JP3603515B2 - Polymer having thiourea group and heavy metal scavenger comprising the same - Google Patents

Polymer having thiourea group and heavy metal scavenger comprising the same Download PDF

Info

Publication number
JP3603515B2
JP3603515B2 JP34387996A JP34387996A JP3603515B2 JP 3603515 B2 JP3603515 B2 JP 3603515B2 JP 34387996 A JP34387996 A JP 34387996A JP 34387996 A JP34387996 A JP 34387996A JP 3603515 B2 JP3603515 B2 JP 3603515B2
Authority
JP
Japan
Prior art keywords
polymer
thiourea
mol
heavy metal
polyvinylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34387996A
Other languages
Japanese (ja)
Other versions
JPH10182732A (en
Inventor
汪芳 白井
睦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP34387996A priority Critical patent/JP3603515B2/en
Publication of JPH10182732A publication Critical patent/JPH10182732A/en
Application granted granted Critical
Publication of JP3603515B2 publication Critical patent/JP3603515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規なチオ尿素基を有する高分子に関する。該高分子は重金属捕捉剤として利用できる。
【0002】
【従来の技術】
近年、ごみ焼却場、メッキ工場、写真現像所、廃棄物処理場等の廃水中に含まれる重金属による汚染が問題になっており、その除去方法が各種検討されつつある。例えば、現在、行われている方法としては、中和凝集沈殿、硫化ソーダにより溶解度積の小さい硫化物沈殿にする方法、キレート樹脂による捕捉方法等が知られている。
しかしながら、中和凝集沈殿は重金属のなかでも水銀は十分除去できない。また、硫化ソーダによる方法では水銀の除去も可能であるが、処理液のpHによっては有害ガスである硫化水素発生の恐れがあり、また、悪臭が強く実使用に難がある。更に、キレート樹脂による方法は重金属捕捉能力に優れるが、共存金属の吸着があり効率が悪く、コスト高となる。
【0003】
以上の技術の欠点を改善する方法として、水溶性高分子による重金属捕捉剤を用いた方法がある。現在、実用化されているものとして、ポリアミンのジチオカルバミン酸誘導体が高い重金属捕捉性能を有するが、分子量の高い高分子が得られにくく、また、分解による二硫化炭素の発生などの問題がある。他にポリアミドアミンのチオ尿素誘導体を重金属捕捉剤として用いる方法が特開平3−221579に開示されているが、性能としてなお十分ではない。
【0004】
一方、金属と錯体形成能力があるポリアミンとしてポリビニルアミンが知られている。このポリビニルアミンは、近年、N−ビニルカルボン酸アミドを重合してから加水分解することにより工業的に入手が容易な高分子となっていること、ポリエチレンイミン等のポリアミンに比べ、1級アミンの含有率が高いこと、更に凝集性の高い高分子量のものも容易に得られること、などの利点がある。もっとも、このポリビニルアミンの金属との錯体形成能力は十分とは言えず、特に、需要が大きい水銀などの重金属に対する錯体形成能力が低く、重金属捕捉剤として利用されていない。
【0005】
【発明が解決しようとする課題】
本発明は、以上のような従来の重金属捕捉剤が有する欠点を克服できるような新規な高分子を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は上記の状況に鑑み検討した結果、ポリビニルアミンより容易に製造することができるチオ尿素基を有する高分子が、重金属、特に水銀に関して高い吸着力があることを見出し、本発明に到達した。即ち、本発明は、下記(1)で表される繰り返し単位を1〜100モル%含有し、チオ尿素基を有する高分子に関するものであり、該高分子は重金属捕捉剤として好適に使用することができる。
【0007】
【化5】

Figure 0003603515
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の高分子(以下「ポリチオ尿素」という)は、上記(1)で表される繰り返し単位(以下「チオ尿素単位」という)を1〜100モル%、好ましくは10〜90モル%、特に好ましくは20〜80%である。このポリチオ尿素が水溶性である場合は、1規定の食塩水中0.1g/dlの溶液として、25℃で測定した還元粘度が、通常0.1〜10dl/gである。また、チオ尿素単位70%を越えると水不溶化するので水溶性用途の場合は、チオ尿素単位が70%以下、好ましくは65モル%以下とする。ポリチオキサン尿素を固体として用いる場合は転化率をあげても全く差しつかえない。また、転化率が低すぎるとポリビニルアミンへの重金属捕捉能力が低下するので、ポリチオ尿素を重金属捕捉剤として使用する場合はあまり好ましくない。
【0009】
以上のポリチオ尿素の製造方法は特に限定されないが、好適には、ポリビニルアミンとチオシアン酸アンモンとを反応させることにより得られる。チオシアン酸アンモンは通常0.1〜10当量用いられるが、過剰量用いる方が反応速度の点から好ましい。通常、ポリビニルアミンの水溶液にチオシアン酸アンモンを加えて反応させる。50〜100℃で加温して反応させることが好ましく、反応時間は通常0.5〜500時間である。
【0010】
上記原料に用いるポリビニルアミンとは、本願においては後述の式(3)で表されるくり返し単位(以下「ビニルアミン単位」という)を含有する高分子を意味する。その製造方法は特に限定はなく、古くから知られているポリアクリルアミドのホフマン反応法や、N−ビニルコハク酸イミドの重合してから加水分解する方法であってもよいが、製造が容易な点、分子量のコントロールが容易な点、更に共重合等による改質が容易な点などから、一般式CH=CHNHCOR(式中、Rは水素原子もしくは炭素数1〜4のアルキル基を表す。)で示されるN−ビニルカルボン酸アミドを含むモノマーを重合し、得られた重合体であるポリビニルアミドを加水分解する方法が最も望ましい。N−ビニルカルボン酸アミドとしては、N−ビニルホルムアミド又はN−ビニルアセトが好ましい。重合方法はバルク重合、水溶液重合、懸濁重合、乳化重合などの公知の方法によって製造される。重合はイオン重合、ラジカル重合のいずれによってもよいが、アゾ開始剤を用いたラジカル重合が特に好ましい。なお、他の単量体、例えば、アクリロニトリル、アクリルアミド、アクリル酸エステル、酢酸ビニル、アクリル酸などで共重合を行ってもよい。
【0011】
かかる重合により得られるポリビニルアミドは、そのアミド基部分を所望量、加水分解することによりポリビニルアミンに誘導する。その加水分解率は通常5〜100モル%である。加水分解は酸又はアルカリを用いた方法のいずれであってもよい。酸としては、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸、燐酸、スルファミン酸、アルカンスルホン酸等が挙げられるが、好ましくは塩酸である。また、アルカリとしては、水酸化ナトリウム、水酸化カリウム、第4級アンモニウムヒドロキサイド等が挙げられる。酸又はアルカリの使用量は、ポリビニルアミドのアミド基に対して、通常0.1〜5倍モルの範囲で所望の加水分解率に応じて適宜使用される。加水分解温度は、通常40〜150℃、好ましくは90〜130℃であり、反応時間は通常0.5〜10時間程度である。また、このようにして得られるポリビニルアミンは前記の重合条件により所望の分子量のものを得ることができるが、1規定の食塩水中0.1g/dlの溶液として、25℃で測定した還元粘度の値が、通常0.1〜10dl/gである。
【0012】
以上のような方法で得られる本発明のポリチオ尿素は、前記(1)で表されるチオ尿素単位以外の任意成分として、ポリビニルアミド及びポリビニルアミン由来の下記(2)で表されるくり返し単位(以下「ビニルアミド単位」という)を通常0〜95モル%、特に1〜90モル%含有し、同時に下記(3)で表されるビニルアミン単位を通常0〜95モル%、特に1〜90モル%含有する。
【0013】
【化6】
Figure 0003603515
【0014】
【化7】
Figure 0003603515
【0015】
(上式(2)において、Rは水素原子もしくは炭素数1〜4のアルキル基を表す。)
以上のポリチオ尿素は、そのまま各種用途に利用してもよいし、エチレングリコールジグリシジルエーテル等の公知の架橋剤を用いてゲル化させてもよい。
【0016】
【実施例】
次に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
実施例1
(ポリチオ尿素の合成)
ポリビニルアミン塩酸塩5gとチオシアン酸アンモン80gを100mlの水に溶解し、攪拌しながら90〜95℃で3日間反応させた。その後、透析により精製し、更に、凍結乾燥により粉末の生成物を得、IRスペクトルにより、チオ尿素化されていることを確認した。原料ポリビニルアミンでは観測されなかった1354cm−1、1094cm−1にC=Sの伸縮振動による吸収が確認された。また、ポリビニルアミン塩酸塩と該生成物を1規定の食塩水中0.1g/dlの溶液として、25℃で測定した還元粘度は各々約4dl/gであった。
【0017】
実施例2
(ポリチオ尿素ゲルの合成)
ポリビニルアミン水溶液10mlにエチレングリコールジグリシジルエーテルを加えさらに流動パラフィン200gを加えて5時間攪拌して架橋度4.5%のポリビニルアミンゲルを得た。このゲルを3日間水洗した後塩酸でpH2.0にした溶液に一昼夜浸漬し、塩酸塩とした。次に、充分水洗したあと、60gのチオシアン酸アンモンを溶解した。50mlの水中に加え、90〜95℃で5日間反応させた。その後充分水洗した。実験1と同様にIRによりチオ尿素基の導入が確認された。
【0018】
実施例3〜9
表−1に示したように反応原料と反応時間を適宜変更した以外は、実施例1と同様の方法で以下の条件でポリチオ尿素を合成した。転化率は反応終了後の液に一定量の硝酸銀を加え過剰のチオシアン酸アンモンを沈殿させて除き、更に、ミョウバンを加え、チオシアン酸アンモンで滴定してFeSCNの赤色になる点から銀の残量を測定して反応終了後の残チオシアン酸量を測定した。結果を表−1に示す。
【0019】
【表1】
Figure 0003603515
* 水から析出
** 実施例2と同様のポリマーゲルを使用
【0020】
(金属吸着測定)
実施例9のポリマーゲルを用いチオ尿素化前のポリビニルアミンゲルと、ポリチオ尿素ゲルへの金属イオンの吸着試験を行った。数値はゲル1gあたりの金属の吸着量(mmol)である。条件はゲル重量10mgを250ppmの金属イオンを含む水溶液(pH=2.9)に浸漬して吸着量を測定した。結果を表−2に示す。表−2より、チオ尿素化することで吸着量が増加していることがわかる。
【0021】
【表2】
Figure 0003603515
【0022】
また、水銀イオンと他の金属イオンの共存下での結果を表−3に示す。いずれの場合も金属イオンの吸着量は増加し、特に、水銀イオンの吸着量がポリビニルアミンの15倍ほどに増加していることが判明した。
【0023】
【表3】
Figure 0003603515
【0024】
【発明の効果】
本発明の高分子であるポリチオ尿素は安定であり、分解して有害ガスを発生したり、悪臭を発する等の問題は生じないと同時に、重金属に対して強い親和性を示す。特に、水銀に対しても高い錯体形成能力がある。この理由として、ポリチオ尿素のイオウ含有アミノ基であるチオ尿素基が、従来からのポリビニルアミン等でのアミノ基と比較して、いわゆるソフトな塩基(soft base)となり、ソフトな酸(soft acid)である水銀イオンにより高い親和性を示せるようになったものと考えられる。
【0025】
また、本発明の高分子であるポリチオ尿素は、溶液中の塩濃度やpH変化に対してもその吸着性の変化が小さく、重金属のイオンの吸着力を高く維持することができる。この理由として、チオ尿素基が通常のアミノ基と異なり、pHによりその乖離性が変化しないためと考えられる。
以上の本発明のポリチオ尿素は、重金属を含む廃水、例えばメッキ工業での廃水の処理などにおいてその重金属分を吸着除去するための重金属捕捉剤としての応用が期待される。他に重金属の担体として用い、導電性高分子として電子材料分野の応用も規定される。
【0026】
更に、本発明のポリチオ尿素は、原料としてポリビニルアミンを用いる場合、そのポリビニルアミンが数千から数百万の分子量まで自在に調製できるので、ポリチオ尿素もその広い範囲の分子量で合成できる。ポリチオ尿素が低分子量であれば水に溶解した場合にその粘性が低いメリットがあり、溶解や希釈も容易である。また、高分子量にすれば凝集力を持つことが期待でき、それにより、重金属イオンを含む懸濁液に用いて凝集沈殿と重金属の除去や固定を同時にできる利点もある。この場合、公知の凝集剤、例えば、ポリビニルアミン等を併用することも効果的である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer having a novel thiourea group. The polymer can be used as a heavy metal scavenger.
[0002]
[Prior art]
BACKGROUND ART In recent years, contamination by heavy metals contained in wastewater from garbage incineration plants, plating factories, photographic development laboratories, waste treatment plants, and the like has become a problem, and various methods for removing the metals have been studied. For example, as the methods currently used, there are known a neutralization coagulation sedimentation, a method of forming a sulfide precipitate having a small solubility product by sodium sulfide, a method of trapping with a chelate resin, and the like.
However, the neutralized coagulated sediment cannot sufficiently remove mercury among heavy metals. In addition, mercury can be removed by the method using sodium sulfide, but depending on the pH of the processing solution, there is a risk that hydrogen sulfide, which is a harmful gas, may be generated, and the odor is so strong that practical use is difficult. Further, the method using a chelate resin is excellent in the ability to capture heavy metals, but has a low efficiency due to adsorption of coexisting metals, resulting in high cost.
[0003]
As a method of remedying the above-mentioned disadvantages of the technology, there is a method using a heavy metal scavenger using a water-soluble polymer. Currently, polyamine dithiocarbamic acid derivatives which have been put to practical use have high heavy metal capturing performance, but have problems such as difficulty in obtaining high molecular weight polymers and generation of carbon disulfide due to decomposition. Another method using a thiourea derivative of polyamidoamine as a heavy metal scavenger is disclosed in JP-A-3-221579, but the performance is still insufficient.
[0004]
On the other hand, polyvinylamine is known as a polyamine capable of forming a complex with a metal. In recent years, this polyvinylamine has become a polymer which is industrially easily obtained by polymerizing N-vinylcarboxylic acid amide and then hydrolyzing it, and has a higher primary amine value than polyamine such as polyethyleneimine. There are advantages such as a high content ratio, and a high molecular weight material having high cohesiveness can be easily obtained. However, the ability of polyvinylamine to form a complex with a metal cannot be said to be sufficient. In particular, the ability to form a complex with heavy metals such as mercury, which is in great demand, is low, and is not used as a heavy metal scavenger.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel polymer which can overcome the above-mentioned drawbacks of the conventional heavy metal scavenger.
[0006]
[Means for Solving the Problems]
The present inventors have studied in view of the above situation, and found that a polymer having a thiourea group that can be easily produced from polyvinylamine has a high adsorptivity for heavy metals, particularly mercury. Reached. That is, the present invention relates to a polymer containing a repeating unit represented by the following (1) in an amount of 1 to 100 mol% and having a thiourea group, and the polymer is preferably used as a heavy metal scavenger. Can be.
[0007]
Embedded image
Figure 0003603515
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The polymer of the present invention (hereinafter referred to as "polythiourea") contains the repeating unit represented by the above (1) (hereinafter referred to as "thiourea unit") in an amount of 1 to 100 mol%, preferably 10 to 90 mol%, particularly preferably 10 to 90 mol%. Preferably it is 20 to 80%. When the polythiourea is water-soluble, the reduced viscosity measured at 25 ° C. as a 0.1 g / dl solution in 1 N saline is usually 0.1 to 10 dl / g. When the thiourea unit exceeds 70%, the thiourea unit is insoluble in water. Therefore, in the case of a water-soluble use, the thiourea unit is 70% or less, preferably 65 mol% or less. When polythioxan urea is used as a solid, there is no problem even if the conversion is increased. On the other hand, if the conversion is too low, the ability of heavy metals to be trapped by polyvinylamine will be reduced. Therefore, it is not very preferable to use polythiourea as a heavy metal trapping agent.
[0009]
The method for producing the above polythiourea is not particularly limited, but is preferably obtained by reacting polyvinylamine with ammonium thiocyanate. Ammonium thiocyanate is usually used in an amount of 0.1 to 10 equivalents, but it is preferable to use an excess amount in terms of reaction rate. Usually, ammonium thiocyanate is added to an aqueous solution of polyvinylamine to cause a reaction. The reaction is preferably performed by heating at 50 to 100 ° C, and the reaction time is usually 0.5 to 500 hours.
[0010]
In the present application, the polyvinylamine used as the raw material means a polymer containing a repeating unit represented by the following formula (3) (hereinafter, referred to as “vinylamine unit”). The production method is not particularly limited, and may be a Hoffman reaction method of polyacrylamide, which has been known for a long time, or a method of polymerizing N-vinyl succinimide and then hydrolyzing it. The general formula CH 2量 CHNHCOR (wherein R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms) in terms of easy control of molecular weight and easy modification by copolymerization and the like. Most preferred is a method of polymerizing a monomer containing N-vinyl carboxylic acid amide as shown and hydrolyzing the resulting polymer, polyvinyl amide. As the N-vinyl carboxylic acid amide, N-vinyl formamide or N-vinyl aceto is preferable. The polymerization method is produced by a known method such as bulk polymerization, aqueous solution polymerization, suspension polymerization, and emulsion polymerization. The polymerization may be ionic polymerization or radical polymerization, but radical polymerization using an azo initiator is particularly preferred. The copolymerization may be performed with another monomer, for example, acrylonitrile, acrylamide, acrylate, vinyl acetate, acrylic acid, or the like.
[0011]
The polyvinylamide obtained by such polymerization is hydrolyzed to a desired amount in the amide group portion to derive polyvinylamine. The hydrolysis rate is usually 5 to 100 mol%. The hydrolysis may be any of the methods using an acid or an alkali. Examples of the acid include hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid, sulfamic acid, and alkanesulfonic acid, with hydrochloric acid being preferred. Examples of the alkali include sodium hydroxide, potassium hydroxide, and quaternary ammonium hydroxide. The amount of the acid or alkali used is appropriately used usually in the range of 0.1 to 5 moles per mol of the amide group of polyvinylamide, depending on the desired hydrolysis rate. The hydrolysis temperature is usually 40 to 150 ° C, preferably 90 to 130 ° C, and the reaction time is usually about 0.5 to 10 hours. The polyvinylamine thus obtained can have a desired molecular weight under the above-mentioned polymerization conditions. However, as a solution of 0.1 g / dl in 1 N saline, the reduced viscosity of the polyvinylamine measured at 25 ° C. The value is usually 0.1 to 10 dl / g.
[0012]
The polythiourea of the present invention obtained by the method as described above includes, as an optional component other than the thiourea unit represented by the above (1), a repeating unit represented by the following (2) derived from polyvinylamide and polyvinylamine ( (Hereinafter referred to as "vinylamide unit") in an amount of usually from 0 to 95 mol%, particularly from 1 to 90 mol%, and at the same time, from 0 to 95 mol%, especially from 1 to 90 mol% of a vinylamine unit represented by the following (3). I do.
[0013]
Embedded image
Figure 0003603515
[0014]
Embedded image
Figure 0003603515
[0015]
(In the above formula (2), R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The above polythiourea may be used for various applications as it is, or may be gelled using a known crosslinking agent such as ethylene glycol diglycidyl ether.
[0016]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
Example 1
(Synthesis of polythiourea)
5 g of polyvinylamine hydrochloride and 80 g of ammonium thiocyanate were dissolved in 100 ml of water, and reacted at 90 to 95 ° C. for 3 days with stirring. Thereafter, the product was purified by dialysis, and further, a powdery product was obtained by freeze-drying, and it was confirmed from the IR spectrum that the product was thioureaized. Raw material polyvinyl 1354Cm -1 was not observed in the amine, the absorption due to stretching vibration of C = S was observed at 1094 cm -1. The reduced viscosities of the polyvinylamine hydrochloride and the product as a 0.1 g / dl solution in 1 N saline at 25 ° C. were about 4 dl / g.
[0017]
Example 2
(Synthesis of polythiourea gel)
Ethylene glycol diglycidyl ether was added to 10 ml of an aqueous solution of polyvinylamine, and 200 g of liquid paraffin was further added. The mixture was stirred for 5 hours to obtain a polyvinylamine gel having a degree of crosslinking of 4.5%. The gel was washed with water for 3 days and then immersed in a solution adjusted to pH 2.0 with hydrochloric acid for 24 hours to obtain a hydrochloride. Next, after sufficiently washing with water, 60 g of ammonium thiocyanate was dissolved. The mixture was added to 50 ml of water and reacted at 90 to 95 ° C. for 5 days. Thereafter, it was sufficiently washed with water. As in Experiment 1, introduction of a thiourea group was confirmed by IR.
[0018]
Examples 3 to 9
Polythiourea was synthesized in the same manner as in Example 1 under the following conditions except that the reaction raw materials and the reaction time were appropriately changed as shown in Table 1. The conversion was determined by adding a certain amount of silver nitrate to the solution after the reaction to remove the excess ammonium thiocyanate, further adding alum, and titrating with ammonium thiocyanate to determine the FeSCN red point. Was measured to determine the amount of residual thiocyanic acid after completion of the reaction. The results are shown in Table 1.
[0019]
[Table 1]
Figure 0003603515
* Precipitated from water ** The same polymer gel as in Example 2 was used.
(Metal adsorption measurement)
Using the polymer gel of Example 9, an adsorption test of metal ions on polyvinylamine gel before thiourea conversion and polythiourea gel was performed. The numerical value is the amount of metal adsorption (mmol) per gram of the gel. The conditions were as follows: 10 mg of the gel was immersed in an aqueous solution containing 250 ppm of metal ions (pH = 2.9) to measure the amount of adsorption. The results are shown in Table-2. From Table 2, it can be seen that the amount of adsorption is increased by thiourea conversion.
[0021]
[Table 2]
Figure 0003603515
[0022]
Table 3 shows the results in the presence of mercury ions and other metal ions. In each case, it was found that the amount of adsorbed metal ions increased, and in particular, the amount of adsorbed mercury ions increased about 15 times that of polyvinylamine.
[0023]
[Table 3]
Figure 0003603515
[0024]
【The invention's effect】
The polythiourea, which is the polymer of the present invention, is stable and does not decompose to generate harmful gases or generate a bad odor, and at the same time exhibits strong affinity for heavy metals. In particular, it has a high complexing ability even for mercury. The reason for this is that the thiourea group, which is the sulfur-containing amino group of polythiourea, is a so-called soft base, and is a soft acid, as compared with the amino group of conventional polyvinylamine and the like. It is considered that the higher affinity can be exhibited by the mercury ion.
[0025]
In addition, the polythiourea, which is the polymer of the present invention, has a small change in adsorptivity even when the salt concentration or pH changes in the solution, and can maintain a high adsorption force for heavy metal ions. It is considered that this is because the thiourea group is different from a normal amino group and its dissociation property does not change with pH.
The above polythiourea of the present invention is expected to be applied as a heavy metal scavenger for adsorbing and removing heavy metals in the treatment of wastewater containing heavy metals, for example, wastewater in the plating industry. In addition, the application in the field of electronic materials is defined as a conductive polymer used as a heavy metal carrier.
[0026]
Furthermore, when polyvinylamine is used as a raw material for the polythiourea of the present invention, the polyvinylamine can be freely prepared with a molecular weight of several thousand to several million, so that polythiourea can also be synthesized with a wide range of molecular weight. When polythiourea has a low molecular weight, it has the advantage of low viscosity when dissolved in water, and is easily dissolved and diluted. In addition, a high molecular weight can be expected to have a cohesive force, whereby there is an advantage that coagulation and precipitation and heavy metal removal and fixation can be simultaneously performed using a suspension containing heavy metal ions. In this case, it is also effective to use a known coagulant such as polyvinylamine in combination.

Claims (8)

下記(1)で表される繰り返し単位を1〜100モル%、下記(2)で表されるくり返し単位を0〜95モル%、及び下記(3)で表されるくり返し単位を0〜95モル%含有することを特徴とするチオ尿素基を有する高分子。
Figure 0003603515
Figure 0003603515
Figure 0003603515
(上式(2)において、Rは水素原子もしくは炭素数1〜4のアルキル基を表す。)
1-100 mol% of the repeating unit represented by the following (1), 0-95 mol% of the repeating unit represented by the following (2), and 0-95 mol% of the repeating unit represented by the following (3). % , A polymer having a thiourea group.
Figure 0003603515
Figure 0003603515
Figure 0003603515
(In the above formula (2), R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
(1)で表される繰り返し単位を1〜98モル%、下記(2)で表されるくり返し単位を1〜90モル%、及び下記(3)で表されるくり返し単位を1〜90モル%含有することを特徴とする請求項1のチオ尿素基を有する高分子。1 to 98 mol% of the repeating unit represented by (1), 1 to 90 mol% of the repeating unit represented by the following (2), and 1 to 90 mol% of the repeating unit represented by the following (3) The polymer having a thiourea group according to claim 1, which is contained. 水溶性であって、1規定の食塩水中0.1g/dlの溶液として、25℃で測定した還元粘度が0.1〜10dl/gであることを特徴とする請求項1又は2のチオ尿素基を有する高分子。3. The thiourea according to claim 1, wherein the thiourea is water-soluble and has a reduced viscosity of 0.1 to 10 dl / g measured at 25 DEG C. as a 0.1 g / dl solution in 1N saline. Polymer having a group. ポリビニルアミンとチオシアン酸アンモンとを反応させることを特徴とする請求項1ないし3のいずれかのチオ尿素基を有する高分子の製造方法。The method for producing a polymer having a thiourea group according to any one of claims 1 to 3, wherein polyvinylamine is reacted with ammonium thiocyanate. ポリビニルアミンが、一般式CH2=CHNHCOR(式中、Rは水素原子もしくは炭素数1〜4のアルキル基を表す。)で示されるN−ビニルカルボン酸アミドを含むモノマーを重合し、得られた重合体を加水分解することにより得られることを特徴とする請求項4のチオ尿素基を有する高分子の製造方法。Polyvinylamine was obtained by polymerizing a monomer containing N-vinylcarboxylic acid amide represented by the general formula CH 2 CHCHNHCOR (wherein R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). 5. The method for producing a polymer having a thiourea group according to claim 4, wherein the method is obtained by hydrolyzing a polymer. N−ビニルカルボン酸アミドがN−ビニルホルムアミド又はN−ビニルアセトアミドであることを特徴とする請求項5のチオ尿素基を有する高分子の製造方法。The method for producing a polymer having a thiourea group according to claim 5, wherein the N-vinylcarboxylic acid amide is N-vinylformamide or N-vinylacetamide. 請求項1ないし3のいずれかのチオ尿素基を有する高分子からなる重金属捕捉剤。A heavy metal scavenger comprising the polymer having a thiourea group according to any one of claims 1 to 3. 重金属が水銀であることを特徴とする請求項7の重金属捕捉剤。The heavy metal scavenger according to claim 7, wherein the heavy metal is mercury.
JP34387996A 1996-12-24 1996-12-24 Polymer having thiourea group and heavy metal scavenger comprising the same Expired - Fee Related JP3603515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34387996A JP3603515B2 (en) 1996-12-24 1996-12-24 Polymer having thiourea group and heavy metal scavenger comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34387996A JP3603515B2 (en) 1996-12-24 1996-12-24 Polymer having thiourea group and heavy metal scavenger comprising the same

Publications (2)

Publication Number Publication Date
JPH10182732A JPH10182732A (en) 1998-07-07
JP3603515B2 true JP3603515B2 (en) 2004-12-22

Family

ID=18364948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34387996A Expired - Fee Related JP3603515B2 (en) 1996-12-24 1996-12-24 Polymer having thiourea group and heavy metal scavenger comprising the same

Country Status (1)

Country Link
JP (1) JP3603515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484299B2 (en) * 2000-02-10 2010-06-16 ダイヤニトリックス株式会社 Polymer molded product and ion exchanger or antibacterial agent using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998494A (en) * 1973-01-09 1974-09-18
JPS6052161B2 (en) * 1982-08-20 1985-11-18 工業技術院長 Method for producing chelate resin for mercury removal
JPH03221579A (en) * 1990-01-26 1991-09-30 Arakawa Chem Ind Co Ltd Heavy metal-trapping agent
JPH05287685A (en) * 1992-04-02 1993-11-02 Nippon Shokubai Co Ltd Dyeing of cellulosic fiber
JPH0768313B2 (en) * 1993-06-22 1995-07-26 三菱化学株式会社 Flocculant made of vinylamine copolymer
US5891956A (en) * 1995-05-30 1999-04-06 The Regents Of The University Of California, Office Of Technology Transfer Water-soluble polymers and compositions thereof

Also Published As

Publication number Publication date
JPH10182732A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
TW211020B (en) Dithiocarbamate polymers
EP2556032B1 (en) Metal scavenging polymers and uses thereof
EP2556094B1 (en) Metal scavenging polymers
JP3412842B2 (en) Metal collecting agent and method for producing the same
CN112375191B (en) Block copolymer, preparation method and application thereof
JP3264348B2 (en) Polymer heavy metal scavenger, alkali metal dithiocarbamate chloride polymer, and methods for producing them
JP3603515B2 (en) Polymer having thiourea group and heavy metal scavenger comprising the same
Todorov et al. Chemical modification of poly (acrylonitrile) with amines
JP3786293B2 (en) Method for recovering selenium from a solution containing selenium
EP0535836A1 (en) Dithiocarbamate polymers
JP4008977B2 (en) Chitosan derivative, production method thereof and metal ion adsorbent
JP3783970B2 (en) Method for recovering selenium from a solution containing selenium
JPS6281478A (en) Sequestrant and method of sequestration
JP2001031723A (en) Water-soluble temperature-sensitive resin, and flocculant
JPS5823429B2 (en) Novel water-soluble polymer metal scavenger
US20150144569A1 (en) Poly(zwitterion-alt-sulfur dioxide) copolymer
JP3722245B2 (en) Sludge dewatering method
JPH0344562B2 (en)
CN114106238A (en) Zwitterionic flocculant and preparation method thereof
JP2007152305A (en) Method for treating organic sludge
JP4631137B2 (en) ALLYLAMINE POLYMER HAVING TERMINAL MERCAPTO GROUP AND PROCESS FOR PRODUCING THE SAME
JPS627492A (en) Method for collecting metal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees