器室3、第1流路21内の被処理気体Gを熱交換部3Aから燃焼室1へと供給するための押し込みファン23、熱交換部3A内から気体が漏れないように熱交換器室3を形成する熱交換器室3内の圧力を高くするガスシールのためのシールファン24を設けて構成されている。図中25は被処理気体Gを熱交換器室3へ供給することなく直接排気するための第1流路21に連接した直排ダクト、図中26は被処理気体Gを熱交換器室3内を迂回させるための第1流路21に連接したバイパスダクトである。
【0012】
図3,8に示すように、前記第1流路21は、周方向の特定箇所に、蓄熱体2の一端面側から被処理気体Gを供給する被処理気体供給ダクト5に連接した被処理気体供給口部6(以下第1供給ダクトと称する。)と、他端面側において蓄熱体2を通過した被処理気体Gを燃焼室1の受入口1aに排出する排出ダクト7に連接した被処理気体排出口部8(以下第1排出ダクトと称する。)とから構成されている。
また、前記第2流路22は、前記とは異なる周方向の特定箇所に、燃焼室1の排気口1bから排出した排気gを蓄熱体2に他端面側から供給する排気供給ダクト9に連接した排気供給口部10(以下第2供給ダクトと称する。)と、一端面側において蓄熱体2を通過した排気gを外部に排出する排出ダクト11に連接した排気排出口部12(以下第2排出ダクトと称する。)とから構成されている。そして、図3に示すように、燃焼室1へ被処理気体Gを供給する第1流路21を、上下方向上側に配設すると共に、燃焼室1からの排気gを排出する第2流路22を、上下方向下側に配設形成してあるため、燃焼室1へ供給される被処理気体Gの供給量が少なくなったとしても、上下方向上側に設けた第1流路21からバーナ1Aの上昇流に逆らって上から押し込むように供給されるから被処理気体Gに乱流が発生し易くなり、ショートパスを起こして偏流を生じるといったことが抑制され、上下方向下側に設けた第2流路22を介して通気路2a内における蓄熱材2Cに対してまんべんなく通過させることができるから、蓄熱分布に偏りを生じるのを抑制して熱交換効率が低下するのを防止することができる。
【0013】
前記ガスシールは、排出ダクト11内の排気gを環流ダクト27を介して熱交換器室3内に圧送するシールファン24により、第1供給ダクト6と第1排出ダクト8内の内圧、及び、第2供給ダクト10と第2排出ダクト12内の内圧、並びに上記複数のダクトに連通する状態で蓄熱材2Cを充填してある複数の通気路2a内における内圧よりも熱交換器室3内の内圧を高く維持することによって、第1供給ダクト6と第1排出ダクト8内から被処理気体Gが熱交換器室3内に漏れ出さないようにすると共に、第2供給ダクト10と第2排出ダクト12内から排気gが熱交換器室3内に漏れ出さないように構成されている。
このとき、低温側の被処理気体供給ダクト5内の圧力を圧力センサASで検知し、制御装置SSによりその検知圧力よりも10〜50mmAq高くなるようにシールファン24によるシール圧力を自動制御している。
【0014】
図8に示すように、前記第1供給ダクト6及び第1排出ダクト8夫々の両側壁部6a,6b,8a,8bと蓄熱体2の端面との間には、第1供給ダクト6及び第1排出ダクト8内の圧力と熱交換器室3内の圧力との差による熱交換器室3内気体の第1供給ダクト6及び第1排出ダクト8内への移入を許容する間隙13,14が形成されており、前記第2供給ダクト10及び第2排出ダクト12夫々の両側壁部10a,10b,12a,12bと蓄熱体2の端面との間にも、第2供給ダクト10及び第2排出ダクト12内の圧力と熱交換器室3内の圧力との差による熱交換器室内気体の第2供給ダクト10及び第2排出ダクト12内への移入を許容する間隙15,16が形成されている。因みに、第1供給ダクト6及び第1排出ダクト8と蓄熱体2の端面との間隙13,14の実数値例を挙げると、0.1〜0.5mmであり、第2供給ダクト10及び第2排出ダクト12と蓄熱体2の端面との間隙15,16の実数値例を挙げると、0.1〜0.5mmである。
【0015】
また、前記第1供給ダクト6及び第1排出ダクト8夫々の両側壁部6a,6b,8a,8bのそれぞれには、一つの通気路2aの端部開口を覆う大きさ・形状のシール用覆い板17a,17b,18a,18bが連設されており、前記第2供給ダクト10及び第2排出ダクト12夫々の両側壁部10a,10b,12a,12bのそれぞれにも、一つの通気路2aの端部開口を覆う大きさ・形状のシール用覆い板19a,19b,20a,20bが連設されている。
【0016】
図3に示すように、前記燃焼室1には、被処理気体Gを受け入れる受入口1aと排気gを排出する排気口1bとが形成されており、受入口1aから受け入れた被処理気体G中の臭気成分を燃焼処理、つまり酸化分解処理するバーナ1Aが備えられている。
【0017】
前記熱交換器室3には、図3に示すように、前記燃焼室1からの排気gを外部へ排出するための第2流路22を形成し、蓄熱材2Cを充填した複数の通気路2aを周方向に並置形成すると共に、前記複数の通気路2aのうち、燃焼室1からの排気gを前記第2流路22を介して通過させることにより蓄熱する排気通過状態であった物が被処理気体通過状態となり、かつ、前記排気gにより蓄熱した熱量で前記第1流路21を介して通過させる被処理気体Gを予熱する被処理気体通過状態であった物が排気通過状態となるように前記通気路2aに沿った軸芯P周りに駆動回転自在に構成してある蓄熱体2Cを設けた熱交換部3Aが構成されている。
【0018】
前記蓄熱体2は、図4の(イ)(ロ)にも示すように、円筒状の本体2Aを設け、この本体2A内を周方向複数個の通気路2aに仕切る複数の隔壁2Bを設け、各通気路2a内に蓄熱材2Cを充填した構造、つまり、蓄熱材2Cを充填した複数の通気路2aを周方向に並置形成した構造のものであって、熱交換器室3内に軸芯P周りに回転自在に設置されており、熱交換器室3外のモータ4により駆動されるようになっている。
【0019】
前記蓄熱材2Cは、図5〜7に示すように、ステンレスやアルミ等の金属製の薄板材を一定高さで複数回折り曲げて波状に形成したフィンFの上下に板材Bを介してまた別のフィンFを積層して形成したメタルハニカムであって、通気路2a内に、低温側よりも高温側ほどその流路断面が大となるメタルハニカムを充填している。2Dは蓄熱材2Cの通気路2aからの脱落を防止するネットである。また、隔壁2Bで仕切られた通気路2aに充填した蓄熱材2Cの両ダクト側における端部は、図6に示すように、円筒状の本体2Aよりも内側に引退した状態に形成してあるため、第1供給ダクト6及び第1排出ダクト夫々の側壁部に連接されたシール用覆い板17a,18aによって通気路2aの開口のほとんどが覆われていたとしても、ダクト内に通気路2aの一部が開口しているならその通気路2a内全体に被処理ガスGを通過させることが可能である。(第2供給ダクト10及び第2排出ダクト12における作用効果も同様である。)
因みに、この実施の形態では、本体2A内は16個の通気路2aに均等分割されている。
【0020】
次に、蓄熱型脱臭装置Sにおける気体の流れに沿って説明する。
図3に示すように、被処理気体Gは、第1ダクト6から蓄熱体2に設けた複数の通気路2aを通過するときに、その通気路2a内にある蓄熱材2Cに接触しつつ第1排出ダクト8に形成してある受入口1aを介して燃焼室1内に排出供給される。
そして、燃焼室1内で被処理気体G中の臭気成分を燃焼処理するために燃焼室1内のバーナ1Aにより加熱処理され、燃焼室1内に設けた排気口1bを介して第2供給ダクト10から蓄熱体2Cに設けた複数の通気路2aを通過するときに、その通気路2a内にある蓄熱材2Cに接触しつつ第2排出ダクト12から外部へ排出される。
【0021】
このとき、燃焼室1からの排気gを第2流路22を介して通過させるときに、その通気路2a内にある蓄熱材2Cに蓄熱する一方、燃焼室1に供給する被処理気体Gを第1流路を介して通気路2aを通過させるときに、排気gから蓄熱した熱量で被処理気体Gを予熱できるように排気通過状態であった物が被処理気体通過状態となり、かつ、被処理気体通過状態であった物が排気通過状態となるように回転軸芯P周りに駆動回転自在に蓄熱体2が構成されている。
【0022】
また、前記加熱処理された処理気体が熱膨張するだけでなくバーナ1Aの排ガス及び間隙14,15から入るシールエア分も加わるため、処理気体とバーナの排ガスとシールエアとからなる排気gの体積は、燃焼室1内へ供給された被処理気体Gの体積よりも増大することになるが、第1流路21を形成する流路断面(本実施形態では通気路4個半分)に比して第2流路22を形成する流路断面(本実施形態では通気路5個半分)を大に形成してあるから、第2流路22を介して外部へ排出する排気gの圧損を抑制して第2流路22内及び複数の通気路2aにおける内圧の上昇を抑制することができるようになり、シールファン24の動力を上げることなく第2流路22と通気路2aとの連通箇所Rから熱交換器室3内へ排気gが漏れるのを防止することができ、経済性及び蓄熱時の信頼性を向上させることができるようになった。
【0023】
因みに、温度の実数値例を挙げると、第1供給ダクト6での被処理気体Gの温度は160℃、蓄熱体2により加熱された被処理気体Gを受け入れる第1排出ダクト8での被処理気体Gの温度は670℃、燃焼後の第2供給ダクト10での排気温度は760℃、蓄熱体2を加熱した後の排気gを受け入れる第2排出ダクト12での排気gの温度は300℃である。
〔別実施形態〕
以下に他の実施の形態を説明する。
〈1〉蓄熱材は、先の実施形態で説明した通気路内に複数のステンレスやアルミ等からなる金属製のフィンを配置して熱交換を行う構成のものに限るものではなく、例えば、金属製又はセラミック製のパイプを軸芯方向に複数段に充填して熱交換を行う構成のものであっても良い。
また、例えば、連通孔を有した多孔セラミックスを通気路内に配置して熱交換を行う構成の物であっても良い。
さらに、例えば、複数の金属製又はセラミックス製の粒状体を通気路内に充填し、その粒状体によって熱交換を行う構成のものであっても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態の蓄熱型脱臭装置を示す全体側面図
【図2】本発明の一実施形態の蓄熱型脱臭装置を示す全体平面図
【図3】本発明の一実施形態の蓄熱型脱臭装置を示す概略縦断側面図
【図4】本発明の一実施形態の蓄熱体を示す縦断正面図
【図5】本発明の一実施形態の蓄熱体要部を示す縦断側面図
【図6】本発明の一実施形態の蓄熱体を示す展開断面図
【図7】本発明の一実施形態の蓄熱材を示す部分斜視図
【図8】本発明の一実施形態の蓄熱型脱臭装置を示す展開断面図
【図9】従来例の蓄熱型脱臭装置を示す概略縦断面図
【符号の説明】
1 燃焼室
1A バーナ
2C 蓄熱材
3 熱交換器室
24 シールファン
21 第1流路
22 第2流路
G 被処理気体
g 排気
S 蓄熱型脱臭装置
R 連通箇所
[0001]
BACKGROUND OF THE INVENTION
The present invention is an apparatus for burning, that is, oxidizing and decomposing odor components such as organic solvents and paint mist in a gas discharged from, for example, a painting factory or a printing factory. And a second flow path for discharging the exhaust gas from the combustion chamber to the outside while forming a first flow path for introducing the gas to be treated into the combustion chamber. And a plurality of air passages filled with a heat storage material are juxtaposed in the circumferential direction, and heat is stored by passing the exhaust from the combustion chamber through the second flow passage among the plurality of air passages. An object that has been in the exhaust passage state is in a state in which the gas to be processed is passed, and an object that has been in the state of gas to be processed that preheats the gas to be processed that is passed through the first flow path with the amount of heat stored by the exhaust gas. To be in the exhaust passage state Provided regenerator to the axis around along the serial air passage are constituted freely rotated relates regenerative deodorizing apparatus that is constructed of heat exchange unit.
[0002]
[Prior art]
Conventionally, as this type of heat storage type deodorization apparatus, a cross section of a first flow path for introducing a gas to be treated into a combustion chamber and a second flow path for discharging the exhaust from the combustion chamber to the outside are formed. The cross-sections of the channels to be formed were the same size.
[0003]
[Problems to be solved by the invention]
The gas to be processed G introduced into the combustion chamber 1 through the first flow path is heat-treated by the burner 1A in the combustion chamber 1 in order to burn the odor components in the gas to be processed G. Since the heat-treated process gas is not only thermally expanded, but also the exhaust gas of the burner 1A is added, the volume of the exhaust g discharged from the combustion chamber 1 through the second flow path 22 is the same as that of the first flow path 21. The volume of the gas G to be treated introduced into the combustion chamber 1 through the combustion chamber 1 is increased, but according to the above-described conventional heat storage deodorizer S, for example, as shown in FIG. 1 is the same size as the cross section of the flow path that forms the first flow path 21 that introduces the gas G to be treated 1 and the cross section of the flow path that forms the second flow path 22 that discharges the exhaust g from the combustion chamber 1 to the outside. Therefore, the exhaust gas composed of the processing gas and the exhaust gas of the burner increased in the combustion chamber 1 as compared with the volume of the gas G to be processed introduced into the combustion chamber 1 through the first flow path 21. When trying to discharge the air to the outside through the second flow path 22 formed in the same flow path cross section , The internal pressure in the second flow path 22 is the resistance due to pressure loss is high tends to rise.
At this time, the exhaust g leaks into the heat exchanger chamber 3 without passing through the plurality of ventilation paths 2a filled with the heat storage material 2C communicating with the second flow path 22 installed in the heat exchanger chamber 3. Therefore, the heat storage material 2C may not be able to store the amount of heat, so that the pressure in the heat exchanger chamber 3 is increased so that the exhaust g does not leak from the communication point R between the second flow path 22 and the ventilation path 2a. Although the gas seal is provided, when the internal pressure rises above the gas seal pressure due to the exhaust g having an increased volume, the exhaust g passes from the communication point R between the second flow path 22 and the ventilation path 2a to the heat exchanger chamber 3. Because it leaks in, it becomes impossible to store heat. For this reason, the power of the seal fan 24 is increased to make the internal pressure in the heat exchanger chamber 3 higher than the internal pressure in the second flow path 22 and the plurality of ventilation paths 2a, and the exhaust g leaks into the heat exchanger chamber 3. Since there is a need to prevent the seal fan 24 from being consumed, the power consumption of the seal fan 24 is required, which is uneconomical.
[0004]
Therefore, an object of the present invention is to solve the above problems, suppress the pressure loss of the exhaust discharged to the outside through the second flow path, and suppress the increase in internal pressure in the second flow path and the plurality of ventilation paths, An object of the present invention is to provide a heat storage type deodorization device that can prevent exhaust gas from leaking into the heat exchanger chamber from the communication point between the second flow path and the air flow path without increasing the power of the seal fan.
[0005]
[Means for Solving the Problems]
〔Constitution〕
As illustrated in FIG. 8, the characteristic configuration of the invention of claim 1 is a first chamber for providing a combustion chamber 1 for performing a combustion treatment of odor components in the gas G to be processed and for introducing the gas G to be processed into the combustion chamber 1. In addition to forming the flow path 21, a second flow path 22 for discharging the exhaust g from the combustion chamber 1 to the outside is formed, and a plurality of ventilation paths 2a filled with the heat storage material 2C are juxtaposed in the circumferential direction. At the same time, among the plurality of air passages 2a, the exhaust gas passing state of storing heat by passing the exhaust g from the combustion chamber 1 through the second flow path 22 becomes the gas to be treated passing state, and Then, along the ventilation path 2a, the object to be processed gas passing state that preheats the gas to be processed G that is passed through the first flow path 21 with the amount of heat stored by the exhaust g is placed in the exhaust passage state. It is configured so that it can be driven and rotated around the axis P A heat storage type deodorizing apparatus provided with a heat element 2C and constituting a heat exchanging section 3A, in which a flow that forms the second flow path 22 as compared with a cross section of the flow path that forms the first flow path 21 Ri Thea forming a road section on a large, the combustion chamber 1 and the first flow path 21, and the combustion chamber 1 and the second flow path 22, through the channel cross-section is smaller throttle channel from both In the combustion chamber 1, the inner wall between the connection portion of the first flow path 21 and the connection portion of the second flow path 22 is opposed to the inner wall facing the inner wall in the combustion chamber 1. partition portion in the projecting state to the side is in the in Oh Rutokoro provided.
[0007]
In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry.
[0008]
[Action and effect]
According to the first aspect of the present invention, the flow passage cross section forming the second flow passage is formed larger than the flow passage cross section forming the first flow passage. An increase in internal pressure in the road can be suppressed.
That is, the exhaust gas, which is larger than the volume of the gas to be processed introduced into the combustion chamber through the first flow path, is formed with a flow path cross section larger than the flow path cross section forming the first flow path. In order to discharge to the outside through the second flow path, the internal pressure in the second flow path and the plurality of ventilation paths can be suppressed more easily than in the case where the first flow path is formed in the same flow path cross section. Can be suppressed.
As a result, it is possible to prevent the exhaust gas from leaking into the heat exchanger chamber from the communication point between the second flow path and the ventilation path without increasing the power of the seal fan, thus improving the economic efficiency and reliability during heat storage. It became possible to let you.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a heat storage deodorizing apparatus S which is an example of an embodiment of the present invention will be described with reference to the drawings. In the drawings, the parts indicated by the same reference numerals as those in the conventional example indicate the same or corresponding parts.
[0011]
As shown in FIGS. 1 and 2, the heat storage deodorization apparatus S includes a combustion chamber 1 for performing a combustion treatment of odor components in the gas to be processed G, and a first flow path 21 for introducing the gas to be processed G into the combustion chamber 1. A heat exchanger chamber 3 having a second flow path 22 for discharging the exhaust g from the combustion chamber 1 to the outside, a heat exchanging portion 3A for preheating the gas G to be treated with the amount of heat stored from the exhaust g, a first Heat exchange for forming the heat exchanger chamber 3 so that the gas G does not leak from the pushing fan 23 for supplying the gas G to be processed in the flow path 21 from the heat exchanger 3A to the combustion chamber 1 and the heat exchanger 3A. A seal fan 24 for gas sealing that increases the pressure in the chamber 3 is provided. In the figure, reference numeral 25 denotes a direct exhaust duct connected to the first flow path 21 for directly exhausting the gas to be processed G without supplying it to the heat exchanger chamber 3, and reference numeral 26 in the figure denotes the gas to be processed G to the heat exchanger chamber 3. It is a bypass duct connected to the first flow path 21 for detouring the inside.
[0012]
As shown in FIGS. 3 and 8, the first flow path 21 is connected to a gas supply duct 5 to be processed that supplies the gas G to be processed from one end surface side of the heat storage body 2 to a specific location in the circumferential direction. A gas supply port 6 (hereinafter referred to as a first supply duct) and a processing object connected to a discharge duct 7 for discharging the processing object gas G that has passed through the heat accumulator 2 on the other end surface side to the receiving port 1a of the combustion chamber 1 It comprises a gas discharge port 8 (hereinafter referred to as a first discharge duct).
The second flow path 22 is connected to an exhaust supply duct 9 for supplying exhaust g discharged from the exhaust port 1b of the combustion chamber 1 to the heat storage body 2 from the other end surface side at a specific location in the circumferential direction different from the above. The exhaust discharge port portion 10 (hereinafter referred to as the second supply duct) and the exhaust discharge port portion 12 (hereinafter referred to as the second supply duct) connected to the exhaust duct 11 that discharges the exhaust g passing through the heat accumulator 2 on the one end surface side to the outside. (Referred to as a discharge duct). As shown in FIG. 3, the first flow path 21 for supplying the gas G to be processed to the combustion chamber 1 is disposed on the upper side in the vertical direction, and the second flow path for discharging the exhaust g from the combustion chamber 1. 22 is disposed on the lower side in the vertical direction, so that even if the supply amount of the gas G to be processed supplied to the combustion chamber 1 is reduced, the burner from the first flow path 21 provided on the upper side in the vertical direction is used. Since it is supplied so as to push in from the top against the upward flow of 1A, turbulent flow is likely to occur in the gas to be processed G, and it is possible to suppress the occurrence of a short path and uneven flow. Since it can be made to pass evenly through the heat storage material 2C in the ventilation path 2a via the second flow path 22, it is possible to prevent the heat storage distribution from being biased and prevent the heat exchange efficiency from being lowered. it can.
[0013]
The gas seal is configured such that the internal pressure in the first supply duct 6 and the first exhaust duct 8 is increased by a seal fan 24 that pumps the exhaust g in the exhaust duct 11 into the heat exchanger chamber 3 through the circulation duct 27. The internal pressure in the second supply duct 10 and the second exhaust duct 12, and the internal pressure in the heat exchanger chamber 3 than the internal pressure in the plurality of ventilation paths 2a filled with the heat storage material 2C in communication with the plurality of ducts. By maintaining the internal pressure high, the gas to be processed G does not leak into the heat exchanger chamber 3 from the first supply duct 6 and the first discharge duct 8, and the second supply duct 10 and the second discharge are discharged. Exhaust g is not leaked from the duct 12 into the heat exchanger chamber 3.
At this time, the pressure in the gas supply duct 5 on the low temperature side is detected by the pressure sensor AS, and the control pressure of the seal fan 24 is automatically controlled by the control device SS so as to be 10 to 50 mmAq higher than the detected pressure. Yes.
[0014]
As shown in FIG. 8, the first supply duct 6 and the first discharge duct 6 and the first discharge duct 8 are disposed between the side walls 6 a, 6 b, 8 a, and 8 b of the first discharge duct 8 and the end surface of the heat storage body 2. The gaps 13 and 14 that allow the gas in the heat exchanger chamber 3 to enter the first supply duct 6 and the first discharge duct 8 due to the difference between the pressure in the one exhaust duct 8 and the pressure in the heat exchanger chamber 3. The second supply duct 10 and the second discharge duct 12 are also formed between the side walls 10a, 10b, 12a and 12b of the second supply duct 10 and the second discharge duct 12 and the end surface of the heat storage body 2. Clearances 15 and 16 are formed that allow the gas in the heat exchanger chamber to enter the second supply duct 10 and the second discharge duct 12 due to the difference between the pressure in the discharge duct 12 and the pressure in the heat exchanger chamber 3. ing. In this connection, real value examples of the gaps 13 and 14 between the first supply duct 6 and the first discharge duct 8 and the end face of the heat storage body 2 are 0.1 to 0.5 mm. 2 Taking a real numerical example of the gaps 15 and 16 between the exhaust duct 12 and the end face of the heat storage body 2, it is 0.1 to 0.5 mm.
[0015]
Further, each of the side wall portions 6a, 6b, 8a, 8b of the first supply duct 6 and the first discharge duct 8 has a sealing cover of a size and shape that covers an end opening of one air passage 2a. Plates 17a, 17b, 18a, and 18b are connected in series, and each of the side wall portions 10a, 10b, 12a, and 12b of the second supply duct 10 and the second discharge duct 12 has a single air passage 2a. Seal cover plates 19a, 19b, 20a, and 20b having a size and shape that cover the end openings are continuously provided.
[0016]
As shown in FIG. 3, the combustion chamber 1 is formed with an inlet 1a for receiving the gas to be processed G and an exhaust port 1b for discharging the exhaust g, and the gas to be processed G received from the inlet 1a. Is provided with a burner 1A for subjecting the odor component to combustion treatment, that is, oxidative decomposition treatment.
[0017]
As shown in FIG. 3, the heat exchanger chamber 3 is formed with a second flow path 22 for discharging the exhaust g from the combustion chamber 1 to the outside, and a plurality of ventilation paths filled with the heat storage material 2C. 2a are juxtaposed in the circumferential direction, and among the plurality of air passages 2a, there is an exhaust passage state in which heat is stored by passing the exhaust g from the combustion chamber 1 through the second flow passage 22. An object to be processed gas passing state that preheats the gas to be processed G that passes through the first flow path 21 with the amount of heat stored by the exhaust gas g is in an exhaust gas passing state. Thus, a heat exchanging portion 3A provided with a heat storage body 2C that is configured to be driven and rotated around the axis P along the air passage 2a is configured.
[0018]
As shown in FIGS. 4A and 4B, the heat storage body 2 is provided with a cylindrical main body 2A, and a plurality of partition walls 2B for partitioning the inside of the main body 2A into a plurality of air passages 2a in the circumferential direction. Each of the air passages 2a has a structure in which the heat storage material 2C is filled, that is, a structure in which a plurality of air passages 2a filled with the heat storage material 2C are juxtaposed in the circumferential direction. It is installed so as to be rotatable around the core P, and is driven by a motor 4 outside the heat exchanger chamber 3.
[0019]
As shown in FIGS. 5 to 7, the heat storage material 2 </ b> C is separated from the upper and lower sides of fins F formed by bending a plurality of thin metal plates such as stainless steel and aluminum at a certain height, with a plate B interposed therebetween. The metal honeycomb formed by laminating the fins F is filled with a metal honeycomb in which the cross section of the flow path becomes larger at the higher temperature side than at the lower temperature side. 2D is a net that prevents the heat storage material 2C from falling off the air passage 2a. Further, the end portions on both duct sides of the heat storage material 2C filled in the air passage 2a partitioned by the partition wall 2B are formed in a state of being retracted inward from the cylindrical main body 2A as shown in FIG. Therefore, even if most of the opening of the air passage 2a is covered by the sealing cover plates 17a and 18a connected to the side wall portions of the first supply duct 6 and the first discharge duct, the air passage 2a is formed in the duct. If a part is opened, it is possible to pass the gas G to be processed through the entire air passage 2a. (The effect in the 2nd supply duct 10 and the 2nd discharge duct 12 is also the same.)
Incidentally, in this embodiment, the inside of the main body 2A is equally divided into 16 air passages 2a.
[0020]
Next, it demonstrates along the flow of the gas in the thermal storage type deodorizing apparatus S. FIG.
As shown in FIG. 3, when the gas G to be processed passes through the plurality of ventilation paths 2 a provided in the heat storage body 2 from the first duct 6, the gas to be processed G is in contact with the heat storage material 2 </ b> C in the ventilation path 2 a. 1 is discharged and supplied into the combustion chamber 1 through a receiving port 1 a formed in the discharge duct 8.
And in order to carry out the combustion process of the odor component in the to-be-processed gas G in the combustion chamber 1, it heat-processes by the burner 1A in the combustion chamber 1, and it is 2nd supply duct via the exhaust port 1b provided in the combustion chamber 1. When passing through a plurality of air passages 2a provided in the heat storage body 2C from 10, the air is discharged from the second exhaust duct 12 to the outside while being in contact with the heat storage material 2C in the air passage 2a.
[0021]
At this time, when the exhaust g from the combustion chamber 1 is passed through the second flow path 22, the heat storage material 2 </ b> C in the ventilation path 2 a stores heat, while the gas to be processed G supplied to the combustion chamber 1 is stored. When the gas passage 2a is passed through the first flow path, the object that has been in the exhaust passage state becomes the gas passage state to be treated so that the gas to be treated G can be preheated with the amount of heat stored from the exhaust g, and The heat accumulator 2 is configured to be rotatable around the rotation axis P so that an object that has been in the process gas passage state is in an exhaust passage state.
[0022]
Further, since the heat-treated process gas is not only thermally expanded, but also the exhaust gas of the burner 1A and the seal air entering from the gaps 14 and 15 are added, the volume of the exhaust g consisting of the process gas, the exhaust gas of the burner and the seal air is Although the volume of the gas to be processed G supplied into the combustion chamber 1 is larger than the volume of the gas G to be processed, it is larger than the cross section of the flow path forming the first flow path 21 (in this embodiment, four half of the ventilation paths). Since the cross section of the flow path forming the two flow paths 22 (in this embodiment, half of the five ventilation paths) is formed large, the pressure loss of the exhaust g discharged to the outside through the second flow path 22 is suppressed. An increase in internal pressure in the second flow path 22 and the plurality of ventilation paths 2a can be suppressed, and the communication path R between the second flow path 22 and the ventilation path 2a can be increased without increasing the power of the seal fan 24. The exhaust g leaks into the heat exchanger chamber 3 It can be stopped, it has become possible to improve the reliability at the time of economy and heat storage.
[0023]
For example, if the actual numerical value of the temperature is given, the temperature of the gas G to be processed in the first supply duct 6 is 160 ° C., and the gas to be processed in the first exhaust duct 8 that receives the gas G to be processed heated by the heat storage body 2 is used. The temperature of the gas G is 670 ° C., the exhaust temperature in the second supply duct 10 after combustion is 760 ° C., and the temperature of the exhaust g in the second exhaust duct 12 that receives the exhaust g after heating the heat storage body 2 is 300 ° C. It is.
[Another embodiment]
Other embodiments will be described below.
<1> The heat storage material is not limited to a configuration in which a plurality of metal fins made of stainless steel, aluminum, or the like are arranged in the air passage described in the previous embodiment to perform heat exchange. It may be configured to perform heat exchange by filling a plurality of stages of pipes made of ceramic or ceramic in the axial direction.
For example, the thing of the structure which arrange | positions the porous ceramics which have a communicating hole in a ventilation path, and performs heat exchange may be sufficient.
Further, for example, a structure in which a plurality of metal or ceramic particles are filled in an air passage and heat exchange is performed using the particles.
[Brief description of the drawings]
FIG. 1 is an overall side view showing a heat storage deodorizing apparatus according to an embodiment of the present invention. FIG. 2 is an overall plan view showing a heat storage deodorizing apparatus according to an embodiment of the present invention. FIG. 4 is a longitudinal front view showing a heat storage body according to an embodiment of the present invention. FIG. 5 is a vertical side view showing a main part of the heat storage body according to an embodiment of the present invention. FIG. 6 is a developed cross-sectional view showing a heat storage body according to an embodiment of the present invention. FIG. 7 is a partial perspective view showing a heat storage material according to an embodiment of the present invention. FIG. 9 is a developed longitudinal sectional view showing a conventional heat storage deodorizing apparatus.
DESCRIPTION OF SYMBOLS 1 Combustion chamber 1A Burner 2C Thermal storage material 3 Heat exchanger chamber 24 Seal fan 21 1st flow path 22 2nd flow path G Processed gas g Exhaust S Thermal storage deodorizing apparatus R Communication location

Claims (1)

被処理気体中の臭気成分を燃焼処理する燃焼室を設け、前記燃焼室へ被処理気体を導入するための第1流路を形成すると共に、前記燃焼室からの排気を外部へ排出するための第2流路を形成し、蓄熱材を充填した複数の通気路を周方向に並置形成すると共に、前記複数の通気路のうち、燃焼室からの排気を前記第2流路を介して通過させることにより蓄熱する排気通過状態であった物が被処理気体通過状態となり、かつ、前記排気により蓄熱した熱量で前記第1流路を介して通過させる被処理気体を予熱する被処理気体通過状態であった物が排気通過状態となるように前記通気路に沿った軸芯周りに駆動回転自在に構成してある蓄熱体を設けて、熱交換部を構成してある蓄熱型脱臭装置であって、
前記第1流路を形成する流路断面に比して前記第2流路を形成する流路断面を大に形成してあり、前記燃焼室と前記第1流路、及び、前記燃焼室と前記第2流路は、双方より流路断面が小さい絞り流路を介して夫々連通接続してあり、前記燃焼室における前記第1流路の接続部と第2流路の接続部との間の内壁に、燃焼室内で前記内壁に対向する対向内壁側へ突出状態に仕切り部が設けてある蓄熱型脱臭装置
A combustion chamber for combusting odor components in the gas to be processed is provided, a first flow path for introducing the gas to be processed into the combustion chamber is formed, and exhaust from the combustion chamber is discharged to the outside A second flow path is formed, and a plurality of ventilation paths filled with the heat storage material are juxtaposed in the circumferential direction, and exhaust from the combustion chamber is allowed to pass through the second flow path among the plurality of ventilation paths. In this way, the object that has been in the exhaust passage state where heat is accumulated becomes the treatment gas passage state, and the treatment gas passage state that preheats the treatment gas that is passed through the first flow path with the amount of heat stored by the exhaust gas. A heat storage type deodorizing apparatus comprising a heat storage body configured to be driven and rotatable around an axis along the air passage so that an existing object is in an exhaust passage state, and constituting a heat exchange unit. ,
Wherein the channel cross section for forming the second flow path as compared with the channel cross-section to form a first flow path formed on a large tare is, the first flow path and said combustion chamber, and said combustion chamber And the second flow path are connected to each other through a throttle flow path having a smaller flow path cross section than both, and the connection portion of the first flow path and the connection portion of the second flow path in the combustion chamber the inner wall between, Oh Ru regenerative deodorizing device partitioning portion is provided in the projecting state to the opposite inner wall facing the inner wall in the combustion chamber.
JP2000177904A 2000-06-14 2000-06-14 Thermal storage deodorizer Expired - Lifetime JP3606789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177904A JP3606789B2 (en) 2000-06-14 2000-06-14 Thermal storage deodorizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177904A JP3606789B2 (en) 2000-06-14 2000-06-14 Thermal storage deodorizer

Publications (2)

Publication Number Publication Date
JP2001355979A JP2001355979A (en) 2001-12-26
JP3606789B2 true JP3606789B2 (en) 2005-01-05

Family

ID=18679426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177904A Expired - Lifetime JP3606789B2 (en) 2000-06-14 2000-06-14 Thermal storage deodorizer

Country Status (1)

Country Link
JP (1) JP3606789B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327078A1 (en) * 2003-06-13 2004-12-30 Klingenburg Gmbh Rotary heat exchanger and method for sealing such
JP4814780B2 (en) * 2006-12-22 2011-11-16 株式会社大気社 Thermal storage type gas processor and thermal storage type gas processing equipment using the same
US9841242B2 (en) 2013-06-21 2017-12-12 General Electric Technology Gmbh Method of air preheating for combustion power plant and systems comprising the same

Also Published As

Publication number Publication date
JP2001355979A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
JP4675446B2 (en) Fuel cell performing afterburning at the peripheral edge of the fuel cell stack
EP1076800B1 (en) Web dryer with fully integrated regenerative heat source
HUT72685A (en) Annular air distributor for regenerative thermal oxidizers
EP1132705A1 (en) Method for drying wood
WO2017128188A1 (en) Rotary heat accumulating-type waste gas incineration device
JP5058423B2 (en) Switching valve and regenerative thermal oxidizer including the switching valve
KR100293836B1 (en) By air current
JP3606789B2 (en) Thermal storage deodorizer
US4094302A (en) Furnace with heat storage elements
JPH01269856A (en) Heater
EP0333959B1 (en) Heater
JP5615020B2 (en) Drying equipment with continuous box dryer
KR20030011036A (en) Regenerative thermal oxidizer
JPH0217784B2 (en)
JPS5910255B2 (en) Plate heat exchange reactor
JP3583057B2 (en) Rotary heat exchanger
JP2008045762A (en) Valve and heat storage type deodorizing device
JP3831532B2 (en) Thermal storage type exhaust gas treatment equipment
PL196072B1 (en) Airbox in a regenerative thermal oxidiser
KR940015358A (en) Combustion Method and Apparatus for Pipe Heat Exchanger Furnace
KR20020025915A (en) Hori. distribution type regenerative thermal oxidizer
CN220303658U (en) Corrosion-resistant seven-chamber heat storage incineration equipment for treating waste gas
CN215571735U (en) Sealed type baking bed
JPH1176754A (en) Wastae gas treating device
KR20200016110A (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3606789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term