JP3605952B2 - Transalkylation of alkyl aromatic hydrocarbons - Google Patents
Transalkylation of alkyl aromatic hydrocarbons Download PDFInfo
- Publication number
- JP3605952B2 JP3605952B2 JP20246996A JP20246996A JP3605952B2 JP 3605952 B2 JP3605952 B2 JP 3605952B2 JP 20246996 A JP20246996 A JP 20246996A JP 20246996 A JP20246996 A JP 20246996A JP 3605952 B2 JP3605952 B2 JP 3605952B2
- Authority
- JP
- Japan
- Prior art keywords
- alkyl aromatic
- aromatic hydrocarbon
- mordenite
- alumina
- xylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はアルキル芳香族炭化水素のトランスアルキル化方法に関する。特に、炭素数9以上のアルキル芳香族炭化水素を含む原料からキシレンを製造するトランスアルキル化方法に関する。
【0002】
【従来の技術】
キシレンの主な用途はパラ−キシレンであるが、近年のテレフタル酸の需要が急増しパラ−キシレンの不足が著しくなってきている。従って、パラ−キシレン原料である混合キシレンの入手が極めて需要な問題となっている。従来、混合キシレンはナフサの接触改質により生成する芳香族成分から得られるキシレンを主に利用してきた。しかし、このようにして得られるキシレンの量では需要をまかないきれなくなってきている。このため、トルエンの不均化によるベンゼン及びキシレンの製造、トルエンとトリメチルベンゼンのトランスアルキル化反応によるキシレンの製造は工業的に重要な反応になってきている。炭素数9以上(C9 + )のアルキル芳香族炭化水素例えばエチルトルエン、トリメチルベンゼン、プロピルベンゼン、ジエチルベンゼン、エチルキシレン、テトラメチルベンゼン等は燃料や溶剤に利用されているのが現状である。従って、これらC9 + のアルキル芳香族炭化水素を原料にしてトランスアルキル化反応によりキシレンを製造できれば工業的価値は大きいと言える。しかし、C9 + アルキル芳香族炭化水素を原料とすると触媒活性が低下し、キシレン収率が低くなり、また触媒寿命が短くなると言う問題があった。
【0003】
【発明が解決しようとする課題】
C9 + アルキル芳香族炭化水素を含む原料から脱アルキル化及びトランスアルキル化反応によりキシレンを効率よく製造する方法を提供するものである。
【0004】
本発明者らはC9 + アルキル芳香族炭化水素に含まれるエチルトルエンとトリメチルベンゼンに注目した。エチルトルエンを脱アルキル化反応によりトルエンにし、トルエン2分子あるいはトルエンとトリメチルベンゼンによるトランスアルキル化反応により工業的に有用なキシレンを製造できる。従来技術ではエチルトルエンをトルエンに有効に脱アルキル化出来ず、目的のキシレン収率が低いのが現状である。本発明者らはエチルトルエンをトルエンに有効に脱アルキル化すると共に、トランスアルキル化反応によりキシレン収率の高いトランスアルキル化方法を検討したが、原料C9 + アルキル芳香族炭化水素中に存在する微量成分がエチルトルエンの脱アルキル化活性及びトルエンとトリメチルベンゼンのトランスアルキル化活性を低下させキシレン収率を減少させていることがわかり、この課題を解決し本発明に到達したものである。
【0005】
【課題を解決するための手段】
本発明者らは、C9 + アルキル芳香族炭化水素に含まれている微量成分が触媒活性を低下させていると考え、微量成分について検討した。その結果、C9 + アルキル芳香族炭化水素中に存在するナフタレンが触媒活性を低下させ、キシレン収率を減少させていることがわかった。C9 + アルキル芳香族炭化水素中に存在するナフタレン量は精油所により異なるので一概には言えないが、代表的には約1重量%含まれている。従って、C9 + アルキル芳香族炭化水素はトランスアルキル化触媒に供給するに先だって蒸留によりナフタレンを除去することが重要である。C9 + アルキル芳香族炭化水素中のナフタレンは0.5重量%以下好ましくは0.3重量%以下になるように分離する必要がある。C9 + アルキル芳香族炭化水素中のナフタレンは一般に蒸留装置によって分離除去される。蒸留装置としては常圧蒸留装置或いは減圧蒸留装置いずれの装置でもよい。
【0006】
【発明の実施の形態】
本発明に用いられる固体酸触媒は水素型モルデナイトが好ましく用いられる。また、高いエチルトルエン転化率を達成すると共に、トランスアルキル化反応により高いキシレン収率を得るためには、水素型モルデナイトとアルミナ、及びレニウムの間に最適な組成を有する触媒が有効である。詳細に述べると、エチルトルエンは水素型モルデナイトによりトルエンとエチレンに脱アルキルされる。しかし、脱アルキル化反応では熱力学的平衡の制約を受けるためエチルトルエンの転化率を十分高くすることは出来ない。レニウムを高度に分散担持させたアルミナを触媒中に含有させることにより反応系に共存する水素がエチルトルエンの脱アルキル化反応で生成したエチレンをエタンに水素化し熱力学的平衡の制約によるエチルトルエン転化率の抑制がなくなり、高度な転化率を達成できる。生成したトルエンがトルエンおよびトリメチルベンゼンとトランスアルキル化してキシレン収率が向上する。また、副反応で生成する高沸点化合物がレニウムを高度に分散担持させたアルミナ上で水素化分解を受け触媒上へのコーキングを抑制し触媒の失活を防ぎ触媒寿命を延長させる。このような効果を十分発揮するためには水素型モルデナイトとアルミナ、及びレニウムの間に最適な組成が存在する。しかし、C9 + アルキル芳香族炭化水素中のナフタレンはこれらエチルトルエンの脱アルキル活性点やトランスメチル化活性点を優先的に被覆し触媒活性を低下させるものと推定される。
【0007】
本発明に用いられるゼオライトは水素型モルデナイトが好ましい。モルデナイトとしてはシリカ/アルミナモル比が15から30のモルデナイトが好ましく用いられる。シリカ/アルミナモル比が15から30のモルデナイトを得るには低シリカ/アルミナモル比のモルデナイトを酸抽出などにより脱アルミニウム処理する方法及び直接シリカ/アルミナモル比15から30のモルデナイトを合成する方法があるが、直接合成した合成モルデナイトが好ましく用いられる。
【0008】
水素型モルデナイトにするには通常、金属陽イオンを含むモルデナイトを直接に酸でイオン交換するか、アンモニウムイオンを含む水溶液でイオン交換しアンモニウム型とし、乾燥、焼成する方法が行われる。アンモニウム型から水素型にするのがより好ましい。イオン交換はゼオライトを成型する前に行ってもよいが、工業的立場で言えば成型後に行うのが好ましい。また、モルデナイトを乳酸、リンゴ酸、酒石酸、クエン酸などのカルボキシル基を含有する有機酸で処理すると触媒性能が向上するので必要に応じて行なわれる。アルミナはレニウムを高度に分散担持させるのに必須である。アルミナとしてはベーマイト、ベーマイトゲル、ジブサイト、バイアライト、ノルストランダイト、ジアスポア、無定形アルミナゲル等が知られている。いずれのアルミナでも使用できるが、好ましくはベーマイトである。アルミナは焼成過程でγ、η、δ等のアルミナになることはよく知られており、これら構造形態のアルミナも使用できる。また、触媒を成型するためバインダーとしてアルミナゾル、アルミナゲル等が用いられるが、これらアルミナもレニウム担持アルミナとして有効である。触媒中でのアルミナの量はモルデナイトが100重量部に対して、25から100重量部好ましくは40から100重量部である。アルミナの量が多すぎると触媒に占めるモルデナイト量が減少し、脱アルキル化活性、トランスアルキル化活性が低下する。一方、アルミナの量が少なすぎるとレニウムの分散性が悪くなり、エチルトルエンの脱アルキル化により生成するエチレンの水素化能が低下する。このためエチルトルエンの転化率が低くなりキシレン収率が低下する。また、触媒寿命も低下する。レニウムは金属形態で、もしくは酸化物、硫化物、セレン化物等の形態で存在し得るが、レニウムの量はいずれの場合もモルデナイトが100重量部に対して、金属換算で0.05から1.0重量部好ましくは0.05から0.07重量部である。レニウムが少なすぎるとエチルトルエンの転化率が十分でなく、一方レニウムが多すぎるとアルキル芳香族炭化水素の水素化分解が促進され好ましくない。レニウム成分として特に好ましく使用できるものは過レニウム酸、過レニウム酸アンモニウム等を挙げることができる。レニウム成分を担持する実施形態として最も好ましいのは次の方法である。モルデナイトとアルミナを均一に混合して成型し、乾燥、焼成する。次いで、モルデナイトを水素型あるいはアンモニウム型にした後、レニウムを含む水溶液で含浸する方法が好ましい。レニウムを担持した触媒は引き続き、乾燥、焼成される。アンモニウム型モルデナイトは焼成過程で水素型モルデナイトになる。好ましい焼成条件は、酸素含有雰囲気中300から650℃である。本発明に基づいて調製された触媒はC9 + アルキル芳香族炭化水素を含む原料のトランスアルキル化反応に供される。C9 + アルキル芳香族炭化水素とはエチルトルエン、トリメチルベンゼン、プロピルベンゼン、ジエチルベンゼン、エチルキシレン、テトラメチルベンゼン等を主成分とするアルキル芳香族炭化水素であり、この中で特にエチルトルエンの含有量がアルキル芳香族炭化水素原料中少なくとも5重量%好ましくは少なくとも10重量%存在していることがキシレン収率にとって重要である。供給原料としてC9 + アルキル芳香族炭化水素にトルエンを混合させて用いることも一つの実施形態である。トルエンとC9 + アルキル芳香族炭化水素との混合比率については特に制限されるものではないが、キシレン収率の関係からトルエン/C9 + アルキル芳香族炭化水素比で0から1重量比が好ましい。さらに供給原料に上記芳香族化合物以外に非芳香族炭化水素例えばパラフィン及びナフテンが含まれていてもよい。本発明の触媒を用いるアルキル芳香族炭化水素のトランスアルキル化反応には反応系に水素の共存が必須である。供給する水素は水素/アルキル芳香族炭化水素のモル比で1から10が好ましく用いられる。反応圧力は1から6MPa−G、反応温度300から550℃、WHSV(重量空間速度)0.5から10h−1で行うことが好ましい。
【0009】
【実施例】
以下に、本発明を実施例をもって説明するが、本発明は、これらによって規定されるものではない。
【0010】
(触媒の調製)
化学組成1.03Na2 O・Al2 O3 ・19.4SiO2 を有するモルデナイト粉末(モルデナイト含量90.2重量%、水分率9.2重量%)55.4グラム、ベーマイト構造(α−アルミナ・1水和物)を有するアルミナ粉末(Al2 O3 含量76.1重量%、SCFタイプ、コンデア社)19.7グラム、アルミナゾル(Al2 O3 含量10重量%、コロイダルアルミナ200、日産化学)52.0グラム、アルミナゲル粉末(Al2 O3 含量70重量%、Cataloid AP(C−10),触媒化成)6.50グラム、蒸留水12グラムを混合し、ペースト状の混合物とした。これを約1時間混練し、外径1.2mm、長さ1.0mmのヌードル状に成型した後、120℃で一晩乾燥した。乾燥後、400℃で2時間、空気雰囲気下で焼成した成型体15グラムに10wt%の塩化アンモニウム水溶液30mlを用いて80〜85℃で1時間処理した後、液を濾別し、新たに塩化アンモニウム水溶液を30ml加えて同様に処理した。この操作を4回繰り返した後、液を濾別した。次いで、蒸留水で5回水洗を繰り返した。次に、酸化レニウム(VII) (Re2 O7 )を金属レニウム換算で0.06グラムを溶解した水21グラムに4時間浸漬し、レニウムを含浸する。液を濾別した後120℃で一晩乾燥させた後、540℃で2時間空気雰囲気下で焼成し触媒Aを得た。触媒Aは絶乾重量換算でモルデナイトが100重量部に対して、49重量部のアルミナ及び0.3重量部のレニウムであった。
【0011】
【実施例1〜4、比較例1】
触媒Aを用いてC9 + アルキル芳香族炭化水素を含むアルキル芳香族炭化水素中のナフタレン濃度によるトランスアルキル化反応性能への影響を調べた結果を表1に示す。ナフタレン濃度が高くなるに従って、エチルトルエン転化率、トリメチルベンゼン転化率、キシレン収率が低下することがわかる。ナフタレン濃度は0.5重量%以下にすることが必要である。
【0012】
【表1】
【0013】
【発明の効果】
本発明によれば、C9 + アルキル芳香族炭化水素を含むアルキル芳香族炭化水素からトランスアルキル化反応によりキシレンを製造するに際し、原料アルキル芳香族炭化水素中のナフタレン濃度を低減することによりキシレン収率を向上させることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for transalkylating an alkyl aromatic hydrocarbon. In particular, the present invention relates to a transalkylation method for producing xylene from a raw material containing an alkyl aromatic hydrocarbon having 9 or more carbon atoms.
[0002]
[Prior art]
The main use of xylene is para-xylene, but the demand for terephthalic acid has increased rapidly in recent years, and the shortage of para-xylene has become remarkable. Therefore, obtaining mixed xylene, which is a para-xylene raw material, has become an extremely demanding problem. Conventionally, mixed xylene has mainly used xylene obtained from an aromatic component generated by catalytic reforming of naphtha. However, the amount of xylene obtained in this way has become unable to meet demand. For this reason, the production of benzene and xylene by disproportionation of toluene and the production of xylene by the transalkylation reaction of toluene and trimethylbenzene have become industrially important reactions. At present, alkyl aromatic hydrocarbons having 9 or more carbon atoms (C9 + ), such as ethyltoluene, trimethylbenzene, propylbenzene, diethylbenzene, ethylxylene, and tetramethylbenzene, are currently used as fuels and solvents. Therefore, it can be said that industrial value is great if xylene can be produced by transalkylation reaction using these C9 + alkyl aromatic hydrocarbons as raw materials. However, when C9 + alkyl aromatic hydrocarbon is used as a raw material, there is a problem that the catalytic activity is reduced, the xylene yield is reduced, and the catalyst life is shortened.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing xylene from a raw material containing C9 + alkyl aromatic hydrocarbon by a dealkylation and transalkylation reaction.
[0004]
The present inventors have focused on ethyltoluene and trimethylbenzene contained in C9 + alkyl aromatic hydrocarbons. Ethyl toluene is converted to toluene by a dealkylation reaction, and industrially useful xylene can be produced by a transalkylation reaction with two molecules of toluene or toluene and trimethylbenzene. In the prior art, ethyl toluene cannot be effectively dealkylated to toluene, and the target xylene yield is low at present. The present inventors together effectively dealkylation of ethyltoluene into toluene, was examined high transalkylation method of xylene yield by transalkylation reaction, present in the feed C9 + alkylaromatic hydrocarbons trace It was found that the components reduced the dealkylation activity of ethyltoluene and the transalkylation activity of toluene and trimethylbenzene, thereby reducing the xylene yield, and solved this problem and reached the present invention.
[0005]
[Means for Solving the Problems]
The present inventors considered that a trace component contained in the C9 + alkyl aromatic hydrocarbon reduced the catalytic activity, and examined the trace component. As a result, it was found that the naphthalene present in the C9 + alkyl aromatic hydrocarbon reduced the catalytic activity and reduced the xylene yield. The amount of naphthalene present in the C9 + alkyl aromatic hydrocarbon varies depending on the refinery and cannot be specified unconditionally, but typically contains about 1% by weight. Therefore, it is important to remove the naphthalene by distillation of the C9 + alkyl aromatic hydrocarbon prior to feeding the transalkylation catalyst. Naphthalene in the C9 + alkyl aromatic hydrocarbon must be separated so as to be 0.5% by weight or less, preferably 0.3% by weight or less. Naphthalene in C9 + alkyl aromatic hydrocarbons is generally separated and removed by a distillation apparatus. The distillation apparatus may be either an atmospheric distillation apparatus or a vacuum distillation apparatus.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hydrogen mordenite is preferably used as the solid acid catalyst used in the present invention. Further, in order to achieve a high conversion of ethyltoluene and to obtain a high xylene yield by a transalkylation reaction, a catalyst having an optimal composition between hydrogen-type mordenite, alumina and rhenium is effective. Specifically, ethyltoluene is dealkylated to toluene and ethylene by hydrogenated mordenite. However, the conversion of ethyltoluene cannot be sufficiently increased in the dealkylation reaction due to the restriction of thermodynamic equilibrium. Hydrogen coexisting in the reaction system is converted to ethylethane by dealkylation of ethyltoluene to ethane, and the conversion of ethyltoluene is restricted by thermodynamic equilibrium by incorporating alumina with highly dispersed and supported rhenium in the catalyst. There is no suppression of the rate, and a high conversion rate can be achieved. The produced toluene is transalkylated with toluene and trimethylbenzene to improve the xylene yield. In addition, the high-boiling compound generated by the side reaction undergoes hydrogenolysis on alumina in which rhenium is highly dispersed and supported, thereby suppressing coking on the catalyst, preventing deactivation of the catalyst and extending the catalyst life. In order to sufficiently exhibit such effects, there is an optimum composition between the hydrogen-type mordenite, alumina, and rhenium. However, it is presumed that naphthalene in the C9 + alkyl aromatic hydrocarbon preferentially coats the dealkylation active site and transmethylation active site of these ethyltoluenes to lower the catalytic activity.
[0007]
The zeolite used in the present invention is preferably a hydrogen type mordenite. As the mordenite, a mordenite having a silica / alumina molar ratio of 15 to 30 is preferably used. In order to obtain a mordenite having a silica / alumina molar ratio of 15 to 30, there are a method of subjecting a mordenite having a low silica / alumina molar ratio to dealumination treatment by acid extraction or the like, and a method of directly synthesizing a mordenite having a silica / alumina molar ratio of 15 to 30. Synthetic mordenite directly synthesized is preferably used.
[0008]
In order to obtain a hydrogen-type mordenite, a method is usually employed in which mordenite containing a metal cation is directly ion-exchanged with an acid or ion-exchanged with an aqueous solution containing ammonium ions to form ammonium-type mordenite, followed by drying and firing. It is more preferable to change from an ammonium type to a hydrogen type. The ion exchange may be performed before molding the zeolite, but is preferably performed after the molding from an industrial standpoint. Further, if mordenite is treated with an organic acid containing a carboxyl group such as lactic acid, malic acid, tartaric acid, citric acid, etc., the catalytic performance is improved. Alumina is essential for highly dispersing and supporting rhenium. As the alumina, boehmite, boehmite gel, gibbsite, vialite, norstrandite, diaspore, amorphous alumina gel and the like are known. Although any alumina can be used, boehmite is preferred. It is well known that alumina becomes γ, η, δ, etc. in the firing process, and alumina having these structural forms can also be used. Alumina sol, alumina gel and the like are used as a binder for molding the catalyst, and these aluminas are also effective as rhenium-supported alumina. The amount of alumina in the catalyst is 25 to 100 parts by weight, preferably 40 to 100 parts by weight, based on 100 parts by weight of mordenite. If the amount of alumina is too large, the amount of mordenite in the catalyst decreases, and the dealkylation activity and transalkylation activity decrease. On the other hand, if the amount of alumina is too small, the dispersibility of rhenium becomes poor, and the hydrogenation ability of ethylene generated by the dealkylation of ethyltoluene is reduced. For this reason, the conversion of ethyltoluene decreases, and the xylene yield decreases. Also, the catalyst life is reduced. Rhenium can be present in metal form or in the form of oxides, sulfides, selenides and the like, but the amount of rhenium is in any case from 0.05 to 1 in terms of metal per 100 parts by weight of mordenite. 0 parts by weight, preferably 0.05 to 0.07 parts by weight. If the amount of rhenium is too small, the conversion of ethyltoluene is not sufficient. On the other hand, if the amount of rhenium is too large, hydrocracking of the alkyl aromatic hydrocarbon is promoted, which is not preferable. Particularly preferred examples of the rhenium component include perrhenic acid and ammonium perrhenate. The most preferred embodiment for supporting a rhenium component is the following method. Mordenite and alumina are uniformly mixed, molded, dried and fired. Next, a method is preferred in which the mordenite is converted into a hydrogen type or an ammonium type and then impregnated with an aqueous solution containing rhenium. The catalyst supporting rhenium is subsequently dried and calcined. The ammonium mordenite becomes hydrogen mordenite during the firing process. Preferred firing conditions are 300 to 650 ° C. in an oxygen-containing atmosphere. The catalyst prepared according to the present invention is subjected to a transalkylation reaction of a raw material containing a C9 + alkyl aromatic hydrocarbon. C9 + alkyl aromatic hydrocarbons are alkyl aromatic hydrocarbons containing ethyltoluene, trimethylbenzene, propylbenzene, diethylbenzene, ethylxylene, tetramethylbenzene, etc. as a main component, and among them, the content of ethyltoluene is particularly high. It is important for the xylene yield that it be present in the alkyl aromatic hydrocarbon feed at least 5% by weight, preferably at least 10% by weight. One embodiment is to use a mixture of C9 + alkyl aromatic hydrocarbon and toluene as a feedstock. The mixing ratio of toluene and C9 + alkyl aromatic hydrocarbon is not particularly limited, but a toluene / C9 + alkyl aromatic hydrocarbon ratio of 0 to 1 is preferable from the viewpoint of xylene yield. Further, the feedstock may contain non-aromatic hydrocarbons such as paraffin and naphthene in addition to the above aromatic compounds. In the transalkylation reaction of an alkyl aromatic hydrocarbon using the catalyst of the present invention, the coexistence of hydrogen in the reaction system is essential. Hydrogen to be supplied is preferably used in a molar ratio of hydrogen / alkyl aromatic hydrocarbon of 1 to 10. The reaction is preferably performed at a reaction pressure of 1 to 6 MPa-G, a reaction temperature of 300 to 550 ° C., and a WHSV (weight hourly space velocity) of 0.5 to 10 h −1 .
[0009]
【Example】
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited by these Examples.
[0010]
(Preparation of catalyst)
Chemical composition 1.03Na 2 O · Al 2 O 3 · 19.4SiO 2 mordenite powder having (90.2 wt% mordenite content, water content 9.2 wt%) 55.4 g, boehmite structure (alpha-alumina 19.7 g of alumina powder (monohydrate) (Al 2 O 3 content: 76.1% by weight, SCF type, Condea) 19.7 g, alumina sol (Al 2 O 3 content: 10% by weight, colloidal alumina 200, Nissan Chemical) 52.0 g, alumina gel powder (Al 2 O 3 content 70% by weight, Cataloid AP (C-10), catalytic conversion) 6.50 g, and distilled water 12 g were mixed to obtain a paste-like mixture. This was kneaded for about 1 hour, molded into a noodle shape having an outer diameter of 1.2 mm and a length of 1.0 mm, and dried at 120 ° C. overnight. After drying, 15 grams of a molded body fired in an air atmosphere at 400 ° C. for 2 hours was treated with 30 ml of a 10 wt% ammonium chloride aqueous solution at 80 to 85 ° C. for 1 hour, and then the liquid was filtered off and freshly chlorided. The same treatment was carried out by adding 30 ml of an aqueous ammonium solution. After this operation was repeated four times, the liquid was separated by filtration. Next, washing with distilled water was repeated 5 times. Next, rhenium (VII) oxide (Re 2 O 7 ) is immersed in 21 g of water in which 0.06 g of metal rhenium is dissolved for 4 hours to impregnate rhenium. The solution was filtered off, dried at 120 ° C. overnight, and calcined at 540 ° C. for 2 hours in an air atmosphere to obtain a catalyst A. Catalyst A was 49 parts by weight of alumina and 0.3 parts by weight of rhenium based on 100 parts by weight of mordenite in terms of absolute dry weight.
[0011]
Examples 1-4, Comparative Example 1
Table 1 shows the results of examining the effect of the concentration of naphthalene on the transalkylation reaction performance in the alkyl aromatic hydrocarbons containing C9 + alkyl aromatic hydrocarbons using the catalyst A. It can be seen that as the concentration of naphthalene increases, the conversion of ethyltoluene, the conversion of trimethylbenzene, and the yield of xylene decrease. The naphthalene concentration needs to be 0.5% by weight or less.
[0012]
[Table 1]
[0013]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when producing xylene by transalkylation reaction from alkyl aromatic hydrocarbons containing C9 + alkyl aromatic hydrocarbon, the xylene yield is reduced by reducing the concentration of naphthalene in the starting alkyl aromatic hydrocarbon. Can be improved.
Claims (6)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20246996A JP3605952B2 (en) | 1996-07-31 | 1996-07-31 | Transalkylation of alkyl aromatic hydrocarbons |
US08/880,902 US6060417A (en) | 1996-06-28 | 1997-06-23 | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene |
TW086108959A TW380057B (en) | 1996-06-28 | 1997-06-26 | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene |
SG1997002298A SG67397A1 (en) | 1996-06-28 | 1997-06-27 | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene |
CA002209065A CA2209065C (en) | 1996-06-28 | 1997-06-27 | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene |
KR1019970028535A KR100437201B1 (en) | 1996-06-28 | 1997-06-28 | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene |
DE69708520T DE69708520T2 (en) | 1996-06-28 | 1997-06-30 | Catalyst composition for the transalkylation of alkyl aromatic hydrocarbons and process for the production of xylene |
ES97304721T ES2169322T3 (en) | 1996-06-28 | 1997-06-30 | CATALYTIC COMPOSITION FOR THE TRANSALQUILATION OF ALQUILAROMATIC HYDROCARBONS AND XYLENE PRODUCTION PROCEDURE. |
EP97304721A EP0816311B1 (en) | 1996-06-28 | 1997-06-30 | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene |
PT97304721T PT816311E (en) | 1996-06-28 | 1997-06-30 | A CATALYST COMPOSITION FOR TRANSLATION OF ALKYARAROMATIC HYDROCARBONS AND PROCESS FOR THE PRODUCTION OF XYLENE |
US09/487,538 US6359184B1 (en) | 1996-06-28 | 2000-01-19 | Process for production of xylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20246996A JP3605952B2 (en) | 1996-07-31 | 1996-07-31 | Transalkylation of alkyl aromatic hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1045640A JPH1045640A (en) | 1998-02-17 |
JP3605952B2 true JP3605952B2 (en) | 2004-12-22 |
Family
ID=16458047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20246996A Expired - Lifetime JP3605952B2 (en) | 1996-06-28 | 1996-07-31 | Transalkylation of alkyl aromatic hydrocarbons |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3605952B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6972348B2 (en) * | 2004-03-24 | 2005-12-06 | Uop Llc | Catalytic conversion of polycyclic aromatics into xylenes |
US20070049780A1 (en) * | 2005-08-30 | 2007-03-01 | Schwartz Hilary E | Methods of making xylene isomers |
US7456124B2 (en) * | 2006-09-12 | 2008-11-25 | Uop Llc | Rhenium-containing transalkylation catalysts and processes for making the same |
US10894755B2 (en) * | 2018-10-15 | 2021-01-19 | Saudi Arabian Oil Company | Integrated process for optimum production of para-xylene |
-
1996
- 1996-07-31 JP JP20246996A patent/JP3605952B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1045640A (en) | 1998-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0816311B1 (en) | Catalyst composition for transalkylation of alkylaromatic hydrocarbons and process for production of xylene | |
US7091390B2 (en) | Hydrocarbon conversion processes using catalysts comprising UZM-8 and UZM-8HS compositions | |
JPH07121362B2 (en) | Xylene isomerization catalyst and isomerization method | |
JP2002533211A (en) | Catalyst for disproportionation / transalkylation of aromatic hydrocarbon and method for producing the same | |
JPH0816074B2 (en) | Xylene isomerization method | |
RU2741547C2 (en) | Obtaining a zsm-5 based catalyst; use in process of ethylbenzene dealkylation | |
US6040490A (en) | Process for producing aromatic compounds by dealkylation, transalkylation, or disproportionation | |
KR101895204B1 (en) | Isomerisation catalyst preparation process | |
EP0109962B2 (en) | Conversion of xylenes containing ethylbenzene | |
JP3605952B2 (en) | Transalkylation of alkyl aromatic hydrocarbons | |
KR101124005B1 (en) | Method of converting ethylbenzene and process for producing p-xylene | |
US7199070B2 (en) | Conversion catalyst for ethylbenzene containing xylenes and process for converting ethylbenzene containing xylenes by using catalyst | |
CN112299433A (en) | Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application | |
JP3302553B2 (en) | Catalyst for converting heavy aromatics to light aromatics and method for converting the same | |
JP3849169B2 (en) | Method for producing xylene | |
JP3817783B2 (en) | Catalyst composition for transalkylation reaction of alkyl aromatic hydrocarbon and transalkylation method | |
JP2005224793A5 (en) | ||
JP3820685B2 (en) | Catalyst composition for transalkylation reaction of alkyl aromatic hydrocarbon and method for producing xylene | |
JP3617416B2 (en) | Aromatic hydrocarbon conversion process | |
JP3785815B2 (en) | Aromatic hydrocarbon conversion process | |
JP2015051383A (en) | Catalyst and method for dealkylating ethylbenzene and isomerizing xylene | |
KR100353202B1 (en) | Method for converting aromatic hydrocarbons | |
CN108264445B (en) | Method for toluene disproportionation and/or alkyl transfer reaction | |
JPH09313945A (en) | Catalyst for isomerization of ethylbenzene and production thereof | |
KR100285895B1 (en) | Catalyst for converting heavy aromatic hydrocarbon to light aromatic hydrocarbon and its conversion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071015 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |