JP3603961B1 - Functional coating composition and method for improving flammability of internal combustion engine - Google Patents

Functional coating composition and method for improving flammability of internal combustion engine Download PDF

Info

Publication number
JP3603961B1
JP3603961B1 JP2004063720A JP2004063720A JP3603961B1 JP 3603961 B1 JP3603961 B1 JP 3603961B1 JP 2004063720 A JP2004063720 A JP 2004063720A JP 2004063720 A JP2004063720 A JP 2004063720A JP 3603961 B1 JP3603961 B1 JP 3603961B1
Authority
JP
Japan
Prior art keywords
air
internal combustion
wall
combustion engine
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004063720A
Other languages
Japanese (ja)
Other versions
JP2005248111A (en
Inventor
英俊 原木
Original Assignee
英俊 原木
有限会社 ビオセラ
小関 春巳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英俊 原木, 有限会社 ビオセラ, 小関 春巳 filed Critical 英俊 原木
Priority to JP2004063720A priority Critical patent/JP3603961B1/en
Application granted granted Critical
Publication of JP3603961B1 publication Critical patent/JP3603961B1/en
Publication of JP2005248111A publication Critical patent/JP2005248111A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】 内燃機関の燃焼性を改善向上するために、内燃機関空気中の酸素および水分を活性イオン化する機能性塗料組成物および燃焼性改善方法を提供する。
【解決手段】 電気石と、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂との混合微粉、および光触媒活性二酸化チタンと塗料用バインダーを含有する機能性塗料組成物を用い、内燃機関の空気吸入路の内壁および/またはエヤークリーナーの内壁にコーティング層を形成することにより、空気中の酸素と水分を活性イオン化して完全燃焼を達成する。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a functional coating composition for active ionization of oxygen and moisture in air of an internal combustion engine and a method for improving flammability in order to improve and improve the flammability of an internal combustion engine.
SOLUTION: The functional paint composition containing tourmaline, mixed fine powder of zircon dioxide raw mineral sand containing a trace amount of natural radioactive element and lanthanide rare earth element, and a photocatalytically active titanium dioxide and a paint binder are used. By forming a coating layer on the inner wall of the air suction passage of the engine and / or the inner wall of the air cleaner, oxygen and moisture in the air are activated and ionized to achieve complete combustion.
[Selection diagram] None

Description

本発明は、自動車などの内燃機関の燃焼性の改善向上と、排気ガス中の一酸化炭素および窒素酸化物の濃度の低下と粒子状物量を低下させるための、空気中の酸素および水分を活性イオン化する機能性塗料組成物、および内燃機関の燃焼性改善方法に関する。   The present invention activates oxygen and moisture in air to improve and improve the flammability of internal combustion engines such as automobiles, reduce the concentration of carbon monoxide and nitrogen oxides in exhaust gas, and reduce the amount of particulate matter. The present invention relates to an ionizable functional coating composition and a method for improving the flammability of an internal combustion engine.

近年、内燃機関用の燃費改善装置として、電気石の微細粉を単独で繊維に織り込み、エヤークリーナーのフィルターに用いる技術が特許文献1に記載され、また放射エネルギー発生体を単独でペレット状として燃料の燃焼方法として用いる技術が特許文献2に記載されている。   In recent years, as a fuel efficiency improvement device for an internal combustion engine, a technique in which fine powder of tourmaline is individually woven into a fiber and used for a filter of an air cleaner is described in Patent Document 1, and a radiant energy generator is used alone in a pellet form as a fuel. Patent Literature 2 describes a technique used as a combustion method.

さらに、燃焼効率改善装置として、トリウムを含む希土類金属を主成分とする大量鉱石を単独で50%以上練り込んで塗料とし、これをエヤークリーナーのフィルターに格子状に貼着して装備する技術が特許文献3に記載されている。   Furthermore, as a combustion efficiency improving device, there is a technology in which a large amount of ore mainly composed of a rare earth metal containing thorium is kneaded alone by at least 50% to form a paint, which is then attached to a filter of an air cleaner in a grid pattern and equipped. It is described in Patent Document 3.

しかしながら、特許文献1の電気石を単独で用いる方法では、空気中の酸素および水分の活性イオン化の程度は低く、燃焼効率向上の効果は低い。
また、特許文献2および特許文献3記載の発明は、放射エネルギーを直接利用する技術であるため、極めて多量の原料を用いてペレット状にしたり、原料を50%以上塗料に練り込んだものを、エヤークリーナーのフィルターに装着する必要がある。したがって、空気の通気性が低いため、活性イオン化の程度は低く、高い燃焼効果を得ることが困難であるという課題があった。
特開2001−6541公報 特開平7−19128号公報 特開2003−42016公報
However, in the method using the tourmaline of Patent Document 1 alone, the degree of active ionization of oxygen and moisture in the air is low, and the effect of improving combustion efficiency is low.
Further, since the inventions described in Patent Documents 2 and 3 are technologies that directly use radiant energy, pellets are formed by using an extremely large amount of raw materials, or those obtained by kneading raw materials into a paint by 50% or more are used. It is necessary to attach to the filter of the air cleaner. Therefore, since the air permeability is low, the degree of active ionization is low, and it is difficult to obtain a high combustion effect.
JP-A-2001-6541 JP-A-7-19128 JP 2003-42016 A

本発明の課題および目的は、少量の原料の使用で、かつエヤークリーナーのフィルターに器具を装着するなどの面倒な構成を必要とせずに、高い活性イオン化と、高い燃焼効果を有する機能性塗料組成物およびこれを利用した内燃機関の燃焼性改善方法を提供することである。   It is an object of the present invention to provide a functional coating composition having high active ionization and high combustion effect by using a small amount of raw materials and without requiring a troublesome configuration such as mounting an instrument on a filter of an air cleaner. An object of the present invention is to provide a product and a method for improving the flammability of an internal combustion engine using the same.

本発明者らは、電気石の微細粉と、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂との混合微粉末、および光触媒活性二酸化チタンを塗料用バインダー中に含有する機能性塗料組成物を作製し、これにより内燃機関の空気吸入経路内壁および/またはエヤークリーナー内壁に、コーティング層を形成し、燃焼性テストを試みた結果、内燃機関の燃焼性に改善効果のあることを確認した。   The present inventors have reported that a fine powder of tourmaline, a mixed fine powder of zircon raw material sand containing a small amount of a natural radioactive element and a lanthanide rare earth element, and a photocatalytically active titanium dioxide contained in a binder for paints A coating layer was formed on the inner wall of the air intake passage and / or the inner wall of the air cleaner of the internal combustion engine, and a flammability test was conducted. As a result, it was found that the flammability of the internal combustion engine was improved. confirmed.

これは、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の電磁波による励起作用により電気石の電解反応を活性化し、さらに光触媒活性二酸化チタン粒子のヒドロキシルラジカル(・OH)活性化反応が、電気石の有する遠赤外線電磁波により励起する相乗効果を応用して、空気中の酸素と水分に対するマイナスイオンの発生速度を加速し、発生量が増加するためと考えられる。   It activates the electrolysis reaction of tourmaline by electromagnetic wave excitation of zircon dioxide raw mineral sand containing trace amounts of natural radioactive elements and lanthanide rare earth elements, and further activates hydroxyl radical (.OH) of photocatalytically active titanium dioxide particles. However, it is considered that the synergistic effect of the tourmaline excited by the far-infrared electromagnetic wave is applied to accelerate the generation rate of negative ions with respect to oxygen and moisture in the air, thereby increasing the generation amount.

電気石の電気特性と遠赤外線放射特性について、空気中の水分の活性イオン化と、光触媒二酸化チタンのヒドロキシルラジカル(・OH)活性化反応を説明する。   Regarding the electric characteristics and far-infrared radiation characteristics of tourmaline, active ionization of water in the air and hydroxyl radical (.OH) activation reaction of photocatalytic titanium dioxide will be described.

電気石は、電気特性と遠赤外線放射特性を有し、水を活性イオン化する。電気石の電解反応については、「固体物理」Vol.24,No.12(1989)に示されているとおりである。
電気石[一般式NaM2 33 6BO3Si618(OH・F)4]の電気特性は、永久電極と呼ばれる特殊な有極性結晶体を有し粉砕した微細粒子であっても、それぞれが独立した有極性結晶体であり、この結晶体は対称する両極の一端が正極、反対側が負極となり、この電極は常温で消滅することのない永久電極となっている。
Tourmaline has electrical properties and far-infrared radiation properties and active ionizes water. The electrolysis reaction of tourmaline is as shown in “Solid State Physics” Vol. 24, No. 12 (1989).
Electrical properties of tourmaline [Formula NaM 2 3 M 3 6 BO 3 Si 6 O 18 (OH · F) 4] may be a ground fine particles have a special polar crystal called permanent electrode , Each of which is an independent polar crystal, in which one end of both symmetrical poles is a positive electrode and the other side is a negative electrode, and this electrode is a permanent electrode which does not disappear at room temperature.

本発明では、電気石として鉄電気石[NaFe3Al6BO3Si618(OH・F)4]の微細粉末(平均粒度5μm以下98%)を用いることが望ましい。該微細粉末に空気中の水分が接触すると、直ちに水(H2O)は、水素イオン(H+)と水酸イオン(OH-)に解離され、水酸イオンは水和され、ヒドロキシルマイナスイオン(H32 -)に変換される。さらにH32 -は石油成分である炭化水素化合物に出合うと活性状態の酸素(O2)に変化し、燃焼を促進すると考えられる(特許第3286307号公報参照)。 In the present invention, it is desirable to use a fine powder of iron tourmaline [NaFe 3 Al 6 BO 3 Si 6 O 18 (OH.F) 4 ] (98% or less in average particle size of 5 μm or less) as tourmaline. As soon as moisture in the air comes into contact with the fine powder, water (H 2 O) is dissociated into hydrogen ions (H + ) and hydroxyl ions (OH ), and the hydroxyl ions are hydrated and hydroxyl negative ions (H 3 O 2 ). Further H 3 O 2 - changes in oxygen (O 2) of encountering the active hydrocarbon compound is a petroleum component, thought to promote combustion (see Japanese Patent No. 3286307).

次に、光触媒活性二酸化チタンのヒドロキシルラジカル(・OH)表面活性について説明する。   Next, the hydroxyl radical (.OH) surface activity of the photocatalytically active titanium dioxide will be described.

光触媒活性二酸化チタンの反応メカニズムについては必ずしも明確になっていないが、一般に以下のように考えられている(「光触媒のしくみ」日本実業出版(2000.10)参照)。   Although the reaction mechanism of photocatalytically active titanium dioxide is not always clear, it is generally considered as follows (see "How photocatalysis works", Nihon Jitsugyo Shuppan (2000.10)).

二酸化チタン(TiO2)が紫外線などの光波(150μm以上)電磁波を吸収し、電子(e-)と正孔(h+)が二酸化チタン内部に生成する。これを式(1)に示す。
TiO2+λ(電磁波)→e-+h+ (1)
Titanium dioxide (TiO 2 ) absorbs light waves (150 μm or more) such as ultraviolet rays, and electrons (e ) and holes (h + ) are generated inside the titanium dioxide. This is shown in equation (1).
TiO 2 + λ (electromagnetic wave) → e + h + (1)

式(1)のh+(正孔)は、空気中の水分(H2O)と反応してヒドロキシルラジカル(・OH)を生じる。これを式(2)に示す。
++H2O→・OH(OH-)+H+ (2)
The h + (hole) in the formula (1) reacts with moisture (H 2 O) in the air to generate a hydroxyl radical (.OH). This is shown in equation (2).
h + + H 2 O → OH (OH ) + H + (2)

式(1)および式(2)に示す二酸化チタン触媒反応式は、太陽光線や紫外線による反応式であるが、本発明においては、電気石の遠赤外線放射エネルギー(電磁波)と併せ、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の有する天然放射エネルギー(電磁波)により励起され、空気中の水分がヒドロキシルラジカル(・OH)を生成し、これが活性酸素に変換されて燃焼を促進する。   The titanium dioxide catalytic reaction formulas shown in the formulas (1) and (2) are reaction formulas using sunlight or ultraviolet rays, but in the present invention, together with the far-infrared radiation energy (electromagnetic wave) of tourmaline, a trace amount of natural Excited by natural radiant energy (electromagnetic waves) of zircon raw material sand containing radioactive elements and lanthanide rare earth elements, moisture in the air generates hydroxyl radicals (OH), which are converted to active oxygen to promote combustion I do.

従来の方法では電気石の電解反応が微弱で、活性イオン化速度が低く、かつ活性イオンの発生量が少量であるため、電気石単独では内燃機関の燃焼効率向上効果が低い。   In the conventional method, since the electrolytic reaction of tourmaline is weak, the rate of active ionization is low, and the amount of active ions generated is small, the effect of improving the combustion efficiency of the internal combustion engine by using tourmaline alone is low.

本発明者等の研究により、電気石の電解反応を活発化する手段として、電気石、望ましくは鉄電気石と、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂との混合微粉および光触媒活性二酸化チタンを塗料組成物中に含有させることにより、コーティング層の状態において、i)電気石の電気特性が二酸化ジルコン原料鉱砂により励起されて電解反応が高まり、ii)電気石の遠赤外放射エネルギー(電磁波)と微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の天然放射エネルギー(電磁波)による励起作用により、光触媒活性二酸化チタンのヒドロキシルラジカル(・OH)活性が高まり、iii)電気石と光触媒二酸化チタンの相乗励起作用により、活性イオン化速度を速め、かつイオン発生量を増加することがわかった。   According to the study of the present inventors, as a means for activating the electrolytic reaction of tourmaline, mixed fine powder of tourmaline, desirably iron tourmaline, and zircon dioxide raw mineral sand containing trace amounts of natural radioactive elements and lanthanide rare earth elements And by including photocatalytically active titanium dioxide in the coating composition, in the state of the coating layer, i) the electric properties of tourmaline are excited by the zirconium dioxide raw material sand, and the electrolytic reaction is enhanced; The hydroxyl radical (.OH) activity of photocatalytically active titanium dioxide is increased by the excitation of natural radiant energy (electromagnetic waves) of zircon raw material sand containing infrared radiant energy (electromagnetic waves) and trace amounts of natural radioactive elements and lanthanide rare earth elements. Iii) Synergistic excitation of tourmaline and photocatalytic titanium dioxide accelerates the active ionization rate. It was found to increase the amount of generated ions.

本発明は、光触媒活性二酸化チタンのヒドロキシルラジカル表面活性が、太陽光線や紫外線などの光エネルギーではなく、電気石の有する遠赤外線放射エネルギーと、天然放射
性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の天然放射エネルギー(電磁波)により励起されることを見出した。そしてこれにより、活性イオン化速度を速めてイオン発生量を増加することを可能にし、内燃機関の燃焼効果が向上することを解決し、本発明を完成するに至った。
The present invention provides a photocatalytically active titanium dioxide, in which the hydroxyl radical surface activity is not light energy such as sunlight or ultraviolet rays, but far-infrared radiation energy of tourmaline, and a zircon dioxide raw material sand containing a natural radioactive element and a lanthanide rare earth element. Was excited by natural radiant energy (electromagnetic waves). As a result, the active ionization rate can be increased to increase the amount of generated ions, and the improvement in the combustion effect of the internal combustion engine has been solved. Thus, the present invention has been completed.

空気中の酸素を活性イオン化するには、コロナ放電による酸素の活性イオン化や、オゾン発生方式による高電圧放電があるが、本発明の空気中の酸素の活性イオン化は、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の天然放射エネルギー(電磁波)により、空気中の酸素が励起されて活性酸素に変換し、大量の活性酸素が発生して燃焼を促進するものと考えられる。   Active ionization of oxygen in the air includes active ionization of oxygen by corona discharge and high-voltage discharge by ozone generation.The active ionization of oxygen in air of the present invention is based on trace amounts of natural radioactive elements and lanthanides. It is considered that the natural radiant energy (electromagnetic wave) of zircon dioxide raw mineral sand containing rare earth elements excites oxygen in the air and converts it into active oxygen, generating a large amount of active oxygen and promoting combustion.

本発明は、前記した電気石と、光触媒活性二酸化チタンの相乗励起作用により、空気中の酸素を活性酸素に変換し、空気中の酸素および水分を活性イオン化する機能性塗料組成物、およびこれを用いた内燃機関の燃焼性の改善方法を提供するものである。   The present invention provides a functional coating composition that converts oxygen in the air into active oxygen by a synergistic excitation action of the tourmaline and photocatalytically active titanium dioxide, and actively ionizes oxygen and moisture in the air, and An object of the present invention is to provide a method for improving the flammability of an internal combustion engine used.

本発明の、微量の天然放射性元素と、ランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の成分は、ZrO2、TiO2、Al23、P25、SiO2、Fe23、La23、CeO2、CaO、Nd23、Pr611、Y23、K2O、Cd23、Sm23、MoO3などであり、その他、極微量の天然放射性元素である酸化トリウム(ThO2)を含有する。これらのうち、主要な成分の組成(重量組成比)は次のとおりである。Fe23 20〜30%、CeO2、P25、SiO2 10〜20%、La23、Nd23、ZrO2、TiO2、Al23、CaO 2〜10%、ThO2 1〜6%(望ましくは2〜5%)。
なお、上記二酸化ジルコン原料鉱砂の天然放射線濃度(電磁波)が、文部科学省指導による安全基準値以下であり、その使用において安全であることを、東京都立産業技術センターにおける測定により確認している。
The components of the zircon dioxide raw mineral sand containing a trace amount of a natural radioactive element and a lanthanide rare earth element according to the present invention are ZrO 2 , TiO 2 , Al 2 O 3 , P 2 O 5 , SiO 2 , Fe 2 O 3 , La 2 O 3 , CeO 2 , CaO, Nd 2 O 3 , Pr 6 O 11 , Y 2 O 3 , K 2 O, Cd 2 O 3, Sm 2 O 3 , MoO 3 , and other trace amounts of natural It contains thorium oxide (ThO 2 ), which is a radioactive element. Among these, the composition (weight composition ratio) of the main components is as follows. Fe 2 O 3 20~30%, CeO 2, P 2 O 5, SiO 2 10~20%, La 2 O 3, Nd 2 O 3, ZrO 2, TiO 2, Al 2 O 3, CaO 2~10% , ThO 2 1-6% (preferably 2-5%).
In addition, the natural radiation concentration (electromagnetic wave) of the above zircon dioxide raw material sand is below the safety standard value instructed by the Ministry of Education, Culture, Sports, Science and Technology, and it is confirmed by use of the Tokyo Metropolitan Industrial Technology Center that it is safe to use. .

本発明の機能性塗料組成物を用いてコーティング層を形成することにより、該層表面に空気中の酸素や水分が接触して活性イオン化され、活性イオンの発生速度、発生量が増加して燃焼性を高めることを可能とする。そして燃料消費量を少なくして十分な推進力が発揮され、石油成分の完全な燃焼が行われるため、顕著な燃焼性改善となり、効果は多大である。   By forming a coating layer using the functional coating composition of the present invention, oxygen and moisture in the air come into contact with the surface of the layer to be activated and ionized, and the generation rate and the generation amount of the activated ions increase, and combustion occurs. It is possible to enhance the nature. Since sufficient propulsion is exhibited by reducing fuel consumption and complete combustion of petroleum components is performed, remarkable improvement in flammability is achieved, and the effect is great.

本発明の実施の形態について説明する。
本発明の内燃機関の燃焼性を改善向上する機能性塗料組成物は、電気石の微細粉1〜20重量%(望ましくは3〜10重量%)と、微量の天然放射性元素であるランタナイド希土類元素を含む二酸化ジルコン原料鉱砂99〜80重量%との混合微粉1〜40重量部(望ましくは10〜40重量部)、および光触媒活性二酸化チタン1〜15重量部(望ましくは5〜15重量部)と塗料用バインダー100重量部を含有し、内燃機関の空気導入路内壁および/またはエヤークリーナー内壁にコーティング層を形成する。
An embodiment of the present invention will be described.
The functional coating composition for improving and improving the flammability of an internal combustion engine according to the present invention comprises 1 to 20% by weight (preferably 3 to 10% by weight) of fine powder of tourmaline and a lanthanide rare earth element which is a trace amount of a natural radioactive element. 1 to 40 parts by weight (preferably 10 to 40 parts by weight) of mixed fine powder with 99 to 80% by weight of zircon raw material sand containing zirconium, and 1 to 15 parts by weight (preferably 5 to 15 parts by weight) of titanium dioxide having photocatalytic activity And 100 parts by weight of a paint binder to form a coating layer on the inner wall of the air introduction passage and / or the inner wall of the air cleaner of the internal combustion engine.

コーティング層形成にあたっては、機能性塗料組成物を内燃機関の空気導入経路内壁および/またはエヤークリーナー内壁に直接塗布することが望ましいが、アルミ箔などを介して、あるいは、他の媒体に担持させてもよい。
そして、所定量の空気を吸入することにより、空気中の酸素と水分が機能性塗料組成物のコーティング層の表面に触れ、直ちに大量の活性酸素に変換する。
In forming the coating layer, it is desirable to apply the functional coating composition directly to the inner wall of the air introduction path and / or the inner wall of the air cleaner of the internal combustion engine. However, it is preferable that the functional coating composition is supported on an aluminum foil or the like or on another medium. Is also good.
Then, by inhaling a predetermined amount of air, oxygen and moisture in the air come into contact with the surface of the coating layer of the functional coating composition and are immediately converted into a large amount of active oxygen.

本発明において、空気中の酸素および水分を活性イオン化するために必要な前記混合微粉末は、塗料用バインダー100重量部に対し、1〜40重量部でよい。   In the present invention, the amount of the mixed fine powder necessary for active ionization of oxygen and moisture in the air may be 1 to 40 parts by weight based on 100 parts by weight of the binder for a coating material.

微量の天然放射性元素と、ランタナイド希土類元素を含む二酸化ジルコン原料鉱砂は、電気石の電気特性を活発にさせると共に、光触媒活性二酸化チタンの光活性を促進させる。その結果、空気中の酸素を活性イオン化し、活性酸素の発生を促進して発生量を増加する。   The zircon dioxide raw mineral sand containing a trace amount of a natural radioactive element and a lanthanide rare earth element activates the electrical properties of tourmaline and promotes the photoactivity of photocatalytically active titanium dioxide. As a result, oxygen in the air is activated into ions, and the generation of active oxygen is promoted to increase the generation amount.

電気石の遠赤外線放射エネルギーにより、水の活性イオン化を促進させ、イオン発生速度を速めかつ発生量を増加するために、電気石の微細粒子が接触し合わない状態をコーティング層の中に形成せしめることが必要である。したがってこのためにも、光触媒活性二酸化チタンは添加される。   The far-infrared radiation energy of tourmaline promotes active ionization of water, and creates a state in the coating layer where fine particles of tourmaline do not contact each other in order to increase the rate of ion generation and increase the amount of generation. It is necessary. Therefore, photocatalytically active titanium dioxide is also added for this purpose.

本発明に用いられる光触媒活性二酸化チタンは、結晶型に限定されるものではないが、アナターゼ型、アモルファス型、ブルッカイト型、ルチル型の二酸化チタンが用いられ、また粒径は0.0001ないし0.2ミクロンのものが好ましい。これらの光触媒は、表面に白金、ロジウム、ルテニウム、銀、銅、亜鉛などの金属が担持されていてもよい。   The photocatalytically active titanium dioxide used in the present invention is not limited to a crystalline type, but anatase type, amorphous type, brookite type, rutile type titanium dioxide is used, and the particle size is 0.0001 to 0.001. 2 microns are preferred. In these photocatalysts, metals such as platinum, rhodium, ruthenium, silver, copper, and zinc may be supported on the surface.

本発明の塗料組成物のバインダー樹脂としては、天然ゴムラテックス、アクリル樹脂、シリコン樹脂、シリコンゴム、ラテックス、エポキシ酢酸ビニール樹脂、エポキシ樹脂、アクリルフッ素樹脂等の樹脂を用いることができるが、アクリル系樹脂が望ましい。
さらにこれらの樹脂は、水性塗料のバインダー、水性樹脂エマルジョンとして適用することが望ましい。
As the binder resin of the coating composition of the present invention, resins such as natural rubber latex, acrylic resin, silicone resin, silicone rubber, latex, epoxy vinyl acetate resin, epoxy resin, and acrylic fluorine resin can be used. Resins are preferred.
Further, these resins are desirably applied as a binder of an aqueous paint or an aqueous resin emulsion.

水性樹脂エマルジョンとする場合は希釈剤が水であるから、有機溶媒と比較して火災の恐れが少なく、低毒性で有機溶媒のような不快臭が無く乾燥も速い。これに適した樹脂としては、エチレン−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体などの酢酸ビニル系エマルジョン、スチレン−ブタジエン系エマルジョン、アクリル系エマルジョンなどが挙げられ、これらは適宜、選択して用いられる。   In the case of an aqueous resin emulsion, since the diluent is water, there is less risk of fire as compared with an organic solvent, and it has low toxicity, has no unpleasant odor like an organic solvent, and dries quickly. Suitable resins include a vinyl acetate emulsion such as an ethylene-vinyl acetate copolymer and a vinyl chloride-vinyl acetate copolymer, a styrene-butadiene emulsion, and an acrylic emulsion. Used as

さらに、本発明の塗料組成物として、通常塗料に加えられる添加物、例えば顔料、粘度調整剤、レベリング剤、沈降防止剤、可塑剤、界面活性剤、防錆剤等を任意の割合で添加できる。
また、本発明の塗料は、上記水性塗料の他、油性塗料、酒精塗料、セルロース塗料としても広範囲に適用できる。
以下に本発明を実施例により説明する。
Further, as the coating composition of the present invention, additives which are usually added to coatings, for example, pigments, viscosity modifiers, leveling agents, anti-settling agents, plasticizers, surfactants, rust inhibitors and the like can be added at an arbitrary ratio. .
Further, the paint of the present invention can be widely applied as an oil-based paint, an alcoholic paint, and a cellulose paint in addition to the water-based paint.
Hereinafter, the present invention will be described with reference to examples.

テストコース(富士スピードウエイ)に於いて、実車走行テストを実施した。
平均速度を時速60km/hと、80km/hとし、それぞれ200km走行した比較実験結果を表1に示す。
テスト実施日の天候は晴れ、気温22度、風速3.8mであった。
テスト実施前、実験車のガソリンタンクから全てのガソリンを抜き取り、空の状態にしてから50Lずつ定量のガソリンを入れてテストを実施し、テスト終了時に再び燃料を抜き取り、残量を正確に計測した。その際の手順と条件は以下のとおりである。
On a test course (Fuji Speedway), an actual vehicle running test was conducted.
Table 1 shows the results of comparative experiments in which the average speed was 60 km / h and the speed was 80 km / h, and the vehicle ran 200 km each.
The weather on the test day was sunny, the temperature was 22 degrees Celsius, and the wind speed was 3.8 meters.
Before conducting the test, all the gasoline was drained from the gasoline tank of the experimental car, and the test was carried out by emptying the tank and adding a fixed amount of gasoline in 50 L increments. At the end of the test, the fuel was drained again and the remaining amount was accurately measured. . The procedure and conditions at that time are as follows.

1.機能性塗料組成物をコーティングする前のテストを、トヨタクラウン(2500cc)平成11年式、走行距離25300km表示と、ダイハツシャレード(1600cc)平成7年式、走行距離52870km表示の2台で実施した。
2.電気石の微細粉10重量%、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂90重量%の混合微粉末40重量部と、光触媒 活性二酸化チタン15重量部、アクリル樹脂エマルジョン(固形分30%、水70%)100重量部を含有する機能性塗料組成物を、0.05m/mのアルミ箔に1m2当り220g塗布し、コーティング層を形成したものをエヤークリーナーボックスに装着した。
3.機能性塗料組成物をコーティングしたアルミ箔の装着は、エヤークリーナー(紙製)を一旦取り出し、該アルミ箔を空気吸入路内壁とエヤークリーナーボックス内壁に、総面積0.402m2、0.458m2をそれぞれ装着した。その後、機能性塗料組成物コーティング後のテストを同様に実施した。
4.該アルミ箔からのマイナスイオン発生量を計測した結果、1cm3当り4050個のマイナスイオン発生量が確認された。マイナスイオン発生量の測定のための計測器として(株)シグマテック製SC−50を用いた。
なお、機能性塗料組成物によりコーティング層を形成したアルミ箔を用いた理由は、同一条件での比較試験を行うため、すなわち、同一表面積、同一車などで、コーティング層の有無をアルミ箔の張り替えにより実施してマイナスイオンの発生量を変化させるためである。
5.機能性塗料組成物を、直接空気吸入路内壁とエヤークリーナー内壁に塗布し、コーティング層を形成した場合も、同様の効果が得られた。
1. The test before coating the functional paint composition was carried out on two models: Toyota Crown (2500 cc), 1999 type, display of 25,300 km, and Daihatsu Charade (1600 cc), 1995 type, display of 52,870 km.
2. Tourmaline fine powder 10% by weight, 40% by weight of a mixed fine powder of 90% by weight of zircon dioxide raw material sand containing a small amount of natural radioactive element and lanthanide rare earth element, 15% by weight of photocatalytically active titanium dioxide, acrylic resin emulsion (solid (30% in water, 70% in water) 100 g of a functional coating composition containing 100 parts by weight of the coating composition was applied to 0.05 m / m of aluminum foil in an amount of 220 g per m 2 , and the coated layer was mounted on an air cleaner box. .
3. For mounting the aluminum foil coated with the functional paint composition, the air cleaner (made of paper) is once taken out, and the aluminum foil is put on the inner wall of the air suction passage and the inner wall of the air cleaner box in a total area of 0.402 m 2 and 0.458 m 2. Was attached. Thereafter, the test after coating the functional coating composition was similarly performed.
4. The amount of negative ions generated from the aluminum foil was measured. As a result, 4050 negative ions were generated per cm 3 . SC-50 manufactured by Sigma-Tech Co., Ltd. was used as a measuring instrument for measuring the amount of generated negative ions.
The reason for using an aluminum foil with a coating layer formed of a functional paint composition was to conduct a comparative test under the same conditions, that is, to change the presence or absence of the coating layer on the same surface area, the same car, etc. To change the amount of generated negative ions.
5. The same effect was obtained when the functional coating composition was directly applied to the inner wall of the air suction passage and the inner wall of the air cleaner to form a coating layer.

Figure 0003603961
Figure 0003603961

電気石の微細粉3重量%と、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂97重量%との混合微粉末10重量部と、光触媒活性二酸化チタン5重量部と、アクリル樹脂エマルジョン(固形分30%、水分70%)100重量部を含有する機能性塗料組成物を作製した。該塗料を0.05m/mのアルミ箔表面にスプレイガンで1m2当り220g塗布し、コーティング層を形成した。 10 parts by weight of a mixed powder of 3% by weight of fine powder of tourmaline, 97% by weight of zircon dioxide raw material sand containing trace amounts of natural radioactive elements and lanthanide rare earth elements, 5 parts by weight of photocatalytically active titanium dioxide, and acrylic resin A functional coating composition containing 100 parts by weight of an emulsion (solid content 30%, water content 70%) was prepared. The paint was applied to a surface of 0.05 m / m aluminum foil with a spray gun at 220 g / m 2 to form a coating layer.

該アルミ箔を用い、ガソリン車(日産スカイライン2000cc)の空気吸入路内壁とエヤークリーナー内壁の総面積0.405m2に張付密着装備した。該コーティング層を形成したアルミ箔表面を測定した結果、1cm3当り4500個のマイナスイオンの発生を確認した。
マイナスイオン発生量の測定は、(株)シグマテック社製イオン測定機SC−50を用いた。
Using this aluminum foil, it was attached to and adhered to a total area of 0.405 m 2 of the inner wall of the air intake passage and the inner wall of the air cleaner of a gasoline vehicle (Nissan Skyline 2000 cc). As a result of measuring the surface of the aluminum foil on which the coating layer was formed, generation of 4,500 negative ions per 1 cm 3 was confirmed.
The measurement of the amount of generated negative ions was performed using an ion meter SC-50 manufactured by Sigma-Tech Corporation.

空気吸入路内壁とエヤークリーナー内壁に、コーティング層を形成したアルミ箔を張付け密着装備した上記試験車を用い、比較試験を実施した。   A comparative test was carried out using the above-described test vehicle in which an aluminum foil having a coating layer was stuck to and adhered to the inner wall of the air suction passage and the inner wall of the air cleaner.

平均速度90km/h(80〜100km/h)で、200km走行した結果、燃料のガソリンは24.5Lを消費し、燃料消費量は8.15km/Lとなった。
一方、コーティング層を有しない状態での比較試験でも同様に、平均速度90km/hで、200km走行したが、ガソリンは34.5Lを消費し、燃料消費量は、5.8km/Lであった。
As a result of traveling 200 km at an average speed of 90 km / h (80 to 100 km / h), 24.5 L of gasoline was consumed, and the fuel consumption was 8.15 km / L.
On the other hand, in a comparative test without a coating layer, the vehicle traveled 200 km at an average speed of 90 km / h, but gasoline consumed 34.5 L and fuel consumption was 5.8 km / L. .

[比較例]
電気石、励起材(ジルコン鉱砂)、光触媒の有無による効果の差を明らかにするための比較試験結果を表2に示す。

Figure 0003603961
[Comparative example]
Table 2 shows the results of a comparative test for clarifying the difference in the effect depending on the presence or absence of tourmaline, excitable material (zirconite sand), and photocatalyst.
Figure 0003603961

比較塗料「比1−(3)」(マイナスイオン発生量720個/cm3)を用いて実施例1に準じ、0.05m/mのアルミ箔にスプレイガンにより200〜230g/m2の量を均一に吹き付けてコーティング層を形成した。実施例2に用いたエンジンを使用し、空気吸入路内壁とエヤークリーナー内壁に、総面積0.405m2を張り替え装備した。
実施例に準じ、実車テストを平均速度100km/hで実施した。その結果燃費消費量は塗布前5.80km/L、塗布後6.06km/Lとなり、燃焼性改善効果は僅かで、顕著な改善効果は認められなかった。
Using a comparative paint “ratio 1- (3)” (amount of negative ions generated: 720 / cm 3 ), a spray gun was used to spray 200 to 230 g / m 2 on 0.05 m / m aluminum foil according to Example 1. Was uniformly sprayed to form a coating layer. Using the engine used in Example 2, the inner wall of the air suction passage and the inner wall of the air cleaner were replaced with a total area of 0.405 m 2 .
According to the embodiment, an actual vehicle test was performed at an average speed of 100 km / h. As a result, the fuel consumption was 5.80 km / L before coating and 6.06 km / L after coating. The effect of improving flammability was slight, and no remarkable improvement was observed.

(A): 電気石5重量%、微量の放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂95重量%との混合微粉末10重量部と、光触媒活性二酸化チタン10重量部、および、
(B): 電気石5重量%、微量の放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂95重量%との混合微粉末30重量部と、光触媒活性二酸化チタン10重量部を、それぞれアクリル樹脂エマルジョン(固形分25%、水分75%)100重量部と混合して、機能性塗料組成物である、塗料A、塗料Bを作製した。該塗料を綿布にスプレイガンにより260〜280g/m2塗布し、それぞれ2種類の塗布綿布A、Bを作製した。
(A): 5% by weight of tourmaline, 10 parts by weight of a mixed fine powder of 95% by weight of zircon dioxide raw material sand containing a trace amount of radioactive element and lanthanide rare earth element, 10 parts by weight of photocatalytically active titanium dioxide, and
(B): 5 parts by weight of tourmaline, 30 parts by weight of a mixed fine powder of 95% by weight of zircon dioxide raw material sand containing a small amount of a radioactive element and a lanthanide rare earth element, and 10 parts by weight of photocatalytically active titanium dioxide are each an acrylic resin. It was mixed with 100 parts by weight of an emulsion (solid content 25%, water content 75%) to prepare a coating material A and a coating material B as functional coating compositions. The paint was applied to a cotton cloth by a spray gun at 260 to 280 g / m 2 to prepare two types of coated cotton cloths A and B, respectively.

該塗布綿布A、Bについてそれぞれマイナスイオンを測定した結果、塗布綿布Aは1cm3あたり2500個のマイナスイオン発生量を計測した。また、塗布綿布Bは1cm3あたり4500個のマイナスイオン発生量を計測した。
該塗布綿布A、Bをそれぞれ用いて、自家用車(トヨタクレスタ3000cc)の空気吸入路内壁とエヤークリーナー内壁に、0.54m2相当を張付け密着装備した。塗布綿布Bを用いる場合は、Aを剥ぎ取り交替し、張り替えてからテストを行った。
As a result of measuring the negative ions for each of the coated cotton cloths A and B, the coated cotton cloth A measured 2500 negative ions generated per 1 cm 3 . In addition, the amount of generated negative ions of 4500 pieces per 1 cm 3 of the applied cotton cloth B was measured.
Using the coated cotton cloths A and B, 0.54 m 2 equivalent was stuck to the inner wall of the air suction passage and the inner wall of the air cleaner of a private car (Toyota Cresta 3000 cc), and closely attached. When using the coated cotton cloth B, A was peeled off and replaced, and the test was performed after replacing the cloth.

燃焼性改善効果を確認するテストは、それぞれ200kmずつを、平均速度50、80、100、120、140、150km/hで走行し、ガソリン1Lあたりの走行距離を換算して比較した。実施テストの結果を図1に示す。   In the test for confirming the flammability improvement effect, the vehicle traveled 200 km each at an average speed of 50, 80, 100, 120, 140 and 150 km / h, and the distance traveled per liter of gasoline was converted and compared. FIG. 1 shows the results of the implementation test.

テストの結果、塗布前(未使用時)の燃料消費量は1Lあたり約8kmを走行した。走行速度50、80、100、130km/hでは大きく変化しなかった。
これに対し、塗布綿布Aをエヤークリーナー内壁に装着した場合、燃料消費量は1Lあたり50km/hのとき8.8km、100km/hのとき9.5km、130km/hのとき最高の10.2kmを走行し、最大27.5%燃焼効率が改善した。
また、塗布綿布Bの場合、燃料消費量は1Lあたり走行速度50km/hのとき10.0km、100km/hのとき11.5km、120km/hのとき12.0km、130km/hのとき11.0km、150km/hのとき9.2kmとなり、120km/hのとき燃料消費改善率が最大となり、燃焼効率は改善した。
As a result of the test, the fuel consumption before application (when not used) was about 8 km per liter. At running speeds of 50, 80, 100 and 130 km / h, there was no significant change.
On the other hand, when the applied cotton cloth A is mounted on the inner wall of the air cleaner, the fuel consumption is 8.8 km per liter at 50 km / h, 9.5 km at 100 km / h, and the highest of 10.2 km at 130 km / h. And the combustion efficiency improved by up to 27.5%.
In the case of the coated cotton cloth B, the fuel consumption per liter is 10.0 km at a traveling speed of 50 km / h, 11.5 km at 100 km / h, 12.0 km at 120 km / h, and 11.1 km at 130 km / h. At 0 km and 150 km / h, it was 9.2 km, and at 120 km / h, the fuel consumption improvement rate was the maximum, and the combustion efficiency was improved.

実施例1に用いたコーティング層を形成したアルミ箔を、日産ディーゼル車(10tトラック)の空気吸入路の内壁とエヤークリーナーの内壁に総面積0.95m2を張付け装備した。
該ディーゼル車に軽油を使用して80km(70〜90km/h)でそれぞれ100kmの区間、燃料消費テストを実施した。その結果、燃料消費量は塗布前4.5km/L、塗布後5.8km/Lとなった。排気ガス中の二酸化炭素(CO2)発生量は、塗布前0.13ppm、塗布後0.01ppm、ハイドロカーボン(HC)は、塗布前30ppm、塗布後3ppmとなった。粒子状物質は、停止状態で実施した結果、塗布前3%、塗布後0%で無煙となった。本発明の機能性塗料組成物を用いてコーティング層を形成することにより、28%燃焼効率が改善した。
The aluminum foil having the coating layer used in Example 1 was attached to an inner wall of an air suction passage of an Nissan diesel vehicle (10 t truck) and an inner wall of an air cleaner so as to have a total area of 0.95 m 2 .
A fuel consumption test was performed on the diesel vehicle at a distance of 100 km at 80 km (70 to 90 km / h) using light oil. As a result, the fuel consumption was 4.5 km / L before coating and 5.8 km / L after coating. The amount of carbon dioxide (CO 2 ) generated in the exhaust gas was 0.13 ppm before application, 0.01 ppm after application, and the amount of hydrocarbon (HC) was 30 ppm before application and 3 ppm after application. As a result of the operation in the stopped state, the particulate matter became smokeless at 3% before application and at 0% after application. By forming a coating layer using the functional coating composition of the present invention, the combustion efficiency was improved by 28%.

燃焼性改善効果を確認するために実施したテストの結果を示す。The results of tests performed to confirm the effect of improving flammability are shown.

Claims (3)

電気石の微細粉1〜20重量%、微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂99〜80重量%との混合微粉1〜40重量部、および光触媒活性二酸化チタン1〜15重量部と塗料用バインダー100重量部を含有し、内燃機関の空気導入経路内壁および/またはエヤークリーナー内壁にコーティング層を形成して吸入空気中の酸素および水分を活性イオン化する内燃機関の燃焼性改善のための塗料組成物。   1 to 20% by weight of fine powder of tourmaline, 1 to 40 parts by weight of mixed fine powder of 99 to 80% by weight of zircon dioxide raw material sand containing a trace amount of natural radioactive element and lanthanide rare earth element, and 1 to 15 parts of photocatalytically active titanium dioxide Containing 100 parts by weight of a binder for paint and a coating layer on an inner wall of an air introduction path and / or an inner wall of an air cleaner of the internal combustion engine to improve the combustibility of the internal combustion engine by active ionization of oxygen and moisture in intake air. Paint composition for 前記微量の天然放射性元素とランタナイド希土類元素を含む二酸化ジルコン原料鉱砂の成分が、Fe23 20〜30%、CeO2、P25、SiO2 10〜20%、La23、Nd23、ZrO2、TiO2、Al23、CaO 2〜10%、ThO2 1〜6%であることを特徴とする請求項1記載の塗料組成物。 Component of zirconium dioxide material ore sand, including natural radioactive elements and lanthanide rare earth elements of the trace amount, Fe 2 O 3 20~30%, CeO 2, P 2 O 5, SiO 2 10~20%, La 2 O 3, Nd 2 O 3, ZrO 2, TiO 2, Al 2 O 3, CaO 2~10%, the coating composition of claim 1, wherein it is ThO 2 1 to 6%. 前記請求項1および2に記載の機能性塗料組成物により、内燃機関の空気導入経路内壁および/またはエヤークリーナー内壁にコーティング層を形成し、吸入空気中の酸素および水分を活性イオン化する内燃機関の燃焼性改善方法。   3. A functional coating composition according to claim 1, wherein a coating layer is formed on an inner wall of an air introduction path and / or an inner wall of an air cleaner of the internal combustion engine to activate and ionize oxygen and moisture in intake air. Combustibility improvement method.
JP2004063720A 2004-03-08 2004-03-08 Functional coating composition and method for improving flammability of internal combustion engine Expired - Lifetime JP3603961B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063720A JP3603961B1 (en) 2004-03-08 2004-03-08 Functional coating composition and method for improving flammability of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063720A JP3603961B1 (en) 2004-03-08 2004-03-08 Functional coating composition and method for improving flammability of internal combustion engine

Publications (2)

Publication Number Publication Date
JP3603961B1 true JP3603961B1 (en) 2004-12-22
JP2005248111A JP2005248111A (en) 2005-09-15

Family

ID=34056306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063720A Expired - Lifetime JP3603961B1 (en) 2004-03-08 2004-03-08 Functional coating composition and method for improving flammability of internal combustion engine

Country Status (1)

Country Link
JP (1) JP3603961B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383050C (en) * 2005-03-04 2008-04-23 河北工业大学 Tourmaline/titanium dioxide composite collosol containing rare earth and its preparation method and uses
JP4452321B1 (en) * 2009-10-23 2010-04-21 株式会社ブラフインターナショナル Functional coating composition with enhanced combustion efficiency improvement effect, rust prevention effect, and deodorization effect of internal combustion engine
WO2012174386A1 (en) * 2011-06-15 2012-12-20 Henkel Ag & Co. Kgaa Method and apparatus for reducing emissions and/or reducing friction in an internal combustion engine
CN103977811A (en) * 2014-05-14 2014-08-13 广西师范大学 A preparation method of a photocatalytic material capable of degrading air pollutants by utilization of an LED light source
WO2015056298A1 (en) * 2013-10-15 2015-04-23 有限会社 ビオセラ Mat coated with functional coating composition having increased combustion efficiency improvement effect for internal combustion engine
CN110373249A (en) * 2019-07-31 2019-10-25 上海金兆节能科技有限公司 One kind can repair lubricating grease and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677768B1 (en) * 2004-10-20 2005-08-03 英俊 原木 Paint composition
JP2007107491A (en) * 2005-10-17 2007-04-26 Seiji Baba Combustion accelerating air treatment device for displacement type internal combustion engine
JP2010051871A (en) * 2008-08-27 2010-03-11 Satoshi Yoshimura Filtering medium for air cleaner and method of manufacturing the same
JP2011032894A (en) * 2009-07-30 2011-02-17 Takashi Aramaki Air activation device for combustion engine and method of manufacturing the same
KR101154196B1 (en) 2009-11-04 2012-06-18 송인표 Combustion promotion system of the internal combustion engine which uses the negative ion occurrence material
JP5992268B2 (en) * 2011-09-13 2016-09-14 淳釋 中川 Method for producing combustion accelerator in internal combustion engine using liquid fossil fuel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383050C (en) * 2005-03-04 2008-04-23 河北工业大学 Tourmaline/titanium dioxide composite collosol containing rare earth and its preparation method and uses
JP4452321B1 (en) * 2009-10-23 2010-04-21 株式会社ブラフインターナショナル Functional coating composition with enhanced combustion efficiency improvement effect, rust prevention effect, and deodorization effect of internal combustion engine
JP2011089040A (en) * 2009-10-23 2011-05-06 Burafu International:Kk Functional coating composition with enhanced combustion efficiency effect, rust prevention effect, and deodorization effect of internal combustion engine
WO2012174386A1 (en) * 2011-06-15 2012-12-20 Henkel Ag & Co. Kgaa Method and apparatus for reducing emissions and/or reducing friction in an internal combustion engine
CN103608563A (en) * 2011-06-15 2014-02-26 汉高股份有限及两合公司 Method and apparatus for reducing emissions and/or reducing friction in internal combustion engine
JP2014517208A (en) * 2011-06-15 2014-07-17 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Method and apparatus for reducing emissions and / or reducing friction in internal combustion engines
WO2015056298A1 (en) * 2013-10-15 2015-04-23 有限会社 ビオセラ Mat coated with functional coating composition having increased combustion efficiency improvement effect for internal combustion engine
CN103977811A (en) * 2014-05-14 2014-08-13 广西师范大学 A preparation method of a photocatalytic material capable of degrading air pollutants by utilization of an LED light source
CN103977811B (en) * 2014-05-14 2016-08-24 广西师范大学 A kind of preparation method of the catalysis material utilizing LED light source degraded air pollutants
CN110373249A (en) * 2019-07-31 2019-10-25 上海金兆节能科技有限公司 One kind can repair lubricating grease and preparation method thereof

Also Published As

Publication number Publication date
JP2005248111A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP3603961B1 (en) Functional coating composition and method for improving flammability of internal combustion engine
CN101177586B (en) Paint for automobile exhaust purification in tunnel and underground car park
Thirumalai et al. Superior photocatalytic, electrocatalytic, and self-cleaning applications of Fly ash supported ZnO nanorods
CN106110885B (en) Highly effective air purification air photo-catalytic filtering screen and preparation method thereof
CN100441644C (en) Coating composition
CN107519861A (en) A kind of cerium manganese composite oxides catalyst, preparation method and the usage
JP4452321B1 (en) Functional coating composition with enhanced combustion efficiency improvement effect, rust prevention effect, and deodorization effect of internal combustion engine
Speziale et al. Development of multifunctional coatings for protecting stones and lime mortars of the architectural heritage
Xiao et al. The activity of acrylic-silicon/nano-TiO2 films for the visible-light degradation of formaldehyde and NO2
CN103194147A (en) Nanometre photocatalysed formaldehyde-eliminating emulsion paint and preparation method thereof
Fu et al. Graft of lacunary Wells–Dawson heteropoly blue on the surface of TiO 2 and its photocatalytic activity under visible light
WO2015056298A1 (en) Mat coated with functional coating composition having increased combustion efficiency improvement effect for internal combustion engine
Lv et al. Synergistically assembled graphene/ZnO composite to enhance anticorrosion performance of waterborne epoxy coatings
CN105778749A (en) Formaldehyde degrading waterborne wood coating
CN104785244A (en) Room-temperature air purification non-photo-catalyst and preparation method thereof
US10919022B2 (en) Exhaust gas purifying agent for automobiles and method of producing thereof
JP2001221109A (en) Internal combustion engine and automobile
CN109020387A (en) A kind of graphene oxide diatom ooze composite material and preparation method
Park et al. Evaluation of NOx removal performance of foam composites with titanium dioxide and active carbon
JP2006176740A (en) Coating material composition for improving combustion efficiency and method for improving combustion efficiency
CN104192897A (en) Preparation method for nano TiO2 material as well as self-cleaning paint containing nano TiO2 material and method for manufacturing self-cleaning glass
JP2005089749A (en) Coating material composition for improving combustion efficiency and method for improving combustion efficiency
CN101768384A (en) Nanoscale coating additive for effectively decomposing formaldehyde and application thereof
CN103028399A (en) Alumina microsphere air purifying agent, preparation method and application of air purifying agent
WO2023243622A1 (en) Solvent for exhaust gas purification agent, composition for exhaust gas purification agent, and exhaust gas purification agent

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8