JP3606173B2 - Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor - Google Patents

Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor Download PDF

Info

Publication number
JP3606173B2
JP3606173B2 JP2000210972A JP2000210972A JP3606173B2 JP 3606173 B2 JP3606173 B2 JP 3606173B2 JP 2000210972 A JP2000210972 A JP 2000210972A JP 2000210972 A JP2000210972 A JP 2000210972A JP 3606173 B2 JP3606173 B2 JP 3606173B2
Authority
JP
Japan
Prior art keywords
capacitor
apparent power
waveform
passing
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000210972A
Other languages
Japanese (ja)
Other versions
JP2002022779A (en
Inventor
裕久 山田
修 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000210972A priority Critical patent/JP3606173B2/en
Publication of JP2002022779A publication Critical patent/JP2002022779A/en
Application granted granted Critical
Publication of JP3606173B2 publication Critical patent/JP3606173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、コンデンサを通過する皮相電力の計算方法、コンデンサを通過する皮相電力の測定方法、コンデンサ選定方法およびコンデンサを通過する皮相電力の計算プログラムを記録した記録媒体に関する。
【0002】
【従来の技術】
従来より、コンデンサは、スイッチング電源のスナバ回路やカラーテレビの水平共振回路のように正弦波以外の任意の周期性パルス電圧が加わる電気回路に使用されている。この場合、誘電損による自己発熱に起因するコンデンサの故障(寿命の短命化や熱暴走による破壊など)を防止するため、コンデンサの許容電力を規定して、発熱を許容値以下にする必要がある。通常、許容電力には、測定の容易な皮相電力が用いられる。皮相電力は、(コンデンサに加わる電圧の実効値)×(コンデンサに流れる電流の実効値)で求まり、コンデンサに加わる電圧の波形が正弦波の場合には、比較的簡単に測定することができる。
【0003】
しかしながら、正弦波以外の任意の周期性パルス電圧がコンデンサに加わる場合には、コンデンサに加わる電圧の実効値やコンデンサに流れる電流の実効値を測定することが困難である。
【0004】
このため、従来は、実際の回路にコンデンサを実装して該コンデンサの自己発熱温度を測定し、この発熱温度と等しくなる正弦波の電圧および電流から皮相電力を求めていた。
【0005】
【発明が解決しようとする課題】
しかし、コンデンサの自己発熱温度から皮相電力を求める従来の方法には、以下に挙げる不具合があった。
【0006】
(1)被測定コンデンサ以外の電子部品の発熱や測定用熱電対を通しての放熱などの測定環境が大きく影響し、正確にコンデンサの自己発熱温度を測定することが困難である。特に、近年はチップ積層セラミックコンデンサに代表される小型のコンデンサが増えており、測定の難易度が高まっている。
(2)回路の設計変更などで電圧波形が変わった場合には、再度、測定し直す必要がある。
(3)コンデンサの自己発熱温度測定作業そのものが煩雑である。
【0007】
そこで、本発明の目的は、コンデンサの自己発熱温度を測定しなくても、コンデンサを通過する皮相電力を求めることができるコンデンサに関する皮相電力の計算方法、コンデンサを通過する皮相電力の測定方法、コンデンサ選定方法およびコンデンサを通過する皮相電力の計算プログラムを記録した記録媒体を提供することにある。
【0008】
【課題を解決するための手段】
以上の目的を達成するため、本発明に係るコンデンサに関する皮相電力の計算方法は、コンデンサ両端に加わる周期性パルス電圧の波形をフーリエ展開し、各高調波毎にコンデンサの静電容量および誘電正接を用いて皮相電力を求め、該皮相電力の総和からコンデンサを通過する皮相電力を算出することを特徴とする。
【0009】
また、本発明に係るコンデンサを通過する皮相電力の測定方法は、周期性パルス電圧をコンデンサに印加して、該コンデンサ両端に加わる周期性パルス電圧の波形を測定し、測定した周期性パルス電圧の波形から、前述の特徴を有するコンデンサに関する皮相電力の計算方法を用いてコンデンサを通過する皮相電力を算出することを特徴とする。
【0010】
また、本発明に係るコンデンサ選定方法は、コンデンサ両端に加わる周期性パルス電圧の波形をフーリエ展開し、各高調波毎にコンデンサの静電容量および誘電正接を用いて皮相電力を求め、該皮相電力の総和からコンデンサを通過する皮相電力を算出し、該皮相電力に基づいてコンデンサの使用可否判定をすることを特徴とする。
【0011】
さらに、また、本発明に係るコンデンサに関する皮相電力の計算プログラムを記録した記録媒体は、コンデンサの品名とコンデンサ両端に加わる周期性パルス電圧の波形とが入力されたときに、周期性パルス電圧の波形をフーリエ展開し、各高調波毎にコンデンサの静電容量および誘電正接を用いて皮相電力を求め、該皮相電力の総和からコンデンサを通過する皮相電力を算出し、該コンデンサの使用可否判定をするプログラムが記録されていることを特徴とする。
【0012】
【作用】
以上の方法により、コンデンサの自己発熱温度の測定、あるいは、コンデンサに加わる電圧の実効値やコンデンサに流れる電流の実効値を用いた計算をしなくても、コンデンサを通過する皮相電力が得られる。
【0013】
【発明の実施の形態】
以下、本発明に係るコンデンサに関する皮相電力の計算方法、コンデンサを通過する皮相電力の測定方法、コンデンサ選定方法およびコンデンサを通過する皮相電力の計算プログラムを記録した記録媒体の実施の形態について添付の図面を参照して説明する。
【0014】
図1は、コンデンサを通過する皮相電力の測定方法およびコンデンサ選定方法の一実施形態を示すフローチャートである。図1に示すように、まず周期性パルス電圧が加わる電気回路を設定する。本実施形態では、スイッチング電源のスイッチングFETのスナバ回路を使用した。
【0015】
次に、ステップS1で、コンデンサの選択をする。本実施形態では、容量値が1000pF、定格電圧がDC500Vのセラミックコンデンサを選択した。
【0016】
次に、ステップS2で、セラミックコンデンサに加わる正弦波以外の周期性パルス電圧V(t)の波形を設定する。本実施形態では、セラミックコンデンサ両端に加わるパルス電圧V(t)の波形をオシロスコープで測定し、周波数が100kHz、peak to peak値V(p−p)が350Vの台形波を得た(図2参照)。
【0017】
次に、ステップS3で、セラミックコンデンサの両端に加わる周期性パルス電圧V(t)の波形をフーリエ展開する。つまり、一定の周期をもつ非正弦波であるパルス電圧V(t)を、以下の(1)式のように、高次の周波数成分の正弦波と余弦波の級数にフーリエ展開する。
【0018】
V(t)=V+Σ{acos(nωt)+bsin(nωt)}…(1)
ω:周期性パルス電圧V(t)の角速度
:n次の余弦波の項の振幅
:n次の正弦波の項の振幅
:直流成分
【0019】
次に、ステップS4で、セラミックコンデンサを通過する皮相電力Paを計算する。一般に、コンデンサを高周波の正弦波電圧が加わる回路に使用する場合、等価回路はコンデンサCと等価直列抵抗rの直列接続となる。そして、コンデンサの静電容量をC(F)、等価直列抵抗をr(Ω)、インピーダンスをZ(Ω)、位相角をδとすれば、高周波正弦波電圧の角速度がω(rad/s)の場合、以下の(2)式が成立する。
【0020】
【数1】

Figure 0003606173
【0021】
一方、コンデンサに加わる電圧をV(V)、コンデンサに流れる電流をI(A)とすれば、皮相電力Pa(VA)は以下の(3)式で表される。
Pa=V・I=V・(V/Z)=V/Z…(3)
【0022】
従って、(2)式と(3)式より、以下の(4)式が求まる。
【0023】
【数2】
Figure 0003606173
【0024】
ここで、(1)式において、n次の高調波成分の電圧の実効値をVrmsとすれば、余弦波の項と正弦波の項は独立であるから、以下の(5)式および(6)式が得られる。但し、(5)式および(6)式において、Tはn次高調波成分の周期であり、T=2π/nωである。
【0025】
【数3】
Figure 0003606173
【0026】
従って、n次高調波成分の皮相電力Paは、(4)式、(5)式および(6)式により、以下の(7)式で表される。ここで、Cおよびtanδはn次高調波(=nω)におけるコンデンサの静電容量とtanδ(誘電正接)である。
【0027】
【数4】
Figure 0003606173
【0028】
また、周期性パルス電圧V(t)の基本周波数をfとすると、ω=2πfであるから、(7)式に代入することにより、以下の(8)式が得られる。
【0029】
【数5】
Figure 0003606173
【0030】
一般に、コンデンサの絶縁抵抗値は、100MΩ以上と非常に高く、直流成分Vによる皮相電力は無視することができる。従って、周期性パルス電圧V(t)の皮相電力Paは、以下の(9)式のように、各高調波における皮相電力Paの総和で求められる。
【0031】
【数6】
Figure 0003606173
【0032】
本実施形態では、表1に示すように、第31次高調波(3100kHz)までの皮相電力Paの総和を計算し、約31.91(VA)を得た。但し、表1において、aはn次の余弦波の項の振幅であり、bはn次の正弦波の項の振幅である。なお、表1には、各周波数におけるセラミックコンデンサの静電容量と誘電正接の値も併せて記載している。図3は、フーリエ展開により求めた第31次高調波までの余弦波成分と正弦波成分と直流成分V=162.8Vとを合成した波形を示すグラフである。
【0033】
【表1】
Figure 0003606173
【0034】
次に、ステップS5で、得られた皮相電力Paが、該コンデンサの予め規定している許容電力範囲内か否かを判定する。範囲内であれば、このセラミックコンデンサはスイッチング電源のスイッチングFETのスナバ回路に使用可能と判断して、ステップS6に進み、このセラミックコンデンサを選定する。
【0035】
一方、許容電力範囲外であれば、このセラミックコンデンサはスナバ回路に使用不可能と判断して、ステップS7で、別の仕様のセラミックコンデンサを再選択する。そして、新たに選択したセラミックコンデンサの静電容量と誘電正接を用いて、再びステップS4で皮相電力Paを計算する。
【0036】
以上の方法により、台形波を有する周期性パルス電圧V(t)が加わるスナバ回路に用いられるセラミックコンデンサを通過する皮相電力Paを、誤差を伴う実際のスナバ回路でのコンデンサの自己発熱温度の測定、および、電圧や電流の実効値の計算をすることなく求めることができる。従って、セラミックコンデンサを通過する皮相電力Paの測定にかかる時間を大幅に短縮することができる。
【0037】
また、図4は、コンデンサに関する皮相電力を計算するためのプログラムを記録した記録媒体としてのフロッピーディスク(登録商標)10を示す。ただし、フロッピーディスク(登録商標)以外に、CD−ROMなどであってもよいことは言うまでもない。コンピュータ20は、フロッピーディスク(登録商標)10に記録されているコンデンサに関する皮相電力計算プログラムを、内蔵しているCPUに転送し、演算する。以下に、プログラムの一例を詳細に説明する。
【0038】
フロッピーディスク(登録商標)10には、複数のコンデンサの品名と、これらのコンデンサの許容電力、並びに、静電容量と誘電正接の電圧特性および周波数特性のデータと、正弦波以外の任意の周期性パルス電圧の波形を設定することができるプログラムと、図1のフローチャートに示されたコンデンサを通過する皮相電力の測定方法およびコンデンサ選定方法のプログラムなどが記録されている。
【0039】
まず、コンピュータ20のキーボードやマウス等の入力装置を使って、理論設計または実際の回路に使用しようと思っているコンデンサの品名を入力する(図1のフローチャートのステップS1)。次に、このコンデンサに加わる電圧の波形を、キーボードやマウス等の入力装置を使って設定する。電圧波形は、コンピュータ20に直接又はネットワークを通じて接続された測定器から直接取り込むことや、測定器のデータを保存したフロッピーディスク(登録商標)に代表される記録媒体を介して入力してもよい(図1のフローチャートのステップS2)。
【0040】
次に、ディスプレイの画面の「皮相電力計算開始ボタン」を押して、図1のフローチャートのステップS3のフーリエ展開およびステップS4の皮相電力を、コンピュータ20のCPUに演算させる。このとき、フロッピーディスク(登録商標)10に記録されている各コンデンサの静電容量と誘電正接の電圧特性および周波数特性のデータが、コンピュータ20のCPUに転送され、演算に利用される。
【0041】
次に、コンデンサを通過する皮相電力(計算値)と、予めフロッピーディスク(登録商標)に記録されているコンデンサの許容電力の範囲にこの皮相電力(計算値)がおさまっているか否かの判定結果とが、ディスプレイの画面に表示される(図1のフローチャートのステップS5)。
【0042】
仮に、コンデンサを通過する皮相電力(計算値)が該コンデンサの許容電力の範囲外であれば、このコンデンサは使用不可能と判断され、再び、コンピュータ20の入力装置を使って、別の仕様のコンデンサの品名を入力する(図1のフローチャートのステップS7)。そして、新たに選択したコンデンサの静電容量と誘電正接と許容電力のデータを用いて、再び皮相電力を計算し、判定する(図1のフローチャートのステップS4,S5)。
【0043】
こうして、所望の回路に使用することができるコンデンサを選定することができる(図1のフローチャートのステップS6)。
【0044】
なお、本発明は前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。特に、前記実施形態はセラミックコンデンサを例にして説明しているが、静電容量と誘電正接の電圧特性および周波数特性がわかるならば、コンデンサの種類は問わない。さらに、周期性パルス電圧は、非正弦波であればその波形は任意であり、例えば台形波、方形波、ノコギリ波などであってもよい。
【0045】
【発明の効果】
以上の説明から明らかなように、本発明によれば、正弦波以外の任意の周期性パルス波形を有する電圧が加わる電気回路に用いられるコンデンサを通過する皮相電力を、コンデンサ両端に加わる周期性パルス電圧の波形とコンデンサの静電容量および誘電正接とから算出することができる。従って、実際の回路でのコンデンサの自己発熱温度の測定、および、コンデンサに加わる電圧の実効値やコンデンサに流れる電流の実効値を用いた計算をしなくてもよくなり、コンデンサを通過する皮相電力を短時間で、精度良く、かつ安定して求めることができる。また、実際の電気回路がなくても、任意に設定した周期性パルス電圧でのコンデンサを通過する皮相電力を求めることができる。
【図面の簡単な説明】
【図1】本発明に係るコンデンサに関する皮相電力の測定方法およびコンデンサ選定方法の一実施形態を示すフローチャート。
【図2】コンデンサに加わる電圧の波形の一例を示すグラフ。
【図3】図2に示した電圧波形をフーリエ展開して、直流成分と第31次高調波までの余弦波成分と正弦波成分とを合成した波形を示すグラフ。
【図4】本発明に係るコンデンサに関する皮相電力の計算プログラムを記録した記録媒体の一実施形態を示す概略構成図。
【符号の説明】
10…フロッピーディスク(登録商標) [0001]
[Industrial application fields]
The present invention relates to a method for calculating apparent power passing through a capacitor, a method for measuring apparent power passing through a capacitor, a method for selecting a capacitor, and a recording medium recording a calculation program for apparent power passing through a capacitor.
[0002]
[Prior art]
Conventionally, a capacitor is used in an electric circuit to which an arbitrary periodic pulse voltage other than a sine wave is applied, such as a snubber circuit of a switching power supply or a horizontal resonance circuit of a color television. In this case, in order to prevent capacitor failure due to self-heating due to dielectric loss (shortening of service life or destruction due to thermal runaway), it is necessary to define the allowable power of the capacitor and to reduce the heat generation to below the allowable value. . Usually, apparent power that can be easily measured is used as the allowable power. The apparent power is obtained by (effective value of voltage applied to the capacitor) × (effective value of current flowing through the capacitor), and can be measured relatively easily when the waveform of the voltage applied to the capacitor is a sine wave.
[0003]
However, when an arbitrary periodic pulse voltage other than a sine wave is applied to the capacitor, it is difficult to measure the effective value of the voltage applied to the capacitor and the effective value of the current flowing through the capacitor.
[0004]
For this reason, conventionally, a capacitor is mounted on an actual circuit, the self-heating temperature of the capacitor is measured, and the apparent power is obtained from a sine wave voltage and current equal to the heating temperature.
[0005]
[Problems to be solved by the invention]
However, the conventional method for obtaining the apparent power from the self-heating temperature of the capacitor has the following problems.
[0006]
(1) It is difficult to accurately measure the self-heating temperature of the capacitor because the measurement environment such as heat generation of electronic parts other than the capacitor to be measured and heat dissipation through the thermocouple for measurement greatly affects. In particular, in recent years, the number of small capacitors represented by chip multilayer ceramic capacitors has increased, and the difficulty of measurement has increased.
(2) When the voltage waveform changes due to a circuit design change or the like, it is necessary to measure again.
(3) The self-heating temperature measuring operation of the capacitor itself is complicated.
[0007]
Accordingly, an object of the present invention is to calculate an apparent power related to a capacitor that can determine the apparent power passing through the capacitor without measuring the self-heating temperature of the capacitor, a method for measuring the apparent power passing through the capacitor, the capacitor It is an object of the present invention to provide a recording medium in which a selection method and a calculation program for apparent power passing through a capacitor are recorded.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the apparent power calculation method for a capacitor according to the present invention performs Fourier expansion on the waveform of the periodic pulse voltage applied to both ends of the capacitor, and calculates the capacitance and dielectric loss tangent of the capacitor for each harmonic. The apparent power is obtained, and the apparent power passing through the capacitor is calculated from the sum of the apparent power.
[0009]
In addition, the method for measuring the apparent power passing through the capacitor according to the present invention applies a periodic pulse voltage to the capacitor, measures the waveform of the periodic pulse voltage applied to both ends of the capacitor, and measures the measured periodic pulse voltage. The apparent power passing through the capacitor is calculated from the waveform using the method for calculating the apparent power related to the capacitor having the above-described characteristics.
[0010]
Further, the capacitor selection method according to the present invention Fourier-expands the waveform of the periodic pulse voltage applied to both ends of the capacitor , obtains the apparent power using the capacitance and dielectric loss tangent of the capacitor for each harmonic, and the apparent power The apparent power passing through the capacitor is calculated from the sum of the two, and the availability of the capacitor is determined based on the apparent power.
[0011]
Further, the recording medium on which the apparent power calculation program relating to the capacitor according to the present invention is recorded, when the product name of the capacitor and the waveform of the periodic pulse voltage applied to both ends of the capacitor are input, the waveform of the periodic pulse voltage The apparent power is obtained by using the capacitance and dielectric loss tangent of the capacitor for each harmonic, the apparent power passing through the capacitor is calculated from the sum of the apparent power, and the use of the capacitor is determined. The program is recorded.
[0012]
[Action]
By the above method, the apparent power passing through the capacitor can be obtained without measuring the self-heating temperature of the capacitor or calculating using the effective value of the voltage applied to the capacitor or the effective value of the current flowing through the capacitor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a recording medium in which a method for calculating apparent power relating to a capacitor according to the present invention, a method for measuring apparent power passing through a capacitor, a method for selecting a capacitor, and a program for calculating apparent power passing through a capacitor are described below. Will be described with reference to FIG.
[0014]
FIG. 1 is a flowchart showing an embodiment of a method for measuring apparent power passing through a capacitor and a method for selecting a capacitor. As shown in FIG. 1, first, an electric circuit to which a periodic pulse voltage is applied is set. In this embodiment, the snubber circuit of the switching FET of the switching power supply is used.
[0015]
Next, in step S1, a capacitor is selected. In the present embodiment, a ceramic capacitor having a capacitance value of 1000 pF and a rated voltage of DC500V was selected.
[0016]
Next, in step S2, the waveform of the periodic pulse voltage V (t) other than the sine wave applied to the ceramic capacitor is set. In this embodiment, the waveform of the pulse voltage V (t) applied across the ceramic capacitor was measured with an oscilloscope, and a trapezoidal wave having a frequency of 100 kHz and a peak to peak value V (pp) of 350 V was obtained (see FIG. 2). ).
[0017]
Next, in step S3, the waveform of the periodic pulse voltage V (t) applied to both ends of the ceramic capacitor is Fourier expanded. That is, the pulse voltage V (t), which is a non-sinusoidal wave having a constant period, is Fourier-expanded into a series of higher-order frequency component sine waves and cosine waves as shown in the following equation (1).
[0018]
V (t) = V 0 + Σ {a n cos (nωt) + b n sin (nωt)} ... (1)
omega: angular velocity a n periodic pulse voltage V (t): the amplitude of n-order cosine-wave term b n: amplitude of n-order sine-wave term V 0: DC component [0019]
Next, apparent power Pa passing through the ceramic capacitor is calculated in step S4. In general, when a capacitor is used in a circuit to which a high-frequency sine wave voltage is applied, the equivalent circuit is a series connection of a capacitor C and an equivalent series resistance r. If the capacitance of the capacitor is C (F), the equivalent series resistance is r (Ω), the impedance is Z (Ω), and the phase angle is δ, the angular velocity of the high-frequency sine wave voltage is ω (rad / s). In this case, the following equation (2) is established.
[0020]
[Expression 1]
Figure 0003606173
[0021]
On the other hand, when the voltage applied to the capacitor is V (V) and the current flowing through the capacitor is I (A), the apparent power Pa (VA) is expressed by the following equation (3).
Pa = V · I = V · (V / Z) = V 2 / Z (3)
[0022]
Therefore, the following equation (4) is obtained from the equations (2) and (3).
[0023]
[Expression 2]
Figure 0003606173
[0024]
Here, in the equation (1), if the effective value of the voltage of the n-th harmonic component is Vrms, the cosine wave term and the sine wave term are independent, so the following equations (5) and (6 ) Formula is obtained. However, in the formulas (5) and (6), T is the period of the nth-order harmonic component, and T = 2π / nω.
[0025]
[Equation 3]
Figure 0003606173
[0026]
Thus, apparent power Pa n of the n-th harmonic component, (4), (5) and Equation (6) below, is expressed by the following equation (7). Here, C n and tan δ n are the capacitance and tan δ (dielectric loss tangent) of the capacitor at the n-th harmonic (= nω).
[0027]
[Expression 4]
Figure 0003606173
[0028]
Further, assuming that the basic frequency of the periodic pulse voltage V (t) is f, ω = 2πf, and therefore, the following equation (8) is obtained by substituting into the equation (7).
[0029]
[Equation 5]
Figure 0003606173
[0030]
In general, the insulation resistance value of a capacitor is as high as 100 MΩ or more, and the apparent power due to the DC component V 0 can be ignored. Thus, apparent power Pa of the periodic pulse voltage V (t) as in the following equation (9), obtained by the sum of the apparent power Pa n at each harmonic.
[0031]
[Formula 6]
Figure 0003606173
[0032]
In the present embodiment, as shown in Table 1, the sum of the apparent power Pa n up to 31 harmonics (3100kHz) was calculated to give about 31.91 (VA). However, in Table 1, a n is the amplitude of n-order cosine-wave term, b n is the amplitude of n-order sine wave terms. Table 1 also shows the values of the capacitance and dielectric loss tangent of the ceramic capacitor at each frequency. FIG. 3 is a graph showing a waveform obtained by synthesizing a cosine wave component, a sine wave component, and a DC component V 0 = 162.8 V up to the 31st harmonic obtained by Fourier expansion.
[0033]
[Table 1]
Figure 0003606173
[0034]
Next, in step S5, it is determined whether the obtained apparent power Pa is within an allowable power range defined in advance for the capacitor. If it is within the range, it is determined that the ceramic capacitor can be used for the snubber circuit of the switching FET of the switching power supply, and the process proceeds to step S6 to select the ceramic capacitor.
[0035]
On the other hand, if it is outside the allowable power range, it is determined that the ceramic capacitor cannot be used in the snubber circuit, and a ceramic capacitor of another specification is reselected in step S7. Then, the apparent power Pa is calculated again in step S4 using the capacitance and the dielectric loss tangent of the newly selected ceramic capacitor.
[0036]
By the above method, the apparent power Pa passing through the ceramic capacitor used in the snubber circuit to which the periodic pulse voltage V (t) having a trapezoidal wave is applied is measured for the self-heating temperature of the capacitor in the actual snubber circuit with an error. And it can obtain | require, without calculating the effective value of a voltage or an electric current. Therefore, the time required for measuring the apparent power Pa passing through the ceramic capacitor can be greatly shortened.
[0037]
FIG. 4 shows a floppy disk (registered trademark) 10 as a recording medium on which a program for calculating the apparent power related to the capacitor is recorded. However, it goes without saying that a CD-ROM or the like may be used in addition to the floppy disk (registered trademark) . The computer 20 transfers an apparent power calculation program related to the capacitor recorded in the floppy disk (registered trademark) 10 to the built-in CPU and performs calculation. Below, an example of a program is demonstrated in detail.
[0038]
The floppy disk (registered trademark) 10 includes product names of a plurality of capacitors, allowable power of these capacitors, voltage and frequency characteristics data of capacitance and dielectric loss tangent, and arbitrary periodicity other than a sine wave. A program capable of setting the waveform of the pulse voltage, a program for measuring the apparent power passing through the capacitor shown in the flowchart of FIG. 1, a program for selecting the capacitor, and the like are recorded.
[0039]
First, using the input device such as a keyboard or mouse of the computer 20, the product name of the capacitor that is to be used in the theoretical design or actual circuit is input (step S1 in the flowchart of FIG. 1). Next, the waveform of the voltage applied to this capacitor is set using an input device such as a keyboard or a mouse. The voltage waveform may be directly captured from a measuring instrument connected to the computer 20 or through a network, or may be input via a recording medium represented by a floppy disk (registered trademark) that stores data of the measuring instrument ( Step S2) of the flowchart of FIG.
[0040]
Next, the “apparent power calculation start button” on the display screen is pressed to cause the CPU of the computer 20 to calculate the Fourier expansion in step S3 and the apparent power in step S4 in the flowchart of FIG. At this time, the data of the capacitance and dielectric loss tangent voltage characteristics and frequency characteristics recorded on the floppy disk (registered trademark) 10 are transferred to the CPU of the computer 20 and used for calculation.
[0041]
Next, a determination result of whether or not this apparent power (calculated value) falls within the range of the apparent power passing through the capacitor (calculated value) and the allowable power of the capacitor previously recorded on the floppy disk (registered trademark). Is displayed on the screen of the display (step S5 in the flowchart of FIG. 1).
[0042]
If the apparent power (calculated value) passing through the capacitor is out of the allowable power range of the capacitor, it is determined that the capacitor cannot be used. The product name of the capacitor is input (step S7 in the flowchart of FIG. 1). Then, the apparent power is calculated and judged again using the newly selected capacitance, dielectric loss tangent and allowable power data (steps S4 and S5 in the flowchart of FIG. 1).
[0043]
Thus, a capacitor that can be used in a desired circuit can be selected (step S6 in the flowchart of FIG. 1).
[0044]
In addition, this invention is not limited to the said embodiment, It can change variously within the range of the summary. In particular, the embodiment has been described by taking a ceramic capacitor as an example. However, the type of capacitor is not limited as long as the voltage characteristics and frequency characteristics of capacitance and dielectric loss tangent are known. Furthermore, the waveform of the periodic pulse voltage is arbitrary as long as it is a non-sinusoidal wave, and may be a trapezoidal wave, a square wave, a sawtooth wave, or the like.
[0045]
【The invention's effect】
As can be seen from the above description, according to the present invention, the apparent power passing through the capacitor used in the electric circuit to which the voltage having an arbitrary periodic pulse waveform other than the sine wave is applied is applied to the periodic pulse applied to both ends of the capacitor. It can be calculated from the voltage waveform and the capacitance and dielectric loss tangent of the capacitor. Therefore, it is not necessary to measure the self-heating temperature of the capacitor in the actual circuit, and to calculate using the effective value of the voltage applied to the capacitor and the effective value of the current flowing through the capacitor, and the apparent power passing through the capacitor. Can be obtained accurately and stably in a short time. Further, even if there is no actual electric circuit, the apparent power passing through the capacitor with an arbitrarily set periodic pulse voltage can be obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of an apparent power measurement method and capacitor selection method related to a capacitor according to the present invention.
FIG. 2 is a graph showing an example of a waveform of a voltage applied to a capacitor.
3 is a graph showing a waveform obtained by Fourier-expanding the voltage waveform shown in FIG. 2 and synthesizing a DC component, a cosine wave component up to the 31st harmonic, and a sine wave component.
FIG. 4 is a schematic configuration diagram showing an embodiment of a recording medium on which a program for calculating apparent power related to a capacitor according to the present invention is recorded.
[Explanation of symbols]
10. Floppy disk (registered trademark)

Claims (4)

コンデンサ両端に加わる周期性パルス電圧の波形をフーリエ展開し、各高調波毎に前記コンデンサの静電容量および誘電正接を用いて皮相電力を求め、該皮相電力の総和から前記コンデンサを通過する皮相電力を算出することを特徴とするコンデンサに関する皮相電力の計算方法。The waveform of the periodic pulse voltage applied to both ends of the capacitor is Fourier-expanded, the apparent power is obtained for each harmonic using the capacitance and dielectric loss tangent of the capacitor, and the apparent power passing through the capacitor from the sum of the apparent power An apparent power calculation method for a capacitor, characterized in that 周期性パルス電圧をコンデンサに印加して、該コンデンサ両端に加わる周期性パルス電圧の波形を測定し、測定した前記周期性パルス電圧の波形から、請求項記載のコンデンサに関する皮相電力の計算方法を用いて前記コンデンサを通過する皮相電力を算出することを特徴とするコンデンサを通過する皮相電力の測定方法。The periodic pulse voltage is applied to the capacitor, the waveform of the periodic pulse voltage applied to the capacitor across measures, from the waveform of the measured the periodic pulse voltage, a method of calculating the apparent power for capacitor according to claim 1, wherein A method for measuring the apparent power passing through the capacitor, wherein the apparent power passing through the capacitor is calculated. コンデンサ両端に加わる周期性パルス電圧の波形をフーリエ展開し、各高調波毎に前記コンデンサの静電容量および誘電正接を用いて皮相電力を求め、該皮相電力の総和から前記コンデンサを通過する皮相電力を算出し、該皮相電力に基づいて前記コンデンサの使用可否判定をすることを特徴とするコンデンサ選定方法。The waveform of the periodic pulse voltage applied to both ends of the capacitor is Fourier-expanded, the apparent power is obtained for each harmonic using the capacitance and dielectric loss tangent of the capacitor, and the apparent power passing through the capacitor from the sum of the apparent power And determining whether or not the capacitor can be used based on the apparent power. コンピュータによってコンデンサに関する皮相電力を計算するためのプログラムを記録した記録媒体において、
コンデンサの品名とコンデンサ両端に加わる周期性パルス電圧の波形とが入力されたときに、前記周期性パルス電圧の波形をフーリエ展開し、各高調波毎に前記コンデンサの静電容量および誘電正接を用いて皮相電力を求め、該皮相電力の総和から前記コンデンサを通過する皮相電力を算出し、該コンデンサの使用可否判定をするプログラムが記録されていることを特徴とするコンデンサに関する皮相電力の計算プログラムを記録した記録媒体。
In a recording medium recording a program for calculating the apparent power related to a capacitor by a computer,
When the product name of the capacitor and the waveform of the periodic pulse voltage applied to both ends of the capacitor are input, the waveform of the periodic pulse voltage is Fourier expanded, and the capacitance and dielectric loss tangent of the capacitor are used for each harmonic. An apparent power calculation program for a capacitor is recorded, wherein a program for calculating the apparent power passing through the capacitor is calculated from the sum of the apparent power, and a program for determining whether to use the capacitor is recorded. Recorded recording medium.
JP2000210972A 2000-07-12 2000-07-12 Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor Expired - Lifetime JP3606173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210972A JP3606173B2 (en) 2000-07-12 2000-07-12 Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210972A JP3606173B2 (en) 2000-07-12 2000-07-12 Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor

Publications (2)

Publication Number Publication Date
JP2002022779A JP2002022779A (en) 2002-01-23
JP3606173B2 true JP3606173B2 (en) 2005-01-05

Family

ID=18707159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210972A Expired - Lifetime JP3606173B2 (en) 2000-07-12 2000-07-12 Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor

Country Status (1)

Country Link
JP (1) JP3606173B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003735B2 (en) 2002-11-22 2007-11-07 株式会社村田製作所 Calculation method of active power related to capacitor, measurement method of active power consumed by capacitor, capacitor selection method, calculation device of active power related to capacitor, and recording medium recording the calculation program
CN102095940A (en) * 2010-12-14 2011-06-15 宁波电业局 Method and device for measuring dielectric loss angle
CN103091563B (en) * 2013-01-15 2015-04-22 广西电网公司电力科学研究院 Calculation method of dielectric power factors of high-voltage electrical equipment

Also Published As

Publication number Publication date
JP2002022779A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
Quine et al. A resonated coil driver for rapid scan EPR
TW201224413A (en) Temperature sensing apparatus and method using the same
JP2003028900A (en) Non-contact voltage measurement method and apparatus
US7409304B2 (en) Method of calculating effective power relating to capacitor, method of measuring effective power consumed by capacitor, capacitor selection method, calculation apparatus for calculating effective power relating to capacitor, and recording medium storing the calculation program therefor
JP3548887B2 (en) Method and apparatus for measuring insulation resistance
JP3606173B2 (en) Calculation method of apparent power related to capacitor, measurement method of apparent power passing through capacitor, capacitor selection method, and recording medium recording apparent power calculation program related to capacitor
US7184901B1 (en) Digitizing electrical measurement system
Matsumori et al. Capacitor loss analysis method for power electronics converters
JP2006194703A (en) Ac power measurement apparatus and program
Merzlyakov et al. Optimization of Experimental Parameters in TMDSC. The influence of non-linear and non-stationary thermal response
Marzetta An evaluation of the three-voltmeter method for AC power measurement
Höhne Temperature modulated differential scanning calorimetry (TMDSC) in the region of phase transitions. Part 1: theoretical considerations
JP4175704B2 (en) Circuit element measuring device
JP3281163B2 (en) Current measuring device and method
Koffman et al. Uncertainty analysis for four terminal-pair capacitance and dissipation factor characterization at 1 and 10 MHz
JPH0516531Y2 (en)
JPH11150959A (en) Method and apparatus for driving piezoelectric vibrator
JP5797056B2 (en) Equivalent circuit analysis apparatus and equivalent circuit analysis method
JP2000055953A (en) Apparatus for measuring circuit element
WO2023085057A1 (en) Measurement device and measurement method
TW201009366A (en) Crystal detecting apparatus
Li et al. Universal transducer interface: specifications and applications
JP3062506B1 (en) Impedance measuring device
Obrzut et al. Measurement of complex impedance at high AC voltages using waveforms
JPH01159987A (en) Leak current measuring method for lightening protector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3606173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term