JP3605157B2 - Dust collection member - Google Patents

Dust collection member Download PDF

Info

Publication number
JP3605157B2
JP3605157B2 JP28613794A JP28613794A JP3605157B2 JP 3605157 B2 JP3605157 B2 JP 3605157B2 JP 28613794 A JP28613794 A JP 28613794A JP 28613794 A JP28613794 A JP 28613794A JP 3605157 B2 JP3605157 B2 JP 3605157B2
Authority
JP
Japan
Prior art keywords
oil
filter
fluid
dust collecting
collecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28613794A
Other languages
Japanese (ja)
Other versions
JPH08117537A (en
Inventor
正博 今西
武久 木ノ山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duskin Co Ltd
Original Assignee
Duskin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duskin Co Ltd filed Critical Duskin Co Ltd
Priority to JP28613794A priority Critical patent/JP3605157B2/en
Publication of JPH08117537A publication Critical patent/JPH08117537A/en
Application granted granted Critical
Publication of JP3605157B2 publication Critical patent/JP3605157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は粉塵或いはガス流中のカーボン等の除去に利用可能な集塵部材に係り、特に微細な油粒子(油ミスト)及び油蒸気を含むガス流からこれら油ミストおよび油蒸気を除去するのに効果的な集塵部材に関する。
【0002】
【従来の技術】
例えばホテルや飲食店の厨房においては調理過程で油が微細粒子(ミスト)状或いは蒸気となって大量に発生する。このような油ミスト或いは油蒸気を含有する気体(以下「油含有気体」と称する)をそのまま外部に排出することは大気汚染の一因となり、また排気ダクト内に付着した油が発火して火災を生じる危険性もある。このため油含有気体は外部に排出される前に含有する油分を除去する必要があって、各種の装置が提案されかつ現に用いられている。
【0003】
【発明が解決しようとする課題】
この種の従来型油除去装置のうち、例えば油蒸気を除去するものとしては活性炭等の吸着材が充填されたフィルタを用いたものが提供されている。この装置は比較的高い油蒸気除去効率を有するものの、油ミストの除去率はかなり低いため油ミストが共存する気体には不向きである。
【0004】
一方油ミストの除去は主として慣性衝突法が採用されている。この方法は特に油粒子が大きい場合には効果的であるが、粒子が微細な場合には捕集効率が低下する問題がある。慣性衝突を効果的に行う手段として油含有気体の通過方向に対して一定の角度(例えば30〜60度)の傾斜角をもった開口が多数形成された網目スクリーンが配置され、かつこの網目スクリーンの開口相互が90度ずつ面方向に向けて角度変位するよう複数の網目スクリーンが配置された構成が提案されている(特願昭58−27672号)。
【0005】
上記提案の構成によれば、開口相互が90度ずつ変位するため、各スクリーンの開口を通過する油含有気体は旋回流を形成し、慣性衝突方式による効果的な塵埃或いは油分の捕集が期待される。しかしながらこのような捕集効果を発揮するためには前記網目スクリーンを10枚程度、場合によっては20枚程度積層配置する必要があり、これらスクリーンを通過する流体の圧力損失は多大なものとなり、送風機の容量を大きくする等装置のランニングコストの上昇が懸念される。また当該装置も含め慣性衝突方式では、いかに捕集効率を高めても、搬送流体に比較して質量の差の少ない油蒸気を効率的に分離捕集することは不可能である。
【0006】
【課題を解決するための手段】
本発明は、多数の開口が形成された多孔スクリーンの複数枚を有する集塵用の部材であって、多孔スクリーンの各開口は流体の流れ方向に対して所定の角度で斜めに形成され、かつ隣接する各多孔スクリーンはその対向面が表裏を成すよう180度反転して配置されることにより全体として多孔スクリーン群を形成し、当該多孔スクリーン群の背後には濾過式のフィルタが配置され、この濾過式フィルタは、フィルタ正面の領域において、流体の発生源に近い部分の領域の圧力損失が他の領域よりも低減されるよう構成されていることを特徴とする集塵部材である。
【0007】
【作用】
最初の多孔スクリーンに流入した流体は、各開口の傾斜角に対応した角度で例えば下降流となり、かつ表裏が逆に配置された次の多孔スクリーンにおいては前記下降流が反転して開口の傾斜角に沿った上昇流となる。このように各多孔スクリーンを通過する度に流体は下降・上昇を繰り返し、含有する捕集対象物、例えば油ミストの殆どが慣性衝突により捕集され、かつ油蒸気の一部も凝集して捕集される。また多孔スクリーン群を出た流体は微細な透孔が形成された濾過式フィルタを通過することにより油蒸気等、慣性衝突では捕集が困難なものが捕集される。
【0008】
更に、この濾過式フィルタはその正面の領域において流体の発生源に近い部分の領域の圧力損失が他の領域よりも低減されるよう構成されているため、流体の発生源に近い部分から流体を吸引するため、流体が分散する前にフィルタに吸引されることにより流体中の油蒸気等を効率的に捕集する。
【0009】
【実施例】
以下本発明の一実施例を図面を参考に具体的に説明する。
【0010】
図1は本発明に使用される多孔スクリーンの一例を示す図であり、図2はこの多孔スクリーンを用いた集塵部材の構成例を示す。
【0011】
先ず図1を用いて多孔スクリーンの構成を説明する。矢印1は多孔スクリーン全体を示し、この多孔スクリーン1は例えばSUS304系のステンレス、アルミニウムまたはニッケル等の金属材料により形成されている。但し金属材料で形成されることは多孔スクリーン形成の必須の要件ではなく、これら金属材料以外に、例えばプラスッチクス或いはセラミックス等により形成することも可能であるが、以下金属材料により形成される場合を例に説明する。
【0012】
2は開口であり、その名称の如く多孔スクリーン1は多数の開口2が連設されることにより形成される。例えばその形成方法としては金属板に多数の切り口(スリット)を予め形成し、かつこの金属板を所定の方向に引っ張ることにより切り口部分を開いて開口とする構成、即ちエキスパンドメタルと称される形成方法等が用いられる。各開口2は油含有気体Gの流れ方向に対して所定の角度αを以て斜めに開口している。この角度αは油含有気体Gのが開口内に流入する際に含有する油分を慣性により分離し、かつその流れが乱流とならずほぼ層流を維持する程度の角度が効果的である。この様な点から発明者らが試験をした結果、前記αは25度乃至70度の間が適当であるとの結論に達した。
【0013】
図2は図1に示される多孔スクリーン1を用いた集塵部材の構成例を示す。1aは図1に示す多孔スクリーン1を図1の配置状態と同じ状態、即ち各開口2が角度αを以て斜め上に開口している状態で配置されたものを、また1bはこの多孔スクリーンを180度反転させて、即ち裏返して配置されたものを示す。従って多孔スクリーン1bの開口2は角度αを以て下向きとなるので、多孔スクリーン1bの開口において、油含有気体Gに対する開口角度は以後−αで示す事とする。また以後の説明に誤解が生じないようにするため、多孔スクリーン1aの開口2は2a、同1bの開口2は2bとする。なお図示の構成では多孔スクリーン1は2枚のみ配置されているが、3枚以上配置することももとより可能である。この場合は隣接する多孔スクリーン1は相互に180度反転させて配置される。
【0014】
次に符号3はこれら各多孔スクリーン1の背後に配置された濾過集塵方式のフィルタ(以下単に「フィルタ」と称する)である。このフィルタ3は前記多孔スクリーン1a、1bで捕集できなかった油ミストの微細粒子や油蒸気を濾過方式で捕集するものである。スクリーン3の構成材料としてはセラミックスの多孔体或いは金属フォームと通称される金属(例えばニッケル系金属)材料からなる多孔質材が有効である。この金属フォーム又はセラミックス多孔体であれば付着物を除去することにより多数回の再使用が可能であるため効果的である。但し多孔スクリーン部分で大半の油分が除去されるためフィルタ3に付着する油の量はさほど多くはない。
【0015】
以上の構成の集塵部材において、油含有気体Gはフィルタ3の下流側に配置された誘引型の送風機(IDF/図示せず)により吸引され第1の多孔スクリーン1aに向かう(図2参照)。この場合、第1の多孔スクリーン1aに於けるの油含有気体Gの流入速度は0.5〜2.0m/sec程度となるよう前記IDFが運転される。第1の多孔スクリーン1aに至った油含有気体Gは各開口1aが所定の角度αを以て斜めに開口しているため、開口壁面に衝突し含有する油ミストを開口壁面に付着させながら下降流G1を形成する。なお含有する油蒸気もこの衝突により一部凝結し前記ミストと共に付着し、付着した油は自重により多孔スクリーンに沿って流下し、図示しない油溜に捕集される。
【0016】
一方第1の多孔スクリーン1bを出た油含有気体Gは次に−αを以て開口する第2の多孔スクリーン1bの開口2bに流入し、前記下降流G1は一転して上昇流G2となる。この反転の際、前記第1の多孔スクリーン1bにおいて捕集されなかった油ミストの多くが慣性により振り分け除去される(図中の破線による矢印で示す)。更に上昇流G2に転じた油含有気体Gは前記第1の多孔スクリーン1aにおけると同様の慣性衝突方式により更に油ミストが除去されると共に油蒸気は開口壁面に凝集し除去される。油含有気体Gは各多孔スクリーン1が180度反転して配置されているため上昇、下降を繰り返しその間に衝突による油捕集、油蒸気の凝集及び流体反転時の慣性による油除去を繰り返す。この様に油含有気体Gは隣接する各多孔スクリーンの間で急激に流路を変更するため一つの多孔スクリーンに於ける油分の除去効率が高い。従って多孔スクリーンの配置枚数を少なくして、しかも効率のよい油分の除去が可能となり、装置全体としての圧力損失を大幅に低減できる。よって後述するフィルタ3による捕集も含め、油分捕集率90パーセントを実現するために必要な多孔スクリーンの設置枚数は2〜3枚と極めて僅かである。因みに従来装置では捕集効率を90パーセントとすること自体が困難であり、仮に達成可能としてもスクリーンの設置個数は10枚以上となることが予想され、圧力損失増大による送風機の大容量化等装置のランニングコストもかなり増加する。
【0017】
上述の如く各多孔スクリーン1a、1bにおいて油含有気体Gに含まれる油分の殆どは除去されるが、油ミスト中の微細な油粒子及び油蒸気の凝縮による同様の微細油粒子の一部は第2の多孔スクリーン1bを通過してしまう。濾過式のフィルタであるフィルタ3はこのような粒子を濾過捕集するために配置され、ここにおいて残りの油分の殆どが除去される。なお、このフィルタ部分においても当然のことながら小孔部分以外に衝突した油蒸気は凝集し捕集される。
【0018】
図3はは集塵部材正面に対する圧力損失分布を変化させて集塵部材全体としての油含有気体の吸引効率を高めるようにした構成が示されている
【0019】
この構成において、フィルタ3は下部に向かってその断面の厚さが少なくなるよう形成されることによりフィルタ3の圧力損失の分布が変化するよう構成されている。より具体的にはフィルタ3の下方に向かって気体の通過時の圧力損失が低下するよう構成されている。これにより前記第1及び第2の多孔スクリーン1a、1bも含めた集塵部材全体が、その正面部部において部材の下方ほど流体(気体)通過時の圧力損失が低下するように構成されることになる。
【0020】
以上の構成とすることにより集塵部材は、当該集塵部材の上下方向において、下に向かうほど流体の吸引量が多くなるという機能的な特性を有することになる。このため例えば集塵部材の下側から油含有気体Gが上昇するような状態において、当該油含有気体Gは集塵部材の位置に上昇するとその下方部分から直ちに吸引されるため、上昇してきた油含有気体Gは分散する前に効率的に集塵部材に吸引される。なお図示の構成ではフィルタ3の厚さを変えることにより圧力損失分布に変化を与えたが、これ以外にも、例えばフィルタ3の厚さは均一の状態で、かつフィルタ平面における開口比率の分布を変化させることにより、或いは前記断面厚さとこの開口比率の分布の両方を変化させることにより圧力損失の分布に変化を与えることも当然可能である。
【0021】
次に図4の(A)および(B)は多孔スクリーン1における開口2の配置状態を模式的に示す。先ず(A)の構成では各開口2はそれぞれ開口正面が略菱形に形成されることにより開口相互は菱形の各辺を共通の壁面とすることによってそれぞれが斜めに連設した構成となっている。一方(B)の構成は各開口2は水平方向および垂直方向の何れに対しても一列に整列するよう配置構成されている。この両構成において、非液体の微細物、即ち微細な砂粒や繊維くず等固体の塵埃を除去する場合には(A)、(B)何れの構成であっても構わない。一方油含有気体G等、油ミストや油蒸気等除去対象が液体或いは液体が変化した物質である場合には(A)の構成の方が望ましい。即ち(A)の構成では各開口2がそれぞれ斜めに位置することにより、これらの開口壁面に付着した油分はこの共通壁面端部を矢印の如く斜めに流下することが可能となり、油分の捕集が(B)の構成よりも容易となる。
【0022】
図5はさらに別の構成例を示す。
【0023】
図中符号4は本実施例に用いられるフィルタを示し、その構成及び形成材料は前記各構成例と同様のものである。図示のフィルタ4は多孔スクリーン1bの開口2bの出口に沿って凹凸に形成されている。このように形成されることにより先ずフィルタ4の表面面積は、気体が通過する正面面積よりも大きく設定することができる。この構成においてフィルタ4に対する付着物が少ない状態では多孔スクリーン1bの各開口2bを出た油含有気体Gの上昇流G2は、前記フィルタ4のうちこの上昇流G2とほぼ直交する面4aを通過する。このようにして初期の段階ではフィルタ4の直交面4aを中心として油分が付着し、これによりこの直交面4aの抵抗が徐々に増加する。この抵抗の増加に対応して前記上昇流G2の一部は破線で示すようにこの上昇流G2とほぼ平行する平行面4bに流入する。この際上昇流G2は破線の如く流路を急激に変更するため、フィルタ4全体としての圧力損失はある程度増加するものの慣性による油分の捕集率の増加が期待される。
【0024】
図6は本発明に係る集塵部材と従来型の集塵部材との性能の比較例を示す線図である。図中実線で示される(a)は本発明に係る構成(図2に示す構成)の集塵部材を、点線で示される(b)は濾過式フィルタのみの構成を、また一点鎖線で示される(c)は多孔スクリーン単体の構成を示す。
【0025】
まず同図(A)において、濾過式フィルタのみの構成(b)では油捕集量が増大するのに比例して圧力損失が大幅に上昇することがわかる。これに対して多孔スクリーン単体の構成(c)では圧力損失の増加は僅かな量に押さえられ、本発明の構成(a)に於ける圧力損失の増加もこの多孔スクリーン単体の構成(c)にほぼ近い程度に押さえられることがわかる。
【0026】
一方図(B)において、時間の経過と共に油の捕集量が増加した際に、濾過式フィルタのみの構成(b)ではフィルタが保持する油の量(油保持量)大きくなり、他方多孔スクリーン単体の構成(c)では油保持量はさして増加しない。即ち捕集した油の除去という点では濾過式フィルタのみの構成(b)はかなり劣り、これが前記図(A)の圧力損失の増大の原因にもなっている。また本発明の構成(a)は多孔スクリーン単体の構成(c)ほどではないが油保持量は濾過式フィルタのみの構成(b)に比較して大幅に少なくすることが可能である。
【0027】
以上の点から本発明の構成では、油を捕集しても目詰まりし難く、また捕集後の油保持量も少ないため発火等の虞が小さく安全性が高い。またフィルタ洗浄時のコストを低減することが可能となる。
【0028】
次に図6(C)及び(D)において、多孔スクリーン単体の構成(c)では、油除去性能を高めるために通過風速を大きく設定する必要があるが〔図(D)参照〕、通過風速の増加に対応する圧力損失の増加の程度が大きく〔図(C)参照〕、送風機の容量を大きく設定する等の必要が生じる。これに対して本発明の構成(a)では、濾過式フィルタのみの構成(b)とほぼ同様に通過風速が低くても油除去性能は図(D)の如く殆ど低下しないため、通過風速を低速に設定でき、従って図(C)で示されるように低圧力損失での運転が可能となる。また大量に出た油煙を排出する等、通過風速を増加させる必要が生じた場合でも圧力損失の増加を低く押さえることができる。
【0029】
上記性能比較も含め、本発明の構成を、捕集対象を含む流体が油含有気体である場合を例に説明したが、本集塵部材はもとより油分を含有する油含有気体に対してのみ有効なものではなく、固体または液体の如何を問わず種々の塵埃を含む流体に対して幅広く有効であることは当業者において容易に推測できるものである。
【0030】
【発明の効果】
本発明は複数枚配置されかつ隣接する各多孔スクリーンはそれぞれ表裏が対向位置するよう180度反転させ、即ち相互に裏返しとなるように配置されているため各多孔スクリーンを通過する流体は各多孔スクリーンの通過時に上下に波うつように通過する。このため慣性・衝突集塵の効率が高く、従って一つの多孔スクリーンにおける対象物の捕集効率が高く、更に慣性・衝突集塵を行う多孔スクリーンの背後には主として濾過集塵を行うフィルタが設けられ、慣性・衝突集塵方式では捕集が困難な塵埃も最終的には高い効率で捕集可能となると共に、濾過集塵式のフィルタを、フィルタ正面の領域において、流体の発生源に近い部分の領域の圧力損失が他の領域よりも低減されるよう構成したので、対象の流体が拡散する前に装置内に吸引することが可能となり、装置全体として非常に高い集塵効率を達成することできる。
【図面の簡単な説明】
【図1】本発明に使用される多孔スクリーンの斜視部分図である。
【図2】本発明の構成例を示す集塵部材の断面部分図である。
【図3】本発明実例を示す集塵部材の断面概略図である。
【図4】(A)は多孔スクリーンにおける開口の配置状態の一例を示す多孔スクリーン正面概略図、同(B)は他の配置状態を示す多孔スクリーン正面概略図である。
【図5】本発明の他の構成例を示す集塵部材の断面部分図である。
【図6】本発明の構成と他の従来構成との性能を比較するための線図であって、(A)は油捕集量と圧力損失との関係を示す線図、(B)は油捕集量と捕集した油の保持量との関係を示す線図、(C)は通過風速と圧力損失との関係を示す線図、(D)は通過風速と油除去性能との関係を示す線図である。
【符号の説明】
1 多孔スクリーン
1a 第1の多孔スクリーン
1b 第2の多孔スクリーン
2 開口
2a 第1の多孔スクリーンの開口
2b 第2の多孔スクリーンの開口
3 (濾過式)フィルタ
4 フィルタ(凹凸型)
[0001]
[Industrial applications]
The present invention relates to a dust collecting member which can be used for removing dust or carbon in a gas stream, and more particularly to a method for removing oil mist and oil vapor from a gas stream containing fine oil particles (oil mist) and oil vapor. The present invention relates to an effective dust collecting member.
[0002]
[Prior art]
For example, in a kitchen of a hotel or a restaurant, a large amount of oil is generated in the form of fine particles (mist) or vapor in a cooking process. Exhausting such gas containing oil mist or oil vapor (hereinafter referred to as “oil-containing gas”) as it is is a cause of air pollution, and the oil adhering to the exhaust duct is ignited, causing a fire. There is also a danger of producing. For this reason, it is necessary to remove the oil content before the oil-containing gas is discharged to the outside, and various apparatuses have been proposed and are currently used.
[0003]
[Problems to be solved by the invention]
Among conventional oil removal devices of this type, for example, a device using a filter filled with an adsorbent such as activated carbon is provided as a device for removing oil vapor. Although this device has a relatively high oil vapor removal efficiency, the removal rate of the oil mist is so low that it is not suitable for gas in which the oil mist coexists.
[0004]
On the other hand, the oil mist is removed mainly by an inertial collision method. This method is particularly effective when the oil particles are large, but has a problem that the collection efficiency is reduced when the oil particles are fine. As means for effectively performing an inertial collision, a mesh screen having a large number of openings formed at an inclination angle of a predetermined angle (for example, 30 to 60 degrees) with respect to the passage direction of the oil-containing gas is arranged, and the mesh screen is provided. (Japanese Patent Application No. 58-27672) has been proposed in which a plurality of mesh screens are arranged so that the openings of the respective screens are angularly displaced in the plane direction by 90 degrees.
[0005]
According to the above proposed configuration, since the openings are displaced by 90 degrees each other, the oil-containing gas passing through the openings of each screen forms a swirling flow, and effective collection of dust or oil by the inertial collision method is expected. Is done. However, in order to exhibit such a collecting effect, it is necessary to stack and arrange about 10 mesh screens, and in some cases, about 20 mesh screens, and the pressure loss of the fluid passing through these screens becomes large, and There is a concern that the running cost of the apparatus will increase, such as by increasing the capacity of the apparatus. Further, in the inertial collision system including the apparatus, it is impossible to efficiently separate and collect oil vapor having a small difference in mass as compared with the carrier fluid, no matter how high the collection efficiency.
[0006]
[Means for Solving the Problems]
The present invention is a member for dust collection having a plurality of perforated screens formed with a number of openings, each opening of the perforated screen is formed obliquely at a predetermined angle with respect to the flow direction of the fluid, and Each of the adjacent porous screens is arranged by being turned 180 degrees so that the opposing surface forms the front and back, thereby forming a porous screen group as a whole, and a filter of a filtration type is arranged behind the porous screen group. The filtration type filter is a dust collecting member characterized in that, in a region in front of the filter, a pressure loss in a region near a fluid generation source is reduced more than in other regions .
[0007]
[Action]
The fluid that has flowed into the first perforated screen becomes, for example, a downward flow at an angle corresponding to the inclination angle of each opening, and in the next perforated screen in which the front and back are arranged in reverse, the descending flow is reversed and the inclination angle of the opening is reduced. And the upward flow along. Thus, each time the fluid passes through each porous screen, the fluid repeatedly descends and rises, and most of the contained trapping objects, for example, oil mist, are trapped by inertial collision, and a part of the oil vapor is also collected by agglomeration. Gathered. Further, the fluid that has exited the group of porous screens passes through a filtration filter having fine through-holes, thereby collecting oil vapor or the like that is difficult to collect by inertial collision.
[0008]
Furthermore, since the pressure loss in the region of the portion close to the source of fluid it is configured to be lower than other regions in the area in front of the filtration type filter Waso, fluid from the portion close to the source of fluid Before the fluid is dispersed, the fluid is sucked by the filter, thereby efficiently collecting oil vapor and the like in the fluid.
[0009]
【Example】
Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.
[0010]
FIG. 1 is a diagram showing an example of a porous screen used in the present invention, and FIG. 2 shows a configuration example of a dust collecting member using the porous screen.
[0011]
First, the configuration of the porous screen will be described with reference to FIG. The arrow 1 indicates the entire porous screen, and the porous screen 1 is formed of a metal material such as SUS304 stainless steel, aluminum or nickel. However, being formed of a metal material is not an indispensable requirement for forming a porous screen, and in addition to these metal materials, for example, it can be formed of plastics or ceramics. An example will be described.
[0012]
Reference numeral 2 denotes an opening, and as the name implies, the porous screen 1 is formed by connecting a large number of openings 2 in series. For example, as a forming method, a structure in which a number of cuts (slits) are formed in a metal plate in advance and the cut portion is opened by pulling the metal plate in a predetermined direction to form an opening, that is, a structure called expanded metal A method or the like is used. Each opening 2 opens obliquely at a predetermined angle α with respect to the flow direction of the oil-containing gas G. It is effective that the angle α is such that the oil contained when the oil-containing gas G flows into the opening is separated by inertia, and that the flow does not become turbulent but maintains almost laminar flow. From these points, the inventors have conducted a test and concluded that α is suitably between 25 ° and 70 °.
[0013]
FIG. 2 shows a configuration example of a dust collecting member using the porous screen 1 shown in FIG. 1a shows the porous screen 1 shown in FIG. 1 arranged in the same state as the arrangement shown in FIG. 1, that is, a state in which each opening 2 is opened obliquely at an angle α, and 1b shows this porous screen 180 It is shown inverted, that is, placed upside down. Therefore, since the opening 2 of the porous screen 1b faces downward at an angle α, the opening angle of the opening of the porous screen 1b with respect to the oil-containing gas G will be indicated by −α hereinafter. In order to avoid misunderstanding in the following description, the opening 2 of the porous screen 1a is 2a, and the opening 2 of the porous screen 1b is 2b. Although only two porous screens 1 are arranged in the configuration shown in the figure, three or more porous screens 1 can be arranged. In this case, the adjacent porous screens 1 are arranged so as to be inverted by 180 degrees from each other.
[0014]
Next, reference numeral 3 denotes a filter (hereinafter simply referred to as a "filter") of a filtration and dust collection type disposed behind each of the porous screens 1. The filter 3 collects oil mist fine particles and oil vapor that could not be collected by the porous screens 1a and 1b by a filtration method. As a constituent material of the screen 3, a porous material made of a ceramic porous material or a metal (eg, a nickel-based metal) material commonly called a metal foam is effective. This metal foam or ceramic porous body is effective because it can be reused many times by removing the deposits. However, since most of the oil is removed in the porous screen portion, the amount of oil adhering to the filter 3 is not so large.
[0015]
In the dust collecting member having the above-described configuration, the oil-containing gas G is sucked by the induction type blower (IDF / not shown) disposed downstream of the filter 3 and travels toward the first porous screen 1a (see FIG. 2). . In this case, the IDF is operated such that the flow rate of the oil-containing gas G into the first porous screen 1a is about 0.5 to 2.0 m / sec. Since the oil-containing gas G that has reached the first porous screen 1a has the openings 1a opened obliquely at a predetermined angle α, the oil-containing gas G collides with the opening wall surface and causes the contained oil mist to adhere to the opening wall surface while descending the flow G1. To form The oil vapor contained also partially condenses due to the collision and adheres together with the mist, and the adhered oil flows down along the porous screen by its own weight and is collected in an oil reservoir (not shown).
[0016]
On the other hand, the oil-containing gas G that has exited the first porous screen 1b then flows into the opening 2b of the second porous screen 1b that opens with -α, and the downward flow G1 turns into an upward flow G2. At the time of this reversal, most of the oil mist that has not been collected in the first porous screen 1b is sorted and removed by inertia (indicated by a broken line arrow in the figure). Further, the oil-containing gas G that has turned into the upward flow G2 is further subjected to the same inertial collision method as that in the first porous screen 1a, so that the oil mist is further removed and the oil vapor is condensed on the opening wall surface and removed. The oil-containing gas G repeatedly rises and falls because the porous screens 1 are arranged 180 degrees inverted, during which time oil collection by collision, aggregation of oil vapor, and oil removal by inertia at the time of fluid inversion are repeated. As described above, the flow path of the oil-containing gas G is rapidly changed between the adjacent porous screens, so that the efficiency of removing oil from one porous screen is high. Therefore, it is possible to reduce the number of perforated screens and also to efficiently remove oil, thereby greatly reducing the pressure loss of the entire apparatus. Therefore, the number of perforated screens required for realizing an oil collection rate of 90%, including the collection by the filter 3 described later, is extremely small, ie, two to three. By the way, it is difficult to set the trapping efficiency to 90% in the conventional device itself, and even if it can be achieved, it is anticipated that the number of screens to be installed will be 10 or more. Running costs also increase considerably.
[0017]
As described above, in each of the porous screens 1a and 1b, most of the oil contained in the oil-containing gas G is removed, but fine oil particles in the oil mist and a part of the similar fine oil particles due to the condensation of oil vapor are partially removed. 2 perforated screen 1b. Filter 3 , a filter of the filtration type, is arranged to filter and trap such particles, where most of the remaining oil is removed. In this filter portion, naturally, the oil vapor colliding with the portion other than the small hole portion is aggregated and collected.
[0018]
FIG. 3 shows a configuration in which the pressure loss distribution with respect to the front of the dust collecting member is changed to increase the efficiency of suction of the oil-containing gas as the whole dust collecting member.
[0019]
In this configuration , the filter 3 is formed such that the thickness of the cross section thereof decreases toward the lower portion, so that the distribution of the pressure loss of the filter 3 changes. More specifically, it is configured such that the pressure loss at the time of passage of the gas decreases toward the lower side of the filter 3. Accordingly, the entire dust collecting member including the first and second porous screens 1a and 1b is configured such that the pressure loss at the time of passage of a fluid (gas) decreases toward the lower side of the member at the front portion thereof. become.
[0020]
With the above-described configuration, the dust collecting member has a functional characteristic that the amount of fluid suction increases in the vertical direction of the dust collecting member downward. For this reason, for example, in a state where the oil-containing gas G rises from the lower side of the dust collecting member, the oil-containing gas G is immediately sucked from the lower portion when the oil-containing gas G rises to the position of the dust collecting member. The contained gas G is efficiently sucked into the dust collecting member before being dispersed. In the illustrated configuration, the pressure loss distribution is changed by changing the thickness of the filter 3. However, for example, the thickness of the filter 3 may be uniform, and the distribution of the aperture ratio in the filter plane may be changed. It is of course possible to change the distribution of the pressure loss by changing it, or by changing both the cross-sectional thickness and the distribution of the opening ratio.
[0021]
Next, FIGS. 4A and 4B schematically show the arrangement of the openings 2 in the porous screen 1. First, in the configuration of (A), each opening 2 has a substantially rhombic shape in front of the opening, and the openings are obliquely connected to each other by making each side of the rhombus a common wall surface. . On the other hand, in the configuration of FIG. 3B, the openings 2 are arranged so as to be aligned in a line in both the horizontal direction and the vertical direction. Either of the configurations (A) and (B) may be used for removing non-liquid fine substances, that is, solid dust such as fine sand particles and fiber waste. On the other hand, when an object to be removed such as an oil mist or oil vapor, such as an oil-containing gas G, is a liquid or a substance whose liquid has changed, the configuration of (A) is more preferable. That is, in the configuration shown in FIG. 2A, since the openings 2 are positioned obliquely, the oil adhering to the walls of these openings can flow obliquely down the end of the common wall surface as indicated by the arrow, and the oil is collected. However, it becomes easier than the configuration of FIG.
[0022]
FIG. 5 shows still another configuration example .
[0023]
In the drawing, reference numeral 4 denotes a filter used in the present embodiment, and the configuration and forming material thereof are the same as those in the above-described respective configuration examples. The illustrated filter 4 is formed unevenly along the outlet of the opening 2b of the porous screen 1b. By being formed in this way, first, the surface area of the filter 4 can be set larger than the front area through which the gas passes. In this configuration, when the amount of deposits on the filter 4 is small, the upward flow G2 of the oil-containing gas G that has exited each opening 2b of the porous screen 1b passes through a surface 4a of the filter 4 that is substantially orthogonal to the upward flow G2. . In this way, at the initial stage, oil adheres around the orthogonal surface 4a of the filter 4, and the resistance of the orthogonal surface 4a gradually increases. In response to the increase in the resistance, a part of the upward flow G2 flows into a parallel surface 4b substantially parallel to the upward flow G2 as shown by a broken line. At this time, the upward flow G2 rapidly changes the flow path as indicated by the broken line, so that the pressure loss of the filter 4 as a whole increases to some extent, but an increase in the oil collection rate due to inertia is expected.
[0024]
FIG. 6 is a diagram showing a comparative example of the performance of the dust collecting member according to the present invention and a conventional dust collecting member. In the drawing, (a) shown by a solid line shows the dust collecting member of the configuration according to the present invention (the configuration shown in FIG. 2), (b) shown by the dotted line shows the configuration of only the filtration type filter, and is shown by the one-dot chain line. (C) shows the configuration of the porous screen alone.
[0025]
First, in FIG. 7A, it can be seen that in the configuration (b) including only the filtration type filter, the pressure loss increases significantly in proportion to the increase in the amount of collected oil. On the other hand, in the configuration (c) of the porous screen alone, the increase in the pressure loss is suppressed to a small amount, and the increase in the pressure loss in the configuration (a) of the present invention is also reduced to the configuration (c) of the porous screen alone. It can be seen that it is suppressed to almost the same extent.
[0026]
On the other hand, in the diagram (B), when the amount of collected oil increases with the elapse of time, the amount of oil (oil holding amount) held by the filter in the configuration (b) including only the filtration type filter increases, while the porous screen increases. In the configuration (c) alone, the oil holding amount does not increase much. That is, the configuration (b) using only the filtration type filter is considerably inferior in terms of removing the collected oil, and this causes the pressure loss in FIG. Although the configuration (a) of the present invention is not as large as the configuration (c) of the porous screen alone, the amount of retained oil can be significantly reduced as compared with the configuration (b) using only a filtration filter.
[0027]
From the above points, in the configuration of the present invention, clogging hardly occurs even when oil is collected, and since the amount of retained oil after collection is small, the risk of ignition or the like is small and the safety is high. Further, it is possible to reduce the cost for cleaning the filter.
[0028]
Next, in FIGS. 6 (C) and 6 (D), in the configuration (c) of the porous screen alone, it is necessary to set the passing wind speed to be high in order to enhance the oil removal performance [see FIG. 6 (D)]. The degree of increase in the pressure loss corresponding to the increase in the pressure is large (see FIG. (C)), and it is necessary to set the capacity of the blower large. On the other hand, in the configuration (a) of the present invention, the oil removal performance hardly decreases as shown in FIG. It can be set to a low speed, so that operation with a low pressure loss is possible as shown in FIG. Further, even when it is necessary to increase the passing wind speed, for example, by discharging a large amount of oil smoke, the increase in pressure loss can be suppressed low.
[0029]
Including the above performance comparison, the configuration of the present invention has been described by taking as an example the case where the fluid containing the trapping target is an oil-containing gas, but is effective only for the oil-containing gas containing oil as well as the dust-collecting member. It is easily understood by those skilled in the art that the present invention is widely effective for fluids containing various dusts, whether solid or liquid.
[0030]
【The invention's effect】
According to the present invention, a plurality of perforated screens are arranged and turned 180 degrees so that the front and back faces each other, that is, the perforated screens are disposed so that they are turned upside down. When passing, it passes like a wave up and down. For this reason, the efficiency of inertia / collision dust collection is high, and therefore, the efficiency of collecting objects in one porous screen is high. Further, a filter for mainly filtering and collecting dust is provided behind the porous screen for inertia / collision dust collection. Dust that is difficult to collect by the inertia / collision dust collection method can be finally collected with high efficiency, and the filter of the filtration and dust collection type is located near the source of fluid in the area in front of the filter. Since the pressure loss in the partial area is configured to be lower than that in the other areas, the target fluid can be sucked into the apparatus before diffusing, thereby achieving extremely high dust collection efficiency as a whole apparatus. I can do it.
[Brief description of the drawings]
FIG. 1 is a partial perspective view of a perforated screen used in the present invention.
FIG. 2 is a partial sectional view of a dust collecting member showing a configuration example of the present invention.
3 is a cross-sectional schematic view of the present invention the dust collecting member showing an implementation example.
FIG. 4A is a schematic front view of a porous screen showing an example of an arrangement state of openings in a porous screen, and FIG. 4B is a schematic front view of a porous screen showing another arrangement state.
FIG. 5 is a partial sectional view of a dust collecting member showing another configuration example of the present invention.
FIG. 6 is a diagram for comparing the performance of the configuration of the present invention with another conventional configuration, wherein (A) is a diagram showing the relationship between the amount of collected oil and pressure loss, and (B) is a diagram. Diagram showing the relationship between the amount of collected oil and the amount of collected oil, (C) shows the relationship between the passing wind speed and pressure loss, and (D) shows the relationship between the passing wind speed and the oil removal performance. FIG.
[Explanation of symbols]
Reference Signs List 1 perforated screen 1a first perforated screen 1b second perforated screen 2 opening 2a first perforated screen opening 2b second perforated screen opening 3 (filtration type) filter 4 filter (concave and convex)

Claims (3)

多数の開口が形成された多孔スクリーンの複数枚を有する集塵用の部材であり、多孔スクリーンの各開口は流体の流れ方向に対して所定の角度で斜めに形成され、かつ隣接する各多孔スクリーンはその対向面が表裏を成すよう180度反転して配置されることにより全体として多孔スクリーン群を形成し、当該多孔スクリーン群の背後に濾過式のフィルタが配置された集塵部材においてこの濾過式フィルタは、フィルタ正面の領域において、流体の発生源に近い部分の領域の圧力損失が他の領域よりも低減されるよう構成されていることを特徴とする集塵部材。A dust collecting member having a plurality of perforated screens having a plurality of openings formed therein, each opening of the perforated screen being formed obliquely at a predetermined angle with respect to the flow direction of the fluid, and each adjacent perforated screen being forms a whole as the porous screen group by the opposing surface is disposed inverted 180 degrees to form the front and the back, in the dust collecting member filtration type filter is disposed behind of the perforated screen group, the filtration The dust collecting member is characterized in that the pressure filter is configured such that a pressure loss in a region near a fluid generation source in a region in front of the filter is reduced as compared with other regions . 前記濾過式フィルタは、流体の発生源に近い部分に向かってその断面の厚さが減少するよう構成されることにより流体の発生源に近い部分の領域の圧力損失が他の領域よりも低減されるよう構成されたことを特徴とする請求項1記載の集塵部材。 The filtration type filter is configured such that its cross-sectional thickness decreases toward a portion near the source of the fluid, so that a pressure loss in a region near the source of the fluid is lower than in other regions. dust collecting member according to claim 1, characterized in that it is configured to be. 前記濾過式フィルタは、流体の発生源に近い部分に向かって当該フィルタ平面における開口比率を大きく設定することにより流体の発生源に近い部分の領域の圧力損失が他の領域よりも低減されるよう構成されたことを特徴とする請求項1又は2記載の集塵部材。 In the filtration type filter, by setting the opening ratio in the filter plane larger toward a portion closer to the source of the fluid, the pressure loss in a portion near the source of the fluid is reduced more than in other regions. The dust collecting member according to claim 1, wherein the dust collecting member is configured as described above.
JP28613794A 1994-10-27 1994-10-27 Dust collection member Expired - Fee Related JP3605157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28613794A JP3605157B2 (en) 1994-10-27 1994-10-27 Dust collection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28613794A JP3605157B2 (en) 1994-10-27 1994-10-27 Dust collection member

Publications (2)

Publication Number Publication Date
JPH08117537A JPH08117537A (en) 1996-05-14
JP3605157B2 true JP3605157B2 (en) 2004-12-22

Family

ID=17700419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28613794A Expired - Fee Related JP3605157B2 (en) 1994-10-27 1994-10-27 Dust collection member

Country Status (1)

Country Link
JP (1) JP3605157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350280B2 (en) * 2010-01-15 2013-11-27 株式会社テイエルブイ Gas-liquid separator
JP2016014381A (en) * 2014-07-03 2016-01-28 ナブテスコ株式会社 Vehicular air compression device
KR102181817B1 (en) * 2020-07-09 2020-11-24 이지창 Dust collecting apparatus for painting

Also Published As

Publication number Publication date
JPH08117537A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
US7314495B2 (en) Process and device for eliminating the particles contained in a stream of fluid
US4443233A (en) Mist separator
US7947123B2 (en) Impact filter with grease trap
JP2001505821A (en) Sponge separator made of reticulated foam, related separation apparatus and method
US7708794B2 (en) Separator made of a fibrous porous material such as a felt
JP3605157B2 (en) Dust collection member
US6068674A (en) Removal of suspended fine particles from gases by turbulent deposition
US5171446A (en) Pollutant emission control system
JP3779344B2 (en) Dust collector consisting of perforated screen
JP2007222871A (en) Separator
JP2002506390A (en) Mechanical separator for gaseous effluent stream and corresponding manufacturing method
JP3503083B2 (en) Dust collection member with pressure drop gradient
JPH075858Y2 (en) Mist collector
JP4555233B2 (en) Device for removing particles contained in a fluid flow
JP2963965B2 (en) Dust removal equipment
JPH07313814A (en) Filament filter device
JP3098981B2 (en) Filter cleaning device
KR200151286Y1 (en) Apparatus for cleaning of a waste gas
JPH0929028A (en) Dust collector using purse type filter cloth
JPH08141342A (en) Dust collection member with turning panel
JPH0893438A (en) Mist eliminating device
KR200299652Y1 (en) Apparatus Of Gathering Particulates For The Car's Muffler
JPH03230001A (en) Waste heat recovery boiler with built-in denitrification apparatus
JP2023033446A (en) Flue gas reformer and flue gas processing device including the same
JPH0810361Y2 (en) Fume collector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees