JP3602932B2 - Semiconductor laser diode and method of manufacturing the same - Google Patents

Semiconductor laser diode and method of manufacturing the same Download PDF

Info

Publication number
JP3602932B2
JP3602932B2 JP07867897A JP7867897A JP3602932B2 JP 3602932 B2 JP3602932 B2 JP 3602932B2 JP 07867897 A JP07867897 A JP 07867897A JP 7867897 A JP7867897 A JP 7867897A JP 3602932 B2 JP3602932 B2 JP 3602932B2
Authority
JP
Japan
Prior art keywords
plane
layer
crystal sapphire
laser diode
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07867897A
Other languages
Japanese (ja)
Other versions
JPH10275955A (en
Inventor
博之 木下
雅弘 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07867897A priority Critical patent/JP3602932B2/en
Publication of JPH10275955A publication Critical patent/JPH10275955A/en
Application granted granted Critical
Publication of JP3602932B2 publication Critical patent/JP3602932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可視領域における短波長側、特に青色領域から紫外光領域で発光可能な半導体レーザダイオードに関する。
【0002】
【従来の技術】
半導体レーザダイオードは、発光素子としてさまざまな用途に用いられているが、その構造として単結晶サファイア板の表面に半導体の多重層からなるレーザ素子を形成したものがある。
【0003】
その概略構造を図1に示すように、単結晶サファイア板1の表面にバッファ層2を介してレーザ素子を成す半導体の多重層3を形成して半導体レーザダイオードを構成している。この半導体レーザダイオードでは、レーザ光の共振器をなす背向端面3a、3aを滑らかな面とし、かつ平行度を高くすることによってレーザの発振効率を向上させることができる。
【0004】
この半導体レーザダイオードの製造方法として、特開平7−297495号公報には、単結晶サファイア基板のA面(11−20)に多重層3を形成した後、単結晶サファイア基板をC軸<0001>に沿って劈開し、分割することによって、多重層3の背向端面3a、3aを精密な鏡面として半導体レーザダイオードの発振効率を向上させることが提案されている。
【0005】
【発明が解決しようとする課題】
ところが、上記特開平7−297495号に示されるように単結晶サファイアをC軸に沿って劈開した場合、安定した劈開面が得られず、その結果多重層3の対向端面3a、3aの面精度、平行度を高くすることができないため、歩留り良く、発振効率の良いレーザダイオードを得ることができなかった。
【0006】
そこで本発明は、サファイアの劈開面の精度を向上させることにより、共振器を構成する多重層の背向端面の平行度及び面精度を良好な状態に改善し、レーザの発振効率を向上させ、半導体レーザダイオードを歩留り良く得ることを目的とする。
【0007】
【課題を解決するための手段】
上記問題点に鑑みて本発明は、端面がR面から傾いた方向に分割された階段状の分割面である単結晶サファイア板のA面またはC面を主面とした上に、レーザ素子を成す窒化ガリウム系化合物半導体の多重層を備え、該多重層におけるレーザ光の共振器を成す二つの端面が、上記単結晶サファイア板のC面から59.5〜60.5°傾きかつR面から2.5〜3.5°傾いた劈開からなることを特徴とする。
また、端面をR面から傾いた方向に分割し、階段状の分割面とする単結晶サファイア板のA面またはC面を主面とした上に、レーザ素子を成す窒化ガリウム系化合物半導体の多重層を形成した後、上記単結晶サファイア基板に、サファイアのC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に溝を形成しておき、この溝に沿って多数個に分割する工程からなることを特徴とする。
【0008】
また、上記A面を主面とする単結晶サファイア基板及びC面をもつ多重層を、サファイアのC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に溝を形成しておき、この溝に沿って多数個に分割する工程からなることを特徴とするものである。
【0009】
【作用】
一般に窒化ガリウム系化合物半導体の有する劈開面と単結晶サファイアのR面は2.5〜3.5°傾いている。そのため、本発明によれば、半導体の多重層を形成した後、単結晶サファイア基板をC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って分割することによって、この方向は窒化ガリウム系化合物半導体の劈開面と一致するため、その分割面を滑らかな面とすることができる。そのため、この分割面を共振器を成す背向端面とすれば、半導体レーザダイオードのレーザ発振効率を向上することができる。
【0010】
【発明の実施の形態】
以下本発明の実施の形態として、活性層をその禁制帯幅よりも大きな禁制帯幅を有する層で挟んだダブルへテロ接合構造の窒化ガリウム系化合物半導体((AlGa1−x In1−y N:0≦x≦1,0≦y≦1)から成るレーザダイオードについて説明する。
【0011】
図1に斜視図を、図2に断面図を示すように、本発明の半導体レーザダイオードは、単結晶サファイア板1の主面11にAlN層からなるバッファ層2を備え、該バッファ層2の上にレーザ素子を成す半導体の多重層3を備えている。
【0012】
この多重層3は、バッファ層2の全面に備えたSiドープn型GaN層からなるn層31と、このn層31上に備えた電極41と、該電極41以外の部分に備えたSiドープAl0.1 Ga0.9 N層からなるn層32と、シリコンドープGaN層からなる活性層33と、マグネシウムドープAl0.1 Ga0.9 N層からなるp層34と、これを覆うSiO層35と、SiO層35の窓部に備えた電極42から構成されている。
【0013】
そして、図1に示すように単結晶サファイア板1の背向する両方の端面12、12はC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って分割した面となっており、上記多重層3の背向端面3a、3aはそれぞれこの端面12、12に連続した同一平面となっている。
【0014】
また、詳細を後述するように、本発明の半導体レーザダイオードは、単結晶サファイア基板上に多重層3を形成した後、C面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って分割することによって、効率的に製造することができる。
【0015】
このとき、図3に模式図を示すように、単結晶サファイア板1はR面から傾いた方向に沿って分割するため、その分割面12は微小な階段状となる。しかし、窒化ガリウム系化合物半導体の劈開面はちょうど上記分割方向と一致するため、多重層3のの背向端面3a、3aは極めて滑らかで平行度の高い面とすることができる。その結果、両電極41、42間に電圧を印加してレーザ光を発振させる場合に、この背向端面3a、3a間で共振器を成すことから、レーザ光の発振効率を向上させることができる。
【0016】
以下、図1、2に示す半導体レーザダイオードの製造方法を説明する。
【0017】
まず、図5に示すように、主面11がA面(11−20)からなる単結晶サファイア基板10を用意する。
【0018】
ここで、単結晶サファイアの結晶構造は、図4に示すように六方晶系であり、その中心軸をなすC軸とこれに垂直なC面(0001)、C軸から三方へ放射状に伸びるA軸(a軸、a軸、a軸)とそれぞれに垂直なA面(11−20)、C軸に対して一定角度を有するR面(1−102)とこれに垂直なR軸が存在する。即ち、図5に示すように主面11をA面とした単結晶サファイア基板10の場合、主面11に対し垂直な断面としてR面が存在する。なおこれらの面や軸の方向については、X線回折により分析することができる。
【0019】
この単結晶サファイア基板10を有機洗浄した後、結晶成長装置の結晶成長部に設置する。装置内を真空排気した後、水素を供給し、水素雰囲気中で約1200℃まで昇温して、単結晶サファイア基板10の表面に付着した炭化水素系ガスを除去する。
【0020】
次に、単結晶サファイア基板10の温度を600℃程度まで降温し、トリメチルアルミニウム(TMA)及びアンモニア(NH)を供給して、基板上に約50nmの厚みにAlN層を成長させてバッファ層2とする。次に、TMAの供給のみを停止し、基板の温度を1040℃まで上げ、トリメチルガリウム(TMG)及びシラン(SiH)を供給し、Siドープn型GaN層から成るn層31を成長させる。
【0021】
一旦、単結晶サファイア基板10を成長炉から取り出し、n層31の表面の一部をSiOでマスクした後、再び成長炉に戻し、真空排気して水素及びNHを供給して、1040℃まで昇温する。次に、TMA、TMG及びSiHを供給して、SiOでマスクされていない部分に厚さ0.5μmのSiドープAl0.1 Ga0.9 N層を形成してn層32とする。
【0022】
次に、TMG及びSiHを供給し、厚さ0.2μmのシリコンドープGaN層を成膜して活性層33とする。次に、TMA、TMG及びCpMg(ビスシクロベンタディエニルマグネシウム)を供給して、厚さ0.5μmのマグネシウムドープAl0.1 Ga0.9 N層から成るp層34を形成する。
【0023】
次に、マスクとして使用したSiOを沸酸系エッチャントにより除去し、p層34上にSiO層35を堆積した後、縦1mm、横80μmの短冊状に窓を開け、真空チャンバに移してp層34に電子線照射を行う。この電子線照射によりp層34はp伝導を示した。
【0024】
次に、p層34の窓にあたる部分と、n層31に、各々金属の電極41、42を形成する。
【0025】
上記のレーザ素子を成す多重層3が1枚の単結晶サファイア基板10上に多数形成される。そして、この単結晶サファイア基板10と多重層3を同時に分割することによって、図1、2に示す個々の半導体レーザダイオードを得ることができる。
【0026】
この分割を行う際に、多重層3の背向端面3a、3a及び単結晶サファイア板1の端面12、12は、図6に示すように、C面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向(2点鎖線)に沿って分割され、その他の端面はダイヤモンドカッター等で切断して分割する。
【0027】
なお、上記方向への分割の方法は、単結晶サファイア基板10の表面にダイヤモンドペンにより上記方向に沿ったクラック線を引き、このクラック線を広げる方向に前応力を加えれば、クラック線が成長し、分割することができる。または、レーザ光や熱線(ニクロム線等の電熱線を含む)等により、熱応力を劈開方向に誘導することにより、分割しても良い。あるいは、単結晶サファイア基板10の裏面に深さ10〜200μmの溝を形成しておき、この溝にそって分割することもできる。
【0028】
このように、C面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って分割することにより、半導体レーザダイオードを成す多重層3の背向端面3a、3aはちょうど窒化ガリウム化合物の劈開面と一致し、極めて滑らかで平行度の高い面とすることができる。その結果、発振効率の高い半導体レーザダイオードを得ることができる。
【0029】
実際に、厚みが225〜275μmの単結晶サファイア基板10の主面11をA面とし、この主面11上にGaNを成長させた後、この基板をサファイアのC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って分割すると、容易に分割できるとともに、多重層3の対向単面3a、3aを極めて滑らかで平行度の高い面とすることができた。しかし、この基板を上記方向以外で分割すると、精度良く分割することは困難であり、劈開面を平行に得ることも極めて困難であった。
【0030】
なお、サファイア基板10の主面11は必ずしもA面とする必要はない。例えば、図7に示すように主面11をC面とすることもできる。この場合は、R面が主面11と垂直ではなく約57.62゜の角度を持つことになるが、やはりC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って分割すると、容易に分割でき、多重層3の対向単面3a、3aを滑らかな面とすることができる。
【0031】
さらに、主面11をA面、C面以外の面とすることも可能であり、いずれの場合であっても、GaNの結晶方向には影響はなかった。
【0032】
また、このサファイア基板10は、様々な育成方法により得られるが、EFG法により育成させることで、効率よく劈開面を設定した基板を容易に得ることができる。
【0033】
例えば、図8に示す単結晶サファイア基板10は、円板状で、周囲の一部に基準面10aを成すオリエンテーションフラットを形成し、この基準面10aをR面と垂直又は平行に形成したものである。また、図9に示す単結晶サファイア基板1は、角型であり、一方の基準面10aをR面と平行に、他方の基準面10bをR面と垂直に形成したものである。
【0034】
このように、基準面10a、10bをR面と垂直又は平行に形成しておくことによって、R面の方向を識別することができ、しかも分割する際に基板の面積を最大限に利用することができる。
【0035】
【発明の効果】
以上のように本発明によれば、単結晶サファイア板の主面上に、レーザ素子を成す窒化ガリウム系化合物半導体の多重層を備えた半導体レーザダイオードにおいて、該多重層におけるレーザ光の共振器を成す二つの背向端面が、上記単結晶サファイア板のC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿った劈開面からなることによって、多重層の背向端面の面精度、平行度を高くすることができ、レーザの発振効率を向上することができる。
【0036】
また、本発明によれば、単結晶サファイア基板上に、レーザ素子を成す半導体の多重層を形成した後、上記単結晶サファイア基板及び多重層を、サファイアのC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に沿って多数個に分割する工程から半導体レーザダイオードを製造することによって、極めて簡単な工程で、高性能の半導体レーザダイオードを製造することができる。
【0037】
本発明により、可視領域における短波長側、特に青色領域から紫外光領域で発光可能な高性能の半導体レーザダイオードを得ることができる。
【図面の簡単な説明】
【図1】本発明の半導体レーザダイオードを示す斜視図である。
【図2】図1中のX−X線断面図である。
【図3】本発明の半導体レーザダイオードの端面を示す模式図である。
【図4】単結晶サファイアの基本的な結晶構造を示した図である。
【図5】本発明の半導体レーザダイオードを製造する際に用いる単結晶サファイア基板を示す斜視図である。
【図6】本発明の半導体レーザダイオードを製造する際の分割方向を示す斜視図である。
【図7】本発明の半導体レーザダイオードを製造する際に用いる単結晶サファイア基板を示す斜視図である。
【図8】本発明の半導体レーザダイオードを製造する際に用いる単結晶サファイア基板を示しており、(A)は平面図、(B)は側面図である。
【図9】本発明の半導体レーザダイオードを製造する際に用いる単結晶サファイア基板を示しており、(A)は平面図、(B)は側面図である。
【符号の説明】
1:単結晶サファイア板
11:主面
12:端面
2:バッファ層
3:多重層
3a:背向端面
10:単結晶サファイア基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor laser diode capable of emitting light in a short wavelength side in a visible region, particularly in a blue region to an ultraviolet region.
[0002]
[Prior art]
2. Description of the Related Art A semiconductor laser diode is used for various purposes as a light emitting element, and there is a structure in which a laser element composed of a semiconductor multiple layer is formed on a surface of a single crystal sapphire plate.
[0003]
As shown in FIG. 1, a semiconductor laser diode is formed by forming a semiconductor multi-layer 3 forming a laser element on the surface of a single-crystal sapphire plate 1 via a buffer layer 2 as shown in FIG. In this semiconductor laser diode, the oscillation efficiency of the laser can be improved by making the back end faces 3a and 3a forming the resonator of the laser light smooth and increasing the parallelism.
[0004]
As a method of manufacturing this semiconductor laser diode, Japanese Patent Application Laid-Open No. 7-297495 discloses a method of forming a multi-layer 3 on the A-plane (11-20) of a single-crystal sapphire substrate, and then moving the single-crystal sapphire substrate to the C-axis <0001>. It has been proposed to cleave along and divide the multi-layer 3 so that the back end faces 3a, 3a of the multi-layer 3 are precise mirror surfaces to improve the oscillation efficiency of the semiconductor laser diode.
[0005]
[Problems to be solved by the invention]
However, when the single crystal sapphire is cleaved along the C-axis as shown in the above-mentioned JP-A-7-297495, a stable cleavage plane cannot be obtained, and as a result, the surface accuracy of the facing end faces 3a, 3a of the multi-layer 3 is not obtained. However, since the degree of parallelism cannot be increased, a laser diode with good yield and high oscillation efficiency cannot be obtained.
[0006]
Therefore, the present invention improves the accuracy of the cleavage plane of sapphire, thereby improving the parallelism and surface accuracy of the back-facing end faces of the multiple layers constituting the resonator to a favorable state, and improving the laser oscillation efficiency. It is an object to obtain a semiconductor laser diode with good yield.
[0007]
[Means for Solving the Problems]
In view of the above-described problems, the present invention provides a laser device on a single-crystal sapphire plate, which is a step-like divided surface whose end surface is inclined in a direction inclined from the R-plane, on the A-plane or the C-plane. A multi-layer of a gallium nitride-based compound semiconductor to be formed, and two end faces forming a resonator of laser light in the multi-layer are tilted from the C plane of the single crystal sapphire plate by 59.5 to 60.5 ° and from the R plane. It is characterized by being composed of cleavages inclined at 2.5 to 3.5 °.
In addition, the end face is divided in a direction inclined from the R plane, and a single crystal sapphire plate having a stepwise division plane is used as a principal plane, the A plane or the C plane as a main surface. After the formation of the multilayer, grooves are formed in the single crystal sapphire substrate in a direction inclined from the C plane of the sapphire by 59.5 to 60.5 ° and inclined by 2.5 to 3.5 ° from the R plane. And a step of dividing into a large number along the groove.
[0008]
Further, the single-crystal sapphire substrate having the A-plane as the main surface and the multi-layer having the C-plane are tilted by 59.5 to 60.5 ° from the C-plane of sapphire and 2.5 to 3.5 ° from the R-plane. The method is characterized in that a groove is formed in an inclined direction, and a step of dividing the groove into a large number along the groove is provided.
[0009]
[Action]
Generally, the cleavage plane of the gallium nitride-based compound semiconductor and the R plane of single crystal sapphire are inclined by 2.5 to 3.5 °. Therefore, according to the present invention, after forming the multiple layers of the semiconductor, the single crystal sapphire substrate is tilted by 59.5 to 60.5 ° from the C plane and by 2.5 to 3.5 ° from the R plane. , This direction coincides with the cleavage plane of the gallium nitride-based compound semiconductor, so that the divided plane can be made a smooth plane. For this reason, if this division surface is the back end face forming the resonator, the laser oscillation efficiency of the semiconductor laser diode can be improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The following as an embodiment of the present invention, a gallium nitride-based compound of the active layer heterojunction structure than its band gap to double sandwiched between a layer having a wider band gap semiconductor ((Al x Ga 1-x ) y In 1-y N: 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) will be described.
[0011]
As shown in a perspective view in FIG. 1 and a sectional view in FIG. 2, the semiconductor laser diode of the present invention includes a buffer layer 2 made of an AlN layer on a main surface 11 of a single-crystal sapphire plate 1. On top of this is provided a semiconductor multilayer 3 forming a laser element.
[0012]
The multi-layer 3 is provided on an n + layer 31 made of a Si-doped n-type GaN layer provided on the entire surface of the buffer layer 2, an electrode 41 provided on the n + layer 31, and a portion other than the electrode 41. An n layer 32 composed of a Si-doped Al 0.1 Ga 0.9 N layer, an active layer 33 composed of a silicon-doped GaN layer, and a p-layer 34 composed of a magnesium-doped Al 0.1 Ga 0.9 N layer; a SiO 2 layer 35 which covers and is configured from an electrode 42 provided in the window portion of the SiO 2 layer 35.
[0013]
Then, as shown in FIG. 1, both end faces 12, 12 of the single crystal sapphire plate 1 facing the rear face are inclined by 59.5 to 60.5 ° from the C plane, and inclined by 2.5 to 3.5 ° from the R plane. And the rear facing end faces 3a, 3a of the multi-layer 3 are coplanar with the end faces 12, 12, respectively.
[0014]
Further, as will be described in detail later, the semiconductor laser diode of the present invention, after forming the multi-layer 3 on the single crystal sapphire substrate, is tilted by 59.5 to 60.5 ° from the C plane and 2. By dividing along the direction inclined by 5 to 3.5 °, it is possible to manufacture efficiently.
[0015]
At this time, as shown in the schematic diagram of FIG. 3, the single crystal sapphire plate 1 is divided along a direction inclined from the R-plane, so that the divided surface 12 has a minute step shape. However, since the cleavage plane of the gallium nitride-based compound semiconductor exactly coincides with the above-described division direction, the back-facing end faces 3a, 3a of the multi-layer 3 can be extremely smooth and highly parallel. As a result, when a voltage is applied between the two electrodes 41 and 42 to oscillate the laser light, a resonator is formed between the rear facing end faces 3a and 3a, so that the oscillation efficiency of the laser light can be improved. .
[0016]
Hereinafter, a method for manufacturing the semiconductor laser diode shown in FIGS.
[0017]
First, as shown in FIG. 5, a single-crystal sapphire substrate 10 whose main surface 11 is A-plane (11-20) is prepared.
[0018]
Here, the crystal structure of the single crystal sapphire is hexagonal as shown in FIG. 4, and has a C-axis forming a central axis thereof and a C-plane (0001) perpendicular thereto, and A extending radially from the C-axis in three directions. axis (a 1 axis, a 2 axis, a 3-axis) perpendicular a plane, respectively (11-20), the vertical axis R R surface (1-102) to have a constant angle to the C axis Exists. That is, as shown in FIG. 5, in the case of the single crystal sapphire substrate 10 having the main surface 11 as the A surface, the R surface exists as a cross section perpendicular to the main surface 11. The directions of these planes and axes can be analyzed by X-ray diffraction.
[0019]
After the single crystal sapphire substrate 10 is organically washed, it is set in a crystal growth unit of a crystal growth apparatus. After evacuating the inside of the apparatus, hydrogen is supplied, and the temperature is raised to about 1200 ° C. in a hydrogen atmosphere to remove the hydrocarbon-based gas attached to the surface of the single crystal sapphire substrate 10.
[0020]
Next, the temperature of the single-crystal sapphire substrate 10 is lowered to about 600 ° C., trimethylaluminum (TMA) and ammonia (NH 3 ) are supplied, and an AlN layer is grown on the substrate to a thickness of about 50 nm to form a buffer layer. Let it be 2. Next, only the supply of TMA is stopped, the temperature of the substrate is raised to 1040 ° C., trimethylgallium (TMG) and silane (SiH 4 ) are supplied, and the n + layer 31 composed of the Si-doped n-type GaN layer is grown. .
[0021]
Once the single crystal sapphire substrate 10 is taken out of the growth furnace, a part of the surface of the n + layer 31 is masked with SiO 2 , returned to the growth furnace again, evacuated and supplied with hydrogen and NH 3 , and Heat to ° C. Next, TMA, TMG and SiH 4 are supplied, and a 0.5 μm-thick Si-doped Al 0.1 Ga 0.9 N layer is formed on a portion not masked with SiO 2 to form an n layer 32. .
[0022]
Next, TMG and SiH 4 are supplied, and a silicon-doped GaN layer having a thickness of 0.2 μm is formed to form an active layer 33. Next, TMA, TMG, and Cp 2 Mg (biscyclopentadienyl magnesium) are supplied to form a 0.5 μm-thick magnesium-doped Al 0.1 Ga 0.9 N p-layer 34.
[0023]
Next, after removing SiO 2 used as a mask with a hydrofluoric acid-based etchant and depositing an SiO 2 layer 35 on the p-layer 34, a rectangular window of 1 mm long and 80 μm wide was opened and transferred to a vacuum chamber. The p-layer 34 is irradiated with an electron beam. By this electron beam irradiation, the p layer 34 showed p conduction.
[0024]
Next, metal electrodes 41 and 42 are formed on the portion corresponding to the window of the p layer 34 and on the n + layer 31, respectively.
[0025]
A large number of multiple layers 3 forming the above laser element are formed on one single crystal sapphire substrate 10. Then, by dividing the single crystal sapphire substrate 10 and the multilayer 3 at the same time, individual semiconductor laser diodes shown in FIGS. 1 and 2 can be obtained.
[0026]
When performing this division, the back facing end faces 3a, 3a of the multi-layer 3 and the end faces 12, 12 of the single crystal sapphire plate 1 are inclined from the C plane by 59.5 to 60.5 ° as shown in FIG. And it is divided along the direction (two-dot chain line) inclined by 2.5 to 3.5 ° from the R surface, and the other end surface is cut by a diamond cutter or the like to be divided.
[0027]
In addition, the method of dividing in the above-described direction is as follows. A crack line is drawn on the surface of the single-crystal sapphire substrate 10 along the above-mentioned direction by a diamond pen, and a pre-stress is applied in a direction in which the crack line is expanded, so that the crack line grows. , Can be split. Alternatively, division may be performed by inducing thermal stress in a cleavage direction by a laser beam or a heating wire (including a heating wire such as a nichrome wire). Alternatively, a groove having a depth of 10 to 200 μm may be formed on the back surface of the single-crystal sapphire substrate 10 and divided along the groove.
[0028]
In this manner, by dividing along the direction inclined at 59.5 to 60.5 ° from the C plane and at 2.5 to 3.5 ° from the R plane, the back of the multilayer 3 forming the semiconductor laser diode is formed. The end faces 3a, 3a just coincide with the cleavage plane of the gallium nitride compound, and can be extremely smooth and highly parallel. As a result, a semiconductor laser diode with high oscillation efficiency can be obtained.
[0029]
Actually, the main surface 11 of the single-crystal sapphire substrate 10 having a thickness of 225 to 275 μm is defined as an A-plane, and GaN is grown on the main surface 11. When divided along a direction inclined by 5 ° and inclined by 2.5 to 3.5 ° from the R plane, it can be easily divided, and the opposing single surfaces 3a, 3a of the multilayer 3 are extremely smooth and highly parallel surfaces. And could be. However, if this substrate is divided in a direction other than the above, it is difficult to divide the substrate with high accuracy, and it is extremely difficult to obtain cleavage planes in parallel.
[0030]
Note that the main surface 11 of the sapphire substrate 10 does not necessarily need to be the A surface. For example, as shown in FIG. 7, the main surface 11 may be a C surface. In this case, the R plane is not perpendicular to the main surface 11 but has an angle of about 57.62 °, but is also tilted 59.5 to 60.5 ° from the C plane and 2.5 to 2.5 ° from the R plane. By dividing along the direction inclined by 3.5 °, division can be easily performed, and the opposing single surfaces 3a, 3a of the multi-layer 3 can be made smooth surfaces.
[0031]
Further, the main surface 11 may be a surface other than the A-plane and the C-plane, and in any case, the GaN crystal direction was not affected.
[0032]
Further, the sapphire substrate 10 can be obtained by various growing methods. By growing the sapphire substrate 10 by the EFG method, it is possible to easily obtain a substrate in which a cleavage plane is efficiently set.
[0033]
For example, the single-crystal sapphire substrate 10 shown in FIG. 8 is a disk-shaped substrate having an orientation flat forming a reference plane 10a in a part of the periphery, and forming the reference plane 10a perpendicular or parallel to the R plane. is there. Further, the single-crystal sapphire substrate 1 shown in FIG. 9 is rectangular, and has one reference plane 10a formed parallel to the R plane and the other reference plane 10b formed perpendicular to the R plane.
[0034]
By forming the reference planes 10a and 10b perpendicular or parallel to the R plane in this manner, the direction of the R plane can be identified, and the area of the substrate can be maximized when dividing. Can be.
[0035]
【The invention's effect】
As described above, according to the present invention, in a semiconductor laser diode including a multi-layer of a gallium nitride-based compound semiconductor forming a laser element on a main surface of a single-crystal sapphire plate, a resonator of laser light in the multi-layer is formed. The two back-facing end faces are formed of cleavage planes along a direction inclined from the C plane of the single crystal sapphire plate by 59.5 to 60.5 ° and inclined by 2.5 to 3.5 ° from the R plane. As a result, the surface accuracy and parallelism of the rear facing end surface of the multilayer can be increased, and the laser oscillation efficiency can be improved.
[0036]
Further, according to the present invention, after forming a multi-layer of a semiconductor constituting a laser element on a single-crystal sapphire substrate, the single-crystal sapphire substrate and the multi-layer are separated from the C-plane of sapphire by 59.5 to 60.5. By manufacturing a semiconductor laser diode from a process of dividing into a plurality of pieces along a direction inclined at an angle of 2.5 to 3.5 from the R plane, a high performance semiconductor laser diode can be manufactured in an extremely simple process. Can be manufactured.
[0037]
According to the present invention, it is possible to obtain a high-performance semiconductor laser diode capable of emitting light in the short wavelength side in the visible region, particularly in the blue region to the ultraviolet region.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a semiconductor laser diode of the present invention.
FIG. 2 is a sectional view taken along line XX in FIG.
FIG. 3 is a schematic view showing an end face of the semiconductor laser diode of the present invention.
FIG. 4 is a diagram showing a basic crystal structure of single crystal sapphire.
FIG. 5 is a perspective view showing a single crystal sapphire substrate used when manufacturing the semiconductor laser diode of the present invention.
FIG. 6 is a perspective view showing a dividing direction when manufacturing the semiconductor laser diode of the present invention.
FIG. 7 is a perspective view showing a single crystal sapphire substrate used when manufacturing the semiconductor laser diode of the present invention.
8A and 8B show a single crystal sapphire substrate used when manufacturing the semiconductor laser diode of the present invention, wherein FIG. 8A is a plan view and FIG. 8B is a side view.
9A and 9B show a single crystal sapphire substrate used when manufacturing the semiconductor laser diode of the present invention, wherein FIG. 9A is a plan view and FIG. 9B is a side view.
[Explanation of symbols]
1: Single crystal sapphire plate 11: Main surface 12: End surface 2: Buffer layer 3: Multilayer 3a: Backward end surface 10: Single crystal sapphire substrate

Claims (2)

端面がR面から傾いた方向に分割された階段状の分割面である単結晶サファイア板のA面またはC面を主面とした上に、レーザ素子を成す窒化ガリウム系化合物半導体の多重層を備え、該多重層におけるレーザ光の共振器を成す二つの端面が、上記単結晶サファイア板のC面から59.5〜60.5°傾きかつR面から2.5〜3.5°傾いた劈開からなることを特徴とする半導体レーザダイオード。A single layer of a single crystal sapphire plate, which is a step-like divided surface in which the end surface is divided in a direction inclined from the R surface, has a main surface of the A surface or the C surface, and a multi-layer of a gallium nitride-based compound semiconductor forming a laser element is formed. The two end faces forming the resonator of the laser beam in the multi-layer are inclined by 59.5 to 60.5 ° from the C plane of the single crystal sapphire plate and inclined by 2.5 to 3.5 ° from the R plane. A semiconductor laser diode comprising cleavage. 端面をR面から傾いた方向に分割し、階段状の分割面とする単結晶サファイア板のA 面またはC面を主面とした上に、レーザ素子を成す窒化ガリウム系化合物半導体の多重層を形成した後、上記単結晶サファイア基板に、サファイアのC面から59.5〜60.5°傾き、かつR面から2.5〜3.5°傾いた方向に溝を形成しておき、この溝に沿って多数個に分割する工程からなる半導体レーザダイオードの製造方法。 The end face is divided in a direction inclined from the R plane, and a multi-layer of a gallium nitride-based compound semiconductor forming a laser element is formed on the main plane of the A plane or the C plane of the single crystal sapphire plate having a stepped division plane. After the formation, a groove is formed in the single crystal sapphire substrate in a direction inclined at 59.5 to 60.5 ° from the C plane of sapphire and at an angle of 2.5 to 3.5 ° from the R plane. A method for manufacturing a semiconductor laser diode, comprising a step of dividing into a plurality of pieces along a groove.
JP07867897A 1997-03-31 1997-03-31 Semiconductor laser diode and method of manufacturing the same Expired - Fee Related JP3602932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07867897A JP3602932B2 (en) 1997-03-31 1997-03-31 Semiconductor laser diode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07867897A JP3602932B2 (en) 1997-03-31 1997-03-31 Semiconductor laser diode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10275955A JPH10275955A (en) 1998-10-13
JP3602932B2 true JP3602932B2 (en) 2004-12-15

Family

ID=13668543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07867897A Expired - Fee Related JP3602932B2 (en) 1997-03-31 1997-03-31 Semiconductor laser diode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3602932B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324465A (en) 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components

Also Published As

Publication number Publication date
JPH10275955A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP3164016B2 (en) Light emitting device and method for manufacturing wafer for light emitting device
JP3988018B2 (en) Crystal film, crystal substrate and semiconductor device
JP3587081B2 (en) Method of manufacturing group III nitride semiconductor and group III nitride semiconductor light emitting device
JP3518455B2 (en) Method for manufacturing nitride semiconductor substrate
US7105859B2 (en) Nitride semiconductor light-emitting diode chip and method of manufacturing the same
JP2002009004A (en) Method of manufacturing nitride semiconductor, nitride semiconductor device, method of manufacturing the same semiconductor light emitting device and its manufacturing method
JPH1117275A (en) Gallium nitride semiconductor laser and manufacture of the same
JP2002217116A (en) Method for manufacturing crystal film, crystal substrate, and semiconductor device
JP3863962B2 (en) Nitride III-V compound semiconductor light emitting device and method for manufacturing the same
JP3602932B2 (en) Semiconductor laser diode and method of manufacturing the same
JP3727106B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JPH10135140A (en) Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JP3753747B2 (en) Gallium nitride compound semiconductor laser diode
JP4623799B2 (en) Semiconductor light emitting device manufacturing method and semiconductor laser
JP2000022283A (en) Semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JPH09270565A (en) Semiconductor laser diode
JPH07297495A (en) Gallium nitride compound semiconductor laser diode
JP4363415B2 (en) Crystal film, crystal substrate and semiconductor device
JP2003332244A (en) Method for manufacturing nitride semiconductor substrate
JPH10173228A (en) Compound semiconductor substrate and semiconductor light-emitting element
JP4232326B2 (en) Method for growing low-defect nitride semiconductor
JPH09237934A (en) Semiconductor laser diode and manufacturing method thereof
JP2003008145A (en) Semiconductor laser and its manufacturing method
JP2004056051A (en) Method for manufacturing nitride semiconductor substrate
JP2000082866A (en) Nitride semiconductor laser element and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees