JP3602956B2 - Method for measuring superoxide dismutase activity and active oxygen - Google Patents

Method for measuring superoxide dismutase activity and active oxygen Download PDF

Info

Publication number
JP3602956B2
JP3602956B2 JP01336598A JP1336598A JP3602956B2 JP 3602956 B2 JP3602956 B2 JP 3602956B2 JP 01336598 A JP01336598 A JP 01336598A JP 1336598 A JP1336598 A JP 1336598A JP 3602956 B2 JP3602956 B2 JP 3602956B2
Authority
JP
Japan
Prior art keywords
wst
sod
active oxygen
measuring
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01336598A
Other languages
Japanese (ja)
Other versions
JPH11196896A (en
Inventor
浩之 受田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dojindo Laboratory and Co Ltd
Original Assignee
Dojindo Laboratory and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dojindo Laboratory and Co Ltd filed Critical Dojindo Laboratory and Co Ltd
Priority to JP01336598A priority Critical patent/JP3602956B2/en
Publication of JPH11196896A publication Critical patent/JPH11196896A/en
Application granted granted Critical
Publication of JP3602956B2 publication Critical patent/JP3602956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スーパーオキシドジスムターゼの活性および活性酸素を測定するための新規な方法に関する。
【0002】
【従来の技術とその問題点】
動植物のからだをつくる細胞はすべて酸素呼吸をしており、酸素なしでは細胞は窒息をしてしまい生きていくことができない。しかしながら、酸素は時として生体にとって極めて有害な形に変化することがある。例えば、有害酸素種の中で、活性酸素の1種であり三重項酸素が1電子還元を受け生成するスーパーオキシドアニオン(O ) は、キサンチン酸化酵素(XOD)、NADH酸化酵素などの酵素反応や還元性物質の自動酸化で生成し、動脈硬化症、肺気腫、Fanconi 症などの発症に直接的に関わっていることが知られている。さらに、活性酸素は、白血球の殺菌作用など多くの生理現象に関与し、例えば、顆粒球やマクロファージなどの白血球の機能が正常であれば、刺激時に細胞外にスーパーオキシドアニオンやヒドロキシラジカル(・OH)などの活性酸素が放出されることも知られている。
【0003】
一方、生体の側はO をはじめとする活性酸素種に対して種々の調節機構を備えている。例えば、我々は、有害な活性酸素の無毒化機構としてスーパーオキシドジスムターゼ(SOD)酵素を備えている。この酵素は2分子のO を不均化して酸素と過酸化水素に変換する反応を触媒し、結果的にO の反応性を低下させることで、その毒性を低減化する。これまでにSODの活性(肝臓のSOD活性を基礎代謝率で割った値)と動物種の最大寿命との間に高い直線的な関係が成立すること、遺伝的にSODを欠損したショウジョウバエの寿命が短く、逆に、高いSOD活性を有する突然変異体のセンチュウが長寿であることなどが明らかにされてきた。このことは酸素呼吸をする生物に対してSODの活性が寿命を決定する因子のひとつであることを強く示唆している。
【0004】
したがって、活性酸素やその調節に関与する酵素の活性を測定することは、生体の機能や状態を調べる研究、疾病の診断および生体成分を分析する臨床検査などにおいてきわめて重要であり、これまでにも各種の方法が案出されている。特に、老化や寿命と深い関わりを有することが明らかにされつつあるSODについては、上記のごとき医療分野のみならず、老化予防や健康増進の観点からSOD様活性を有する成分が賦与された食品の開発が進められている点において食品分野においても、その活性の実用的な測定技術の確立が望まれている。
【0005】
従来よりSODの活性測定法としては、酵素反応(XODの反応)や化学反応を用いて発生させたO の捕捉能力をテトラゾリウム化合物(テトラゾリウム塩)と競合させて測定する方法が一般的に利用されている。しかしながら、一般に利用されているテトラゾリウム化合物であるニトロブルーテトラゾリウム(NBT)は還元を受けると水に不溶のホルマザンになり、分光光度計のセルをはじめ様々な器具に吸着してしまい、非常に取扱いにくい。そのため臨床検査で汎用されている連続流れ分析システムには不向きであった。また、この方法はO 発生系のXODの還元型と直接的な酸化還元反応を生じることから、高濃度のSODを反応系に添加しても、NBTホルマザンの生成を完全に阻害することができないという現象が認められ、活性測定の解釈が非常に複雑になるという欠点を抱えている。
【0006】
本発明者らは、先に、還元型ホルマザンが水可溶性である新しいテトラゾリウム化合物XTT(3´−{1−[ (フェニルアミノ)−カルボニル ]−3,4−テトラゾリウム}−ビス(4−メトキシ−6−ニトロ)ベンゼンスルホン酸ハイドレート)を用いるSOD活性測定法を提案した(Analytical Biochemistry,251, 206−209 (1997))。この方法においては、XTTの還元型ホルマザンが水に溶け易い性質を有していることから、測定器具への吸着という現象は改善された。さらに、XTTはXODとの直接的な相互作用を示さず、反応系へのSODの添加により、XTTに対する100 %の阻害が得られることもわかった。しかしながら、XTTを用いるこの方法は、NBTを用いる方法と比較すると、低いpHにおいて極度にSOD活性の検出感度が低下する難点が見出された。また、測定に最適な濃度のXTT溶液を調製するためには、加熱によりXTTを溶解させなければならない。したがって、XTTを用いる方法も、未だSOD活性を測定する理想的なものとは言えない。
【0007】
【課題を解決するための手段】
本発明の目的は、簡便で迅速に活性酸素やSODを測定することのできる新しい技術を開発することにある。本発明者は、このたび、特定のテトラゾリウム化合物を用いることによって、上述したような従来のSOD活性測定法の欠点を解消し得ることを見出し本発明を完成した。
【0008】
すなわち、本発明は、スーパーオキシドアニオン発生系に、下記の式(1)で表されるテトラゾリウム化合物とスーパーオキシドジスムターゼ酵素とを添加してスーパーオキシドアニオンに対する該テトラゾリウム化合物および該酵素の反応を競合させ、該テトラゾリウム化合物がスーパーオキシドアニオンにより還元されて生成したホルマザンの吸光度を測定することにより該スーパーオキシドジスムターゼ酵素の活性を求めることを特徴とするスーパーオキシドジスムターゼ酵素活性の測定法を提供するものである。
【0009】
【化3】

Figure 0003602956
但し、式(1)中、R,R,RおよびRは、それぞれ独立して、水素原子、ニトロ基、アルコキシル基またはハロゲン原子を示し、Mはアルカリ金属またはアンモニウムを示す。
【0010】
式(1)のテトラゾリウム化合物は、SOD(スーパーオキシドジスムターゼ)活性を測定するのに特に適しているが、活性酸素そのものを測定するのにも適用することができる。すなわち、本発明は、別の態様として、活性酸素発生系に、下記の式(1)で表されるテトラゾリウム化合物を添加して、該テトラゾリウム化合物が活性酸素により還元されて生成したホルマザンの吸光度を測定することにより該活性酸素を定量することを特徴とする活性酸素の測定法も提出する。
【0011】
【発明の実施の形態】
本発明のSOD活性測定法および活性酸素測定法は、上記式(1)で表されるテトラゾリウム化合物の特性を利用することによって実施される。式(1)で表される化合物のうち、特に好ましいものは、R〜Rのうち少なくとも1つがニトロ基であるものであり、例えば、RおよびRが水素、Rがニトロ基、Rがヨウ素であるテトラゾリウム化合物(以下、本明細書においてはWST−1と略称する)、または、Rが水素、RおよびRがニトロ基、Rがメトキシ基であるテトラゾリウム化合物(以下、WST−8と略称する)等がある。
【0012】
本発明に従いSOD活性を測定するには、適当な緩衝液中でスーパーオキシドアニオン発生系に、式(1)で表されるテトラゾリウム化合物とスーパーオキシドジスムターゼ(SOD)酵素を添加する。スーパーオキシドジスムターゼ発生系としては、キサンチン酸化酵素(XOD)を用いるキサンチン(またはヒポキサンチン)−キサンチン酸化酵素系が一般的であるが、その他の化学反応によるスーパーオキシドアニオン発生系も適用可能である。
【0013】
後述するように式(1)の化合物の特性の1つは、スーパーオキシドアニオンのような活性酸素により還元されて吸光光度分析の可能な還元型ホルマザンを生成することにある。したがって、スーパーオキシドアニオン発生系において、スーパーオキシドアニオンに対するテトラゾリウム化合物の反応(スーパーオキシドアニオンによる還元型ホルマザンの生成反応)と、スーパーオキシドアニオンに対するSODの反応(SODによるスーパーオキシドアニオンの不均化反応)とが競合し、SODの活性が高い程、前者の反応が阻害されホルマザンの吸光度変化は小さくなる。かくして、還元型ホルマザンの吸光度を測定することによりSODの活性を求めることができる。
【0014】
活性酸素によって還元されて水溶性ホルマザンを生成する式(1)のテトラゾリウム化合物を使用すれば、SOD活性を測定できるのみならず、活性酸素そのものを測定することもできる。この場合には、活性酸素発生系(インビトロ系のみならずインビボ系も含む)に、式(1)で表されるテトラゾリウム化合物を添加して、該テトラゾリウム化合物が活性酸素により還元されて生成した還元型ホルマザンの吸光度を測定することにより活性酸素を定量することができる。なお、ここで、活性酸素とは、スーパーオキシドアニオンを意味する。
【0015】
本発明者らは、先に、式(1)に重複する一連のテトラゾリウム化合物の創製に成功し、そして、該化合物が乳酸脱水素酵素等の脱水素酵素の定量に使用し得ることを見出している(特許第2592436 号および特願平8−121134)。本発明者は、この種のテトラゾリウム化合物について更に研究を重ねた結果、式(1)で表される化合物が、スーパーオキシドアニオンのような活性酸素によって還元される性質を有し、しかも、以下に記すように、SOD活性測定に従来より採用されているNBTおよびXTTのそれぞれの欠点を解消して両化合物の長所を兼備し、SOD活性測定、さらには活性酸素測定における理想的な試薬となり得ることを見出し、本発明の測定法を案出した。
【0016】
1.先ず、式(1)の化合物は、スーパーオキシドアニオンにより還元されて、XTTと同様に水溶性のホルマザンを生成する。したがって、該化合物を用いる測定系においては測定器具への固形分の吸着という問題は生じない。
【0017】
2.また、式(1)の化合物は、常温で溶解するので、SOD活性や活性酸素の測定における測定液の調製が容易である。例えば、SOD活性測定においては、テトラゾリウム化合物を0.75mM程度の濃度に設定するのが一般的であるが、XTTは加熱しなければその濃度に調製できないのに対して、式(1)の化合物は常温でも簡単に該濃度に調製できる。
【0018】
3.さらに、式(1)のテトラゾリウム化合物(酸化型)は高濃度の溶液でも殆ど無色に近く、吸光度がきわめて低い。例えば、同じ0.2mM の終濃度で比較したとき、XTTは約0.04AUを示したのに対して、WST−1やWST−8のような式(1)の化合物は殆ど無視し得る程度の吸光度しか示さない。したがって、式(1)のテトラゾリウム化合物の被還元性を利用してSOD活性や活性酸素を測定すると、ローブランクで測定を行うことができるという利点がある。
【0019】
4.式(1)のテトラゾリウム化合物を用いるSOD活性測定は、従来のテトラゾリウム化合物と同等以上の感度を示し、しかも感度のpH依存性がきわめて小さい。例えば、SODに対する検量線を作成し、50%の阻害を示す濃度の比較から感度の比較を行ったところ、pH10.2において式(1)に属するWST−1は、XTTとほぼ同じ感度、またNBTの約2倍の感度を示した。しかも、XTTはpHの低下とともに感度が大きく減少するが、式(1)の化合物ではこのようなpH依存性は見られず、pH8ではWST−1の方がXTTよりも3倍程度、感度が高くなることも見出された。
【0020】
5.式(1)の化合物は測定系に含まれる酵素類と直接的な相互作用を示さないので、測定結果の解釈が容易になる。例えば、式(1)に属するWST−1やWST−8を用いたSOD活性測定においても、XTTを用いる場合と同様に反応系へのSODの添加により100 %の阻害または100 %に近い阻害が認められ、NBTを用いる場合の問題点であったXODとの直接的な相互作用は存しないことが明らかにされている。
【0021】
本発明のSOD活性測定法および活性酸素測定法において用いられる式(1)のテトラゾリウム化合物は、特許第2592436 号および特願平8−121134に記載しているように常法に従って合成することができる。すなわち、例えば、官能基RおよびRを有するフェニルヒドラジンにアルデヒド化合物をアルコール溶媒中で反応させることにより、対応するヒドラゾンを合成する。次いで、このヒドラゾンに、官能基RおよびRを有するフェニルジアゾニウム塩を水溶媒中塩基性条件下で反応させて、式(1)に対応するホルマザンを得る。ここで、塩基性化剤としては水酸化ナトリウム、水酸化カリウムなどが用いられる。次に、得られたホルマザンを亜硝酸ブチルまたは次亜塩素酸ナトリウム等の酸化剤を用いてアルコール溶媒中で酸化することにより式(1)のテトラゾリウム化合物を得ることができる。
【0022】
【実施例】
本発明の特徴を更に明らかにするため、式(1)で表されるテトラゾリウム化合物をSOD活性測定に適用した実施例を以下に示す。
式(1)に属するテトラゾリウム化合物としてWST−1(R=R=H;R=NO;R=I)およびWST−8(R=H;R=R=NO;R=OCH)を合成して、その特性を評価し、必要に応じてXTTおよびNBTとの比較を行った。活性酸素(スーパーオキシドアニオン)発生系として、キサンチン酸化酵素(XOD)によるキサンチン−キサンチン酸化酵素系を採用した。なお、実験に用いた試薬の入手源は次のとおりである:SOD(ウシ赤血球由来;EC 1. 15. 1. 1. ;4000U/mgタンパク質;Sigma 社製)、XOD(バターミルク由来;EC 1. 2. 3. 2 ;0.3U/mg ;オリエンタル酵母(株)製)、NBT(和光純薬(株)製)、XTT(米国Polyscience 社製)、GO(グルコースオキシダーゼ)(Aspergillu niger由来;EC 1. 1. 3. 4 ;110U/mg ;天野製薬(株)製)。
【0023】
SOD活性測定は次のように行った:50mMの炭酸ナトリウム緩衝液(pH9.4 および10.2の場合)またはリン酸ナトリウム緩衝液(pH7.0 、7.5 および8.0 の場合)の2.5ml に、3mMのキサンチン、3mMのEDTA、WST溶液、およびSOD含有溶液または水を、各0.1ml ずつ添加した。XOD溶液(0.1ml)を添加することにより反応を開始させた。分光光度計(Pharmacia Biotech Ultrospec 3000)を用い25℃で、WST−1については438nm 、WST−8については460nm における吸光度変化を測定することによりSOD活性を求めた。XTTおよびNBTを用いる場合も同様であるが、吸光度変化の測定は、それぞれ、470nm および560nm において行った。
【0024】
SOD活性測定への適用性の検討:
図1に、pH10.2、キサンチン濃度3mMおよびWST−1またはWST−8の濃度0.75mMにおけるXOD濃度の変化に対する吸光度変化を示す。XOD濃度(XOD活性)が約155mU/mlに達するまで、XOD濃度の上昇に従って、吸光度変化がほぼ直線的に上昇していることが認められる。また、図2に、pH10.2、XOD濃度58mU/ml 、WST−1またはWST−8の濃度0.75mMにおけるキサンチン濃度に対する吸光度変化を示すが、キサンチン濃度の上昇に伴い吸光度変化がほぼ直線的に上昇している。
【0025】
さらに、図3に、pH10.2、キサンチン濃度3mMおよびXOD濃度58mU/ml におけるWST−1またはWST−8の濃度変化に対する吸光度変化を示している。図に示されるように、WST−1または−8の濃度が一定値に到達するまでWST−1または−8の濃度の上昇に伴い吸光度変化がほぼ直線的に上昇している。
【0026】
以上の結果から示されるように、WST−1やWST−8のようなテトラゾリウム化合物は、スーパーオキシドアニオン発生系においてその生成量に比例する吸光度変化を発現し、SOD活性の測定に適用できることが明らかである。
【0027】
pHの影響および酵素との相互作用の検討:
図4に、キサンチン濃度3mM、XOD濃度58mU/ml 、WST−1またはWST−8の濃度0.75mMにおける吸光度変化に対するpHの影響を示す。WST−1およびWST−8のいずれについても、pH9.4 において最大の吸光度変化が認められる。
【0028】
さらに、上述の最適測定条件、すなわち、キサンチン濃度3mM、XOD濃度58mU/ml 、およびWST−1またはWST−8の濃度0.75mMにおけるSODの阻害を測定した。WST−1によるSOD阻害曲線を図5に、WST−8によるSOD阻害曲線を図6にそれぞれ示す。WST−1およびWST−8のいずれを用いる系においてもSOD濃度が高くなると100 %または100 %に近い阻害が得られ、これらのテトラゾリウム化合物がスーパーオキシドアニオン発生に用いられる酵素(XOD)と相互作用しないことが示唆される。
【0029】
特に注目すべきは、WST−1を用いる場合であり、図5に示されるように、pH8.0 、9.4 および10.2のいずれにおいてもSOD添加による100 %の阻害が認められ、しかも、ほぼ同一のSOD阻害曲線が得られており、WST−1を用いる系の感度がpHに依存していないことを示している。ちなみに図7はpH10.2における阻害をXTTおよびNBTと比較して示すものであり(キサンチン濃度3mM;XOD濃度57mU/ml)、WST−1はXTTを用いる測定系と同様に100 %阻害が認められる。但し、前述したように、XTTはpHの低下とともに感度が大きく減少しpH8ではWST−1の方が感度が高くなった。
【0030】
本発明において用いるWST−1およびWST−8が酵素と相互作用しないことを確認するため、GOによるグルコース酸化反応系にWST−1およびWST−8を添加して還元型ホルマザンが生成するか否かを試験した。pH9.5 における結果を図8に示すが、吸光度の変化は見られずWST−1およびWST−8はGOとも相互作用しないことが明らかである。
【0031】
生体サンプルのSOD活性の実測
上述の最適条件下にWST−1およびWST−8、さらに、比較のためにXTTおよびNBTを用いてラットの血液サンプル中のSOD活性を測定した。なお、ラットの血液サンプルは次のように調製した:ラット(体重約500g)の血液に冷却した0.9%NaCl溶液を加え攪拌、遠沈を繰り返して得た赤血球に冷却蒸留水を加えて溶血赤血球を得た。これにエタノール/クロロホルムを加えて遠沈して得た上清を10mMリン酸緩衝液(pH7.8)を用いて4℃で透析し、これを遠心分離により沈殿を除去した上清をサンプルとした。
【0032】
SOD活性測定の結果を、各テトラゾリウム化合物を用いる方法について対比させて図9のA〜Cに示す。これらの図から理解されるように、WST−1を用いる方法は従来のNBTを用いる方法よりも高感度であり(図9のA)、XTTとほぼ同等の感度を有し(図9のB)、さらに、WST−1の方がWST−8よりも高い感度を有する(図9のC)。
【0033】
また、WST−1、WST−8、NBT、XTTのそれぞれを用いるSOD活性の値には良好な直線関係があり(図9のA、BおよびCにおけるr=0.999 、0.968 および0.950)、本発明に従うWST−1、WST−8のような化合物は、従来よりSOD測定に一般に使用されているNBTのような化合物に代わるSOD測定用試薬として適していることが明らかである。
【0034】
【発明の効果】
式(1)のテトラゾリウム化合物を利用する本発明のSOD活性測定法および活性酸素測定法は、測定液の調製が容易であり、分光光度計のセルなど器具類に固形分が吸着することもないので、簡便で迅速性を要求される連続流れ分析システムに適している。
特に、本発明のSOD活性測定法は、広範囲のpH領域にわたってデータ解析が容易で高感度の分析を行うことができるので、医療、臨床検査、機能性食品開発などにおいてSODまたは活性酸素と健康との関わりを探究する研究分野の発展に資するものと考えられる。
【図面の簡単な説明】
【図1】本発明に従うSOD活性測定法におけるXOD濃度と吸光度変化の関係の1例を示す。
【図2】本発明に従うSOD活性測定法におけるキサンチン濃度と吸光度変化の関係の1例を示す。
【図3】本発明に従うSOD活性測定法におけるテトラゾリウム化合物の濃度と吸光度変化の関係の1例を示す。
【図4】本発明に従うSOD活性測定法における吸光度変化に対するpHの影響の1例を示す。
【図5】本発明に従うSOD活性測定法におけるSOD阻害曲線の1例を示す。
【図6】本発明に従うSOD活性測定法におけるSOD阻害曲線の別の例を示す。
【図7】本発明に従うSOD活性測定法におけるSOD阻害曲線を従来より使用されていたテトラゾリウム化合物と比較して示す。
【図8】本発明において用いられるテトラゾリウム化合物のグルコース酸化反応系における吸光度変化の1例を示す。
【図9】本発明に従うテトラゾリウム化合物を用いて測定したラットの血液サンプルのSOD活性を従来の化合物を用いた場合と対比して示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel method for measuring the activity and active oxygen of superoxide dismutase.
[0002]
[Conventional technology and its problems]
All the cells that make up the body of animals and plants are breathing oxygen, and without oxygen the cells can choke and cannot survive. However, oxygen can sometimes change to a form that is extremely harmful to living organisms. For example, among the harmful oxygen species, a superoxide anion (O 2 ), which is one of active oxygens and is generated by triplet oxygen undergoing one-electron reduction, is an enzyme such as xanthine oxidase (XOD) and NADH oxidase. It is known that it is produced by a reaction or autoxidation of a reducing substance and is directly involved in the development of arteriosclerosis, emphysema, Fanconi's disease and the like. Furthermore, active oxygen is involved in many physiological phenomena such as bactericidal action of leukocytes. For example, if the functions of leukocytes such as granulocytes and macrophages are normal, superoxide anions and hydroxyl radicals (.OH ) Is also known to be released.
[0003]
On the other hand, the living body has various control mechanisms for reactive oxygen species including O 2 . For example, we have provided superoxide dismutase (SOD) enzymes as a mechanism for detoxifying harmful active oxygen. This enzyme catalyzes a reaction that disproportionates two molecules of O 2 to convert it into oxygen and hydrogen peroxide, thereby reducing the reactivity of O 2 , thereby reducing its toxicity. So far, a high linear relationship has been established between the activity of SOD (the value obtained by dividing the liver SOD activity by the basal metabolic rate) and the maximum life span of the animal species, and the longevity of Drosophila genetically deficient in SOD It has been revealed that the mutant nematode having high SOD activity has a long life. This strongly suggests that SOD activity is one of the factors that determine the lifespan of oxygen-respiring organisms.
[0004]
Therefore, measuring the activity of active oxygen and the enzymes involved in its regulation is extremely important in research for examining the function and condition of living organisms, diagnosis of diseases and clinical tests for analyzing biological components, etc. Various methods have been devised. In particular, regarding SOD, which is being clarified to have a deep relationship with aging and longevity, not only in the medical field as described above, but also in foods to which components having SOD-like activity are added from the viewpoint of aging prevention and health promotion. In terms of development, the establishment of a practical measurement technique for its activity is desired also in the food field.
[0005]
Conventionally, as a method for measuring the activity of SOD, a method of measuring the ability to capture O 2 generated by an enzyme reaction (XOD reaction) or a chemical reaction by competing with a tetrazolium compound (tetrazolium salt) is generally used. It's being used. However, nitro blue tetrazolium (NBT), which is a commonly used tetrazolium compound, is reduced to water-insoluble formazan when reduced, and is adsorbed to various instruments including a spectrophotometer cell, making it extremely difficult to handle. . Therefore, it was not suitable for a continuous flow analysis system widely used in clinical tests. The method also O 2 - it from causing a direct redox reaction and reduction of XOD generation system, the addition of high concentrations of SOD to the reaction system to completely inhibit the production of NBT formazan However, there is a defect that the interpretation of the activity measurement becomes very complicated.
[0006]
The present inventors have previously proposed a new tetrazolium compound XTT (3 ′-{1-[(phenylamino) -carbonyl] -3,4-tetrazolium} -bis (4-methoxy-) in which reduced formazane is water-soluble. A method for measuring SOD activity using (6-nitro) benzenesulfonic acid hydrate) was proposed (Analytical Biochemistry, 251, 206-209 (1997)). In this method, since the reduced formazane of XTT has a property of being easily dissolved in water, the phenomenon of adsorption to the measuring instrument was improved. In addition, XTT did not show a direct interaction with XOD, indicating that the addition of SOD to the reaction resulted in 100% inhibition of XTT. However, this method using XTT has a disadvantage that the detection sensitivity of SOD activity is extremely lowered at a low pH as compared with the method using NBT. Further, in order to prepare an XTT solution having an optimum concentration for measurement, the XTT must be dissolved by heating. Therefore, the method using XTT is still not ideal for measuring SOD activity.
[0007]
[Means for Solving the Problems]
An object of the present invention is to develop a new technique that can easily and quickly measure active oxygen and SOD. The present inventor has now found that the use of a specific tetrazolium compound can solve the above-mentioned drawbacks of the conventional SOD activity measurement method, and has completed the present invention.
[0008]
That is, in the present invention, a tetrazolium compound represented by the following formula (1) and a superoxide dismutase enzyme are added to a superoxide anion generating system to compete the reaction of the tetrazolium compound and the enzyme for superoxide anion. A method for measuring the activity of the superoxide dismutase enzyme, which comprises determining the activity of the superoxide dismutase enzyme by measuring the absorbance of formazan generated by reducing the tetrazolium compound with a superoxide anion. .
[0009]
Embedded image
Figure 0003602956
However, in the formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a nitro group, an alkoxyl group or a halogen atom, and M represents an alkali metal or ammonium.
[0010]
The tetrazolium compound of the formula (1) is particularly suitable for measuring SOD (superoxide dismutase) activity, but can also be used for measuring active oxygen itself. That is, in another aspect of the present invention, a tetrazolium compound represented by the following formula (1) is added to an active oxygen generation system, and the absorbance of formazan generated by reduction of the tetrazolium compound by active oxygen is determined. A method for measuring active oxygen, characterized in that the active oxygen is quantified by measuring, is also submitted.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The SOD activity measurement method and the active oxygen measurement method of the present invention are carried out by utilizing the characteristics of the tetrazolium compound represented by the above formula (1). Among the compounds represented by the formula (1), particularly preferred are compounds in which at least one of R 1 to R 4 is a nitro group. For example, R 1 and R 4 are hydrogen and R 2 is a nitro group. , A tetrazolium compound in which R 3 is iodine (hereinafter abbreviated as WST-1 in the present specification), or a tetrazolium compound in which R 1 is hydrogen, R 2 and R 3 are nitro groups, and R 4 is a methoxy group (Hereinafter abbreviated as WST-8).
[0012]
In order to measure the SOD activity according to the present invention, a tetrazolium compound represented by the formula (1) and a superoxide dismutase (SOD) enzyme are added to a superoxide anion generating system in a suitable buffer. As a superoxide dismutase generation system, a xanthine (or hypoxanthine) -xanthine oxidase system using xanthine oxidase (XOD) is generally used, but a superoxide anion generation system by other chemical reaction is also applicable.
[0013]
As described below, one of the characteristics of the compound of the formula (1) is that it is reduced by active oxygen such as superoxide anion to produce a reduced formazane that can be analyzed by absorptiometry. Therefore, in the superoxide anion generating system, the reaction of the tetrazolium compound with the superoxide anion (reduction of formazan by the superoxide anion) and the reaction of SOD with the superoxide anion (the disproportionation reaction of the superoxide anion with SOD) And the higher the activity of SOD, the more the former reaction is inhibited and the change in absorbance of formazan becomes smaller. Thus, the activity of SOD can be determined by measuring the absorbance of reduced formazan.
[0014]
The use of the tetrazolium compound of the formula (1), which is reduced by active oxygen to produce a water-soluble formazan, enables not only measurement of SOD activity but also measurement of active oxygen itself. In this case, a tetrazolium compound represented by the formula (1) is added to an active oxygen generating system (including not only an in vitro system but also an in vivo system), and the tetrazolium compound is reduced by active oxygen to form a reduced product. Active oxygen can be quantified by measuring the absorbance of type formazan. Here, the active oxygen means a superoxide anion.
[0015]
The present inventors have previously succeeded in creating a series of tetrazolium compounds overlapping formula (1), and have found that the compounds can be used for the quantification of dehydrogenases such as lactate dehydrogenase. (Japanese Patent No. 2592436 and Japanese Patent Application No. 8-121134). As a result of further studies on this kind of tetrazolium compound, the present inventor has found that the compound represented by the formula (1) has a property of being reduced by active oxygen such as a superoxide anion. As described above, it is possible to solve the respective disadvantages of NBT and XTT conventionally used for SOD activity measurement and to combine the advantages of both compounds, and to be an ideal reagent for SOD activity measurement and furthermore for active oxygen measurement. And devised a measuring method of the present invention.
[0016]
1. First, the compound of formula (1) is reduced by a superoxide anion to produce water-soluble formazan, similar to XTT. Therefore, in the measurement system using the compound, the problem of adsorption of the solid content to the measurement instrument does not occur.
[0017]
2. Further, since the compound of the formula (1) dissolves at room temperature, it is easy to prepare a measurement solution for measuring SOD activity and active oxygen. For example, in the measurement of SOD activity, the tetrazolium compound is generally set to a concentration of about 0.75 mM, but the XTT cannot be adjusted to that concentration without heating, whereas the compound of the formula (1) Can be easily adjusted to this concentration even at room temperature.
[0018]
3. Further, the tetrazolium compound (oxidized form) of the formula (1) is almost colorless even in a high-concentration solution, and has an extremely low absorbance. For example, when compared at the same final concentration of 0.2 mM, XTT showed about 0.04 AU, whereas compounds of formula (1) such as WST-1 and WST-8 were almost negligible. Shows only the absorbance of Therefore, when the SOD activity or active oxygen is measured by utilizing the reducibility of the tetrazolium compound of the formula (1), there is an advantage that the measurement can be performed with a raw blank.
[0019]
4. The SOD activity measurement using the tetrazolium compound of the formula (1) shows sensitivity equal to or higher than that of the conventional tetrazolium compound, and the sensitivity has very small pH dependence. For example, when a calibration curve for SOD was prepared and the sensitivity was compared from the comparison of the concentration showing 50% inhibition, at pH 10.2, WST-1 belonging to the formula (1) showed almost the same sensitivity as XTT, The sensitivity was about twice that of NBT. Moreover, although the sensitivity of XTT greatly decreases with a decrease in pH, such a pH dependence is not observed in the compound of the formula (1). At pH 8, WST-1 is about three times more sensitive than XTT. It was also found to be higher.
[0020]
5. Since the compound of the formula (1) does not directly interact with the enzymes contained in the measurement system, the interpretation of the measurement results is facilitated. For example, in the measurement of SOD activity using WST-1 or WST-8 belonging to the formula (1), similarly to the case of using XTT, the addition of SOD to the reaction system causes 100% inhibition or nearly 100% inhibition. It was confirmed that there was no direct interaction with XOD, which was a problem when using NBT.
[0021]
The tetrazolium compound of the formula (1) used in the SOD activity measurement method and the active oxygen measurement method of the present invention can be synthesized according to a conventional method as described in Japanese Patent No. 2592436 and Japanese Patent Application No. 8-121134. . That is, for example, the corresponding hydrazone is synthesized by reacting an aldehyde compound with phenylhydrazine having functional groups R 1 and R 2 in an alcohol solvent. Next, the hydrazone is reacted with a phenyldiazonium salt having functional groups R 3 and R 4 in an aqueous solvent under basic conditions to obtain formazan corresponding to the formula (1). Here, sodium hydroxide, potassium hydroxide, or the like is used as the basifying agent. Next, the obtained formazan is oxidized in an alcohol solvent using an oxidizing agent such as butyl nitrite or sodium hypochlorite to obtain a tetrazolium compound of the formula (1).
[0022]
【Example】
In order to further clarify the features of the present invention, an example in which the tetrazolium compound represented by the formula (1) is applied to SOD activity measurement will be described below.
As the tetrazolium compounds belonging to the formula (1), WST-1 (R 1 = R 4 = H; R 2 = NO 2 ; R 3 = I) and WST-8 (R 1 = H; R 2 = R 3 = NO 2) R 4 OOCH 3 ), its properties were evaluated, and compared with XTT and NBT as needed. As an active oxygen (superoxide anion) generating system, a xanthine-xanthine oxidase system using xanthine oxidase (XOD) was employed. The reagents used in the experiments were obtained from the following sources: SOD (derived from bovine erythrocyte; EC 1.15.1.1.1; 4000 U / mg protein; manufactured by Sigma), XOD (derived from buttermilk; EC) 1.2.3.2; 0.3 U / mg; manufactured by Oriental Yeast Co., Ltd.), NBT (manufactured by Wako Pure Chemical Industries, Ltd.), XTT (manufactured by Polyscience, USA), GO (glucose oxidase) ( Aspergillus niger ) Origin: EC 1.1.3.4; 110 U / mg; manufactured by Amano Pharmaceutical Co., Ltd.).
[0023]
SOD activity measurements were performed as follows: 50 mM sodium carbonate buffer (at pH 9.4 and 10.2) or sodium phosphate buffer (at pH 7.0, 7.5 and 8.0). To 2.5 ml, 0.1 mM each of 3 mM xanthine, 3 mM EDTA, WST solution, and SOD-containing solution or water were added. The reaction was started by adding the XOD solution (0.1 ml). The SOD activity was determined by measuring changes in absorbance at 438 nm for WST-1 and 460 nm for WST-8 at 25 ° C. using a spectrophotometer (Pharmacia Biotech Ultraspec 3000). The same applies to the case where XTT and NBT are used, but the measurement of absorbance change was performed at 470 nm and 560 nm, respectively.
[0024]
Examination of applicability to SOD activity measurement:
FIG. 1 shows the change in absorbance with respect to the change in XOD concentration at pH 10.2, xanthine concentration of 3 mM, and WST-1 or WST-8 concentration of 0.75 mM. It can be seen that the absorbance change increases almost linearly with increasing XOD concentration until the XOD concentration (XOD activity) reaches about 155 mU / ml. FIG. 2 shows the absorbance change with respect to the xanthine concentration at a pH of 10.2, an XOD concentration of 58 mU / ml, and a concentration of WST-1 or WST-8 of 0.75 mM. Has risen.
[0025]
FIG. 3 shows the change in absorbance with respect to the change in the concentration of WST-1 or WST-8 at a pH of 10.2, a xanthine concentration of 3 mM, and an XOD concentration of 58 mU / ml. As shown in the figure, the absorbance change increases almost linearly with the increase in the concentration of WST-1 or -8 until the concentration of WST-1 or -8 reaches a constant value.
[0026]
As shown from the above results, it is clear that tetrazolium compounds such as WST-1 and WST-8 exhibit a change in absorbance in proportion to the amount generated in a superoxide anion generating system, and can be applied to the measurement of SOD activity. It is.
[0027]
Examination of the effect of pH and interaction with enzymes:
FIG. 4 shows the effect of pH on the change in absorbance at a xanthine concentration of 3 mM, an XOD concentration of 58 mU / ml, and a WST-1 or WST-8 concentration of 0.75 mM. For both WST-1 and WST-8, the largest change in absorbance is observed at pH 9.4.
[0028]
Furthermore, inhibition of SOD was measured under the above-mentioned optimal measurement conditions, that is, a xanthine concentration of 3 mM, an XOD concentration of 58 mU / ml, and a WST-1 or WST-8 concentration of 0.75 mM. The SOD inhibition curve by WST-1 is shown in FIG. 5, and the SOD inhibition curve by WST-8 is shown in FIG. In systems using both WST-1 and WST-8, higher SOD concentrations provide 100% or near 100% inhibition, and these tetrazolium compounds interact with the enzyme (XOD) used to generate superoxide anions. Not suggested.
[0029]
Particularly noteworthy is the case where WST-1 is used. As shown in FIG. 5, 100% inhibition by the addition of SOD was observed at any of pH 8.0, 9.4 and 10.2, and , Almost the same SOD inhibition curve was obtained, indicating that the sensitivity of the system using WST-1 was not dependent on pH. FIG. 7 shows the inhibition at pH 10.2 in comparison with XTT and NBT (xanthine concentration 3 mM; XOD concentration 57 mU / ml). WST-1 showed 100% inhibition similarly to the measurement system using XTT. Can be However, as described above, the sensitivity of XTT greatly decreased with the decrease in pH, and the sensitivity of WST-1 was higher at pH 8 at pH 8.
[0030]
In order to confirm that WST-1 and WST-8 used in the present invention do not interact with the enzyme, whether WST-1 and WST-8 are added to the glucose oxidation reaction system by GO to form reduced formazane Was tested. The results at pH 9.5 are shown in FIG. 8, where no change in absorbance was observed, and it is clear that WST-1 and WST-8 do not interact with GO.
[0031]
Actual measurement of SOD activity of biological sample The SOD activity in a blood sample of a rat was measured using WST-1 and WST-8 under the above-mentioned optimum conditions, and for comparison, XTT and NBT. A rat blood sample was prepared as follows: a cold 0.9% NaCl solution was added to the blood of a rat (body weight: about 500 g), and the mixture was stirred and centrifuged repeatedly. Hemolysed red blood cells were obtained. The supernatant obtained by adding ethanol / chloroform thereto and centrifuging was dialyzed at 4 ° C. using 10 mM phosphate buffer (pH 7.8), and the supernatant obtained by removing the precipitate by centrifugation was used as a sample. did.
[0032]
The results of the SOD activity measurement are shown in FIGS. 9A to 9C in comparison with the method using each tetrazolium compound. As understood from these figures, the method using WST-1 has higher sensitivity than the method using the conventional NBT (FIG. 9A), and has almost the same sensitivity as XTT (FIG. 9B). ) Furthermore, WST-1 has higher sensitivity than WST-8 (C in FIG. 9).
[0033]
Also, there is a good linear relationship between the values of SOD activity using WST-1, WST-8, NBT and XTT (r = 0.999, 0.968 and 0 in FIGS. 9A, 9B and 9C). .950), and compounds such as WST-1 and WST-8 according to the present invention are apparently suitable as reagents for SOD measurement in place of compounds such as NBT conventionally conventionally used for SOD measurement. .
[0034]
【The invention's effect】
In the SOD activity measurement method and the active oxygen measurement method of the present invention using the tetrazolium compound of the formula (1), the measurement solution is easily prepared, and the solid content is not adsorbed on instruments such as a spectrophotometer cell. Therefore, it is suitable for a continuous flow analysis system that requires simple and quick operation.
In particular, the method for measuring SOD activity of the present invention can easily perform data analysis over a wide range of pH and can perform highly sensitive analysis. It is thought to contribute to the development of the research field that explores the involvement of the university.
[Brief description of the drawings]
FIG. 1 shows an example of the relationship between XOD concentration and change in absorbance in the SOD activity measurement method according to the present invention.
FIG. 2 shows an example of the relationship between xanthine concentration and change in absorbance in the SOD activity measurement method according to the present invention.
FIG. 3 shows an example of the relationship between the concentration of a tetrazolium compound and a change in absorbance in the SOD activity measurement method according to the present invention.
FIG. 4 shows an example of the effect of pH on a change in absorbance in the SOD activity measurement method according to the present invention.
FIG. 5 shows an example of an SOD inhibition curve in the SOD activity measurement method according to the present invention.
FIG. 6 shows another example of the SOD inhibition curve in the SOD activity measurement method according to the present invention.
FIG. 7 shows an SOD inhibition curve in the SOD activity measurement method according to the present invention, in comparison with a conventionally used tetrazolium compound.
FIG. 8 shows an example of a change in absorbance of a tetrazolium compound used in the present invention in a glucose oxidation reaction system.
FIG. 9 shows the SOD activity of a blood sample of a rat measured using a tetrazolium compound according to the present invention, as compared to the case using a conventional compound.

Claims (2)

スーパーオキシドアニオン発生系に、下記の式(1)で表されるテトラゾリウム化合物とスーパーオキシドジスムターゼ酵素とを添加してスーパーオキシドアニオンに対する該テトラゾリウム化合物および該酵素の反応を競合させ、該テトラゾリウム化合物がスーパーオキシドアニオンにより還元されて生成したホルマザンの吸光度を測定することにより該スーパーオキシドジスムターゼ酵素の活性を求めることを特徴とするスーパーオキシドジスムターゼ酵素活性の測定法。
Figure 0003602956
(式(1)中、R,R,RおよびRは、それぞれ独立して、水素原子、ニトロ基、アルコキシル基またはハロゲン原子を示し、Mはアルカリ金属またはアンモニウムを示す。)
A tetrazolium compound represented by the following formula (1) and a superoxide dismutase enzyme are added to the superoxide anion generating system to compete with the tetrazolium compound for the superoxide anion and the reaction of the enzyme. A method for measuring the activity of a superoxide dismutase enzyme, wherein the activity of the superoxide dismutase enzyme is determined by measuring the absorbance of formazan produced by reduction with an oxide anion.
Figure 0003602956
(In the formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a nitro group, an alkoxyl group or a halogen atom, and M represents an alkali metal or ammonium.)
活性酸素発生系に、下記の式(1)で表されるテトラゾリウム化合物を添加して、該テトラゾリウム化合物が活性酸素により還元されて生成したホルマザンの吸光度を測定することにより該活性酸素を定量することを特徴とする活性酸素の測定法。
Figure 0003602956
(式(1)中、R,R,RおよびRは、それぞれ独立して、水素原子、ニトロ基、アルコキシル基またはハロゲン原子を示し、Mはアルカリ金属またはアンモニウムを示す。)
Quantifying the active oxygen by adding a tetrazolium compound represented by the following formula (1) to the active oxygen generating system and measuring the absorbance of formazan generated by reduction of the tetrazolium compound by active oxygen. A method for measuring active oxygen, characterized in that:
Figure 0003602956
(In the formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a nitro group, an alkoxyl group or a halogen atom, and M represents an alkali metal or ammonium.)
JP01336598A 1998-01-06 1998-01-06 Method for measuring superoxide dismutase activity and active oxygen Expired - Lifetime JP3602956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01336598A JP3602956B2 (en) 1998-01-06 1998-01-06 Method for measuring superoxide dismutase activity and active oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01336598A JP3602956B2 (en) 1998-01-06 1998-01-06 Method for measuring superoxide dismutase activity and active oxygen

Publications (2)

Publication Number Publication Date
JPH11196896A JPH11196896A (en) 1999-07-27
JP3602956B2 true JP3602956B2 (en) 2004-12-15

Family

ID=11831084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01336598A Expired - Lifetime JP3602956B2 (en) 1998-01-06 1998-01-06 Method for measuring superoxide dismutase activity and active oxygen

Country Status (1)

Country Link
JP (1) JP3602956B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001290301A1 (en) * 2000-09-28 2002-04-08 Arkray, Inc. Process for producing protein decomposition product
JP6370577B2 (en) * 2014-03-26 2018-08-08 国立大学法人京都工芸繊維大学 Screening method for anti-aging substances
EP3623479B1 (en) * 2017-05-12 2021-07-07 Panasonic Intellectual Property Management Co., Ltd. Method for determining presence or absence of fungus belonging to genuscercospora or pseudocercospora in sample
CN110567947B (en) * 2019-05-29 2024-05-03 北京泰德制药股份有限公司 Kit for detecting activity of phosphatized recombinant human superoxide dismutase

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592436B2 (en) * 1993-09-01 1997-03-19 株式会社同仁化学研究所 New water-soluble tetrazolium compounds
JPH08256796A (en) * 1995-03-23 1996-10-08 Toyobo Co Ltd Detection of target nucleic acid and reagent kit therefor
JP2757348B2 (en) * 1996-04-18 1998-05-25 株式会社同仁化学研究所 New water-soluble tetrazolium salt compound

Also Published As

Publication number Publication date
JPH11196896A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
Haeckel The use of aldehyde dehydrogenase to determine H2O2-producing reactions. I. The determination of the uric acid concentration
EP0114381B1 (en) Reagent for measuring direct bilirubin by enzymatic method and method for measurement thereof
CN108627510A (en) High-density lipoprotein cholesterol detection kit
CN100526473C (en) Method of detecting mild impaired glucose tolerance or insulin hyposecretion
CN114062287B (en) Method for detecting uric acid by loading ferroferric oxide composite nano enzyme with urate oxidase
JP3602956B2 (en) Method for measuring superoxide dismutase activity and active oxygen
CN114002213B (en) Application of Cu/Au/Pt-MOFs and visual test paper thereof in detection of H2O2, Cys or glucose
CN108007922B (en) A kind of kit detecting glucose using luminol chemiluminescence analysis
CN105400862B (en) glucose detection kit
EP3125941B1 (en) Method for determining the oxidizing power of hydroperoxides rooh in a biological sample
Booth et al. Energy metabolism in rat brain: inhibition of pyruvate decarboxylation by 3‐hydroxybutyrate in neonatal mitochondria
JP4217815B2 (en) Method for quantifying glucose by glucose dehydrogenase and reagent for quantifying glucose
JP2516381B2 (en) Method for quantifying hydrogen peroxide and reagent for quantifying the same
CN109837270B (en) A method for stabilizing inositol dehydrogenase, ketoamine oxidase and sphingomyelinase in liquid for long time
El-Yazigi et al. A simplified and rapid test for acetylator phenotyping by use of the peak height ratio of two urinary caffeine metabolites.
Taş et al. Automated fructosamine assay with improved accuracy used to quantify nonenzymatic glycation of serum proteins in diabetes mellitus and chronic renal failure
CN106556595B (en) A kind of Picric kinetic method detection kit of strong antijamming capability
EP0911417B1 (en) Enzyme-based assay for determining effects of exogenous and endogenous factors on cellular energy production
JP3097370B2 (en) How to measure hydrogen peroxide
Gray et al. Ornithine transcarbamylase deficiency: enzyme studies on a further case and a method of diagnosis using plasma enzyme ratios
JP3421081B2 (en) Method and apparatus for measuring L-carnitine
JPH0772157A (en) Method and kit for determination of saccharified protein
JP2805805B2 (en) Method for measuring superoxide dismutase and reagent for measurement
Heinz et al. A new enzymatic method for the determination of glucose
JP3159273B2 (en) Sorbitol measurement method and composition thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term