JP3602682B2 - Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same - Google Patents

Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same Download PDF

Info

Publication number
JP3602682B2
JP3602682B2 JP7097297A JP7097297A JP3602682B2 JP 3602682 B2 JP3602682 B2 JP 3602682B2 JP 7097297 A JP7097297 A JP 7097297A JP 7097297 A JP7097297 A JP 7097297A JP 3602682 B2 JP3602682 B2 JP 3602682B2
Authority
JP
Japan
Prior art keywords
antibacterial
polymerizable
group
compound
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7097297A
Other languages
Japanese (ja)
Other versions
JPH09324015A (en
Inventor
美穂 原田
秀明 山田
憲一 日野
聡 今里
光男 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7097297A priority Critical patent/JP3602682B2/en
Publication of JPH09324015A publication Critical patent/JPH09324015A/en
Application granted granted Critical
Publication of JP3602682B2 publication Critical patent/JP3602682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【産業上の利用分野】
本発明は新規な直鎖アルキルピリジニウム化合物に関し、抗菌性を有する重合体を製造しうる抗菌性重合性単量体に関するものである。さらに詳しくは、抗菌成分が溶出しない非溶出型抗菌性重合体を製造しうる重合性単量体に関する。本発明により製造される重合性組成物は、抗菌性医療用具(歯科材料、人工臓器のモジュール、人工血管、カテーテル、人工皮膚、創傷被覆材、骨セメント)を始めとし、冷蔵庫の内装材、建築物の内装用塗料などに幅広く利用することが可能である。
【0002】
【従来の技術】
従来から抗菌性を有するポリマーは知られており、その一例として溶出型の抗菌性成分を含むポリマーが挙げられる。特開昭62−201806号公報には、公知のカチオン型界面活性剤の塩化セチルピリジニウムを含有する歯科用抗菌性組成物が開示されている。しかし、溶出型の抗菌性ポリマーは、抗菌性成分の溶出により経時的に抗菌性が低下し、抗菌性成分がなくなればその抗菌性は失われる。また、溶出した抗菌性成分は正常組織にも移行するため、その為害性をなくすことはできなかった。さらに、抗菌性成分の配合により材料の機械的強度も低下する問題もあった。
【0003】
前述のような溶出型ポリマーの問題点を解決するために、分子内に共重合性基と抗菌性を発現する基とを併せ持つ抗菌性単量体が開発されている。例えば、ビニル基と長鎖アルキルアンモニウム基を併せ持つ化合物、塩化ジメチルセチル(4ービニル)ベンジルアンモニウム(繊維高分子材料研究所研究報告第159号17頁(1988年))、メタクリロイル基と長鎖アルキルピリジニウム基を併せ持つ化合物、臭化メタクリロイルオキシドデシルピリジニウム(特開平6−9725号公報)等が知られており、これらの単量体を配合した組成物を重合させることにより重合後の表面に非溶出型の抗菌性を発現させることが可能とされている。しかしこれらの抗菌性単量体は、重合後の表面の抗菌性が弱いために、表面に接触した細菌を十分に死滅させることができなかった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記の問題点を解決するために、重合させた後も、硬化物表面に強い非溶出型の抗菌性を発現させることが可能な強力な抗菌性重合性単量体を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討を加えた結果、抗菌活性部と重合性基を併せ持ち、且つその抗菌活性発現部位と重合性部位の間に一定の距離を保つような連結部を有する新規な化合物により、かかる課題を達成できることを見いだした。
【0006】
さらに詳しくは、抗菌性単量体として、分子内に重合可能なオレフィン性不飽和基と、抗菌活性発現部位である直鎖アルキルピリジニウム基と、これらを結合する原子数6から15の有機基からなる下記一般式(1)
【0007】
【化2】

Figure 0003602682
【0008】
(式中、Rは水素原子またはメチル基を表し、XはOまたはNHを表し、Rは−CO−,−CO−,−OCO−,−O−,−S−,−OCONH−および−NHCO−から選ばれる一つ以上の基が−CR−を介して連結してなる有機基であって主鎖を構成する原子数が6から15となる有機残基を表し、R、Rは水素原子、低級アルキル基、ヒドロキシル基またはアルコキシ基から選ばれる同一もしくは異なる基を表し、Rは炭素数12から22の直鎖アルキル基を表し、Zはハロゲン原子を表す)で表される重合性直鎖アルキルピリジニウム化合物である抗菌性単量体を提供することにより、上記課題を解決できることを見出し、本発明に至った。
【0009】
本発明の直鎖アルキルピリジニウム化合物は、ピリジン誘導体、スペーサー、官能性重合性単量体を反応させて重合性ピリジン誘導体を製造し、次に長鎖アルキルハロゲン化物を反応させてピリジン環に長鎖アルキル基を導入し製造することができる。また、ピリジン誘導体、スペーサー、長鎖アルキルハロゲン化物を反応させて長鎖アルキルピリジニウム化合物を製造し、次に官能性重合性単量体を反応させて製造することもできる。
ピリジン誘導体としては、スペーサーを結合させうる官能基を有するものであれば何でも使用できるが、例えば水酸基を有するものとしてピリジルメタノール、ピリジルプロパノール等、カルボキシル基を有するものとしてニコチン酸、イソニコチン酸等を挙げることができる。
【0010】
重合性単量体としては、共重合可能なビニル基と、スペーサーと結合可能な官能基を併せ持つものであれば何でも使用できるが、例えばカルボキシル基を有するものとして(メタ)アクリル酸、イタコン酸等、水酸基を有するものとして2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、エリスリトールモノ(メタ)アクリレート、N−メチロール(メタ)アクリレートあるいはこれらのカプロラクトン変成物等、アミド基を有するものとして(メタ)アクリルアミド等、エポキシ基を有するものとしてグリシジル(メタ)アクリレート等、アジリジル基を有するものとしてイミノール(メタ)アクリレート等を挙げることができる。
【0011】
スペーサーとしては、上記官能性ピリジン誘導体と官能性単量体とを化学結合させうる官能基を2個有し、且つピリジン環と重合性基を結合する主鎖の原子数が6から15となる化合物が使用できる。スペーサーは1種の化合物で連結基を構成してもよく、2種以上の化合物が結合して上記の原子数となる連結基を構成してもよい。また2個の官能基は環を形成していてもよい。官能基としては、上記ピリジン誘導体および単量体の有する官能基と化学結合、具体的にはエステル結合、エーテル結合、チオエーテル結合、ウレタン結合等を形成可能である官能基であれば何でも使用できるが、例えばカルボキシル基、水酸基、メルカプト基、イソシアネート基、ハロゲン原子あるいはこれらの活性化体である酸ハライド、酸無水物、アルコキシド等が挙げられる。
これらのスペーサーを例示すると、無水コハク酸、無水グルタル酸、γ−カプロラクトン、ε−カプロラクトン、ペンタエリスリトール、ヘキサメチレンイソシアネート、4−クロロブタノール、エチレンブロモヒドリン等が挙げられる。
【0012】
長鎖アルキルハロゲン化物は、CH3(CH2)nXで表され、nは11から21の整数であり、Xはフッ素、塩素、臭素、ヨウ素である化合物である。nが10より小さくても、22より大きくても抗菌性が低くなるため、nはこの範囲であるのが好ましい。化合物を具体的に例示すると、フッ化ドデシル、フッ化セチル、フッ化ステアリル、塩化ドデシル、塩化セチル、塩化ステアリル、臭化ドデシル、臭化テトラデシル、臭化セチル、臭化ステアリル、臭化エイコシル、ヨウ化ドデシル、ヨウ化セチル、ヨウ化ステアリル等を挙げることができる。
【0013】
上記官能性ピリジン誘導体、官能性単量体、スペーサーおよび長鎖アルキルハロゲン化物の結合は、通常有機合成に用いられる手法により形成することができる。例えば、エステル結合の形成であれば、一方に水酸基あるいはエポキシ基、他方にカルボキシル基あるいはその活性化体を用い、必要に応じ酸あるいは塩基触媒存在下にエステル結合を形成させ、通常の後処理、精製操作を経てエステル体を得ることができる。同様にウレタン結合では一方に水酸基、他方にイソシアネート基を用い、塩基あるいはスズ化合物触媒存在下にウレタン結合を形成させ、通常の後処理、精製操作を経てウレタン体を得ることができる。また、ピリジン誘導体とアルキルハロゲン化物との結合は、両化合物を加熱することにより生成し、通常の精製操作を経て4級ピリジニウム構造を得ることができる。
【0014】
このようにして得られた本発明の抗菌性単量体として具体的には以下のものが挙げられる。
【0015】
【化3】
Figure 0003602682
【0016】
本発明の抗菌性単量体は、この単量体単独あるいは他の共重合可能な単量体あるいは樹脂類と共に、重合開始剤の使用の下に重合硬化させることにより、硬化物表面に強い非溶出型の抗菌性を付与することが可能である。共重合可能な単量体もしくは樹脂類としてはアクリル系単量体、エポキシ系樹脂、ウレタン系樹脂、シリコン系樹脂、塩化ビニルのように特殊な反応条件によらずとも容易に重合するものであれば、何でも使用できる。これら共重合可能な単量体あるいは樹脂類の添加量は、本発明の抗菌性単量体の抗菌効果を十分に発現するためには99.99重量%以下であるのが好ましい。
【0017】
使用する重合開始剤としては、通常のラジカル重合開始剤であれば何でも使用できるが、具体的にはベンゾイルパーオキサイド、クメンハイドロパーオキサイドなどの有機過酸化物、トリブチルボラン、ベンゾイルパーオキサイド/芳香族第3級アミン系、芳香族スルフィン酸(またはその塩)/芳香族第2級または第3級アミン/アシルパーオキサイド系などの常温重合開始剤が挙げられる。また、カンファーキノン、カンファーキノン/p−ジメチルアミノ安息香酸エステル系、カンファーキノン/p−ジメチルアミノベンゾフェノン、カンファーキノン/芳香族スルフィン酸塩系、カンファーキノン/過酸化物、カンファーキノン/アルデヒド系、カンファーキノン/メルカプタン系、アシルフォスフィンオキサイドなどの光重合開始剤を挙げることができる。なお、紫外線照射による光重合を行う場合には、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、2−エチルチオキサントン、ジアセチル、ベンジル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィドなどが好適である。さらには、常温重合開始剤と光重合開始剤の両方を同時に使用することも可能である。また重合触媒は通常組成物全体に対して0.1〜10重量%の範囲内で使用される。
【0018】
【実施例】
以下本発明を実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
【0019】
(実施例1)
還流冷却器および塩化カルシウム管を備えた500ml容ナス型フラスコに、4−ピリジルメタノール22.4g、無水コハク酸20.5g、ピリジン20mlおよびトルエン200mlを仕込み、12時間加熱還流させた。反応混合物を室温まで放冷後、析出した固体を濾取しトルエンで洗浄後、減圧乾燥した。淡黄色微粉末としてコハク酸(4−ピリジルメチル)半エステル39.8g(93%収率)を得た。
塩化カルシウム管を備えた200ml容ナス型フラスコに上記で得られたコハク酸半エステル19.4gおよび塩化チオニル50mlを仕込み、80℃で5時間加熱撹拌した。過剰の塩化チオニルを減圧留去し、残渣に乾燥塩化メチレン80mlを加えた。ここへ2−ヒドロキシエチルメタクリレート13.3gを乾燥塩化メチレン20mlに溶解させたものを滴下し、その後室温で終夜撹拌した。反応混合物を水、飽和重曹水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去し、残渣を減圧乾燥することで、黄褐色油状物としてコハク酸[2−(メタクリロイルオキシエチル)](4−ピリジルメチル)エステル24.8g(83%収率)を得た。
【0020】
還流冷却器および塩化カルシウム管を備えた20ml容ナス型フラスコに上記で得られたコハク酸エステル2.18g、1−ブロモドデカン1.65mlおよび4−メトキシフェノール0.03gを仕込み、120℃で1時間加熱撹拌した。放冷後、反応混合物をシリカゲルカラムクロマトグラフィーにて精製し、淡赤褐色固体2.25gを得た。これを酢酸エチルより再結晶し、無色鱗状晶として臭化ドデシル[4−[3−(2−メタクリロイルオキシ)エトキシカルボニル]プロパノイルオキシメチル]ピリジニウム(化合物1)2.03g(52%収率)を得た。
H−NMR(270MHz,CDCl,ppm from TMS) 0.87(3H t), 1.24(18H s), 1.93(3H s), 2.0−2.1(2H m), 2.7−2.8(4H m), 4.34(4H s), 4.98(2H t), 5.43(2H s), 5.57 (1H s), 6.12(1H s), 8.03(2H d), 9.37(2H d)
【0021】
(実施例2)
還流冷却器及び塩化カルシウム管を備えた20ml容ナス型フラスコに実施例1中で得られたコハク酸[2−(メタクリロイルオキシエチル)](4−ピリジルメチル)エステル2.92g、1−ブロモヘキサデカン2.80gおよび4−メトキシフェノール0.04gを仕込み。120℃で2時間加熱撹拌した。反応混合物を冷却し、得られた赤褐色半固体を酢酸エチルより再結晶し、淡黄色鱗状晶として臭化ヘキサデシル[4−[3−(2−メタクリロイルオキシ)エトキシカルボニル]プロパノイルオキシメチル]ピリジニウム(化合物2)2.85g(50%収率)を得た。
【0022】
H−NMR(270MHz,CDCl,ppm from TMS) 0.88(3H t), 1.24(26H s), 1.95(3H s),2.0−2.1(2H m), 2.7−2.8(4H m), 4.33(4H s), 4.98(2H t), 5.44(2H s), 5.57 (1H s), 6.12(1H s), 8.05(2H d), 9.40(2H d)
【0023】
(実施例3)
還流冷却器および塩化カルシウム管を備えた200ml容ナス型フラスコに,3−(4−ピリジル)プロパノール13.7g、無水コハク酸10.0g、ピリジン10mlおよびトルエン100mlを仕込み。20時間加熱還流した。反応混合物を室温まで冷却し、析出した淡黄色固体を濾取した。これをトルエンで洗浄後、減圧乾燥することでコハク酸3−(4−ピリジル)プロピル半エステルを淡黄色微粉末として22.8g(96%収率)得た。
還流冷却器および滴下ロートを備えた200ml容三頭フラスコに、上記で得られた半エステル22.8gおよびジクロロエタン100mlを仕込み、0℃2冷却した。ここへグリシジルメタクリレート13.6gを50mlのジクロロエタンに溶解したものを2時間かけて滴下し、その後8時間加熱還流した。反応混合物を放冷後、水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色油状物としてコハク酸[(2−ヒドロキシ−3−メタクリロイルオキシ)プロピル][3−(4−ピリジル)プロピル]を19.3g(53%収率)得た。
【0024】
還流冷却器および塩化カルシウム管を備えた100ml容ナス型フラスコに、上記で得られたコハク酸エステル19.3g、1−ブロモドデシル12.9gおよび4−メトキシフェノール0.1gを仕込み、100℃で3時間加熱攪拌した。反応混合物を氷冷し、得られた赤褐色の半固体を酢酸エチルから再結晶し、黄褐色固体として臭化ドデシル[4−[3−[3−[2−(2−ヒドロキシ−3−メタクロイルオキシ)プロピルオキシカルボニル]プロパノイルオキシ]プロピル]ピリジニウム](化合物3)12.1g(38%収率)を得た。
H−NMR(270MHz,CDCl,ppm from TMS)0.87(3H t),1.24(18H s),1.2−1.3(2Hm),1.95(3H s), 2.0−2.1(2H m),2.7−2.8(4H m),2.86(2H t),3.7−3.8(4H m),4.10(1H m),4.32(4H s),5.58(1H s),6.13(1H s),8.03(2H d),9.38(2H d)
【0025】
(実施例4)
還流冷却器を備えた200ml容ナス型フラスコに3−(4−ピリジル)プロパノール6.85g、δ−バレロラクトン5.00g、p−トルエンスルホン酸0.5gおよびトルエン100mlを仕込み、10時間加熱還流した。反応混合物を室温まで冷却後、水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡褐色油状物として5−ヒドロキシ吉草酸3−(4−ピリジル)プロピル5.33g(45%収率)で得た。
窒素雰囲気下、100ml容ナス型フラスコに、上記で得られた5−ヒドロキシ吉草酸エステル5.33g、トリエチルアミン3.75mlおよび乾燥塩化メチレン30mlを仕込み、0℃に冷却した。ここへ塩化メタクリロイル2.64mlを滴下し、その後室温で終夜撹拌した。反応混合物に70mlの塩化メチレンを加え、これを水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去後、残渣を減圧乾燥することで淡赤褐色油状物として5−メタクリロイルオキシ吉草酸3−(4−ピリジル)プロピル5.84g(85%収率)で得た。
【0026】
還流冷却器および塩化カルシウム管を備えた50ml容ナス型フラスコに、上記で得られた5−メタクリロイルオキシ吉草酸エステル5.84g、1−ブロモヘキサデカンおよび4−メトキシフェノール0.08gを仕込み、120℃で2時間加熱撹拌した。反応混合物を氷冷し、析出した固体を酢酸エチルより再結晶し、淡紅褐色微粉末として臭化ヘキサデシル[4−[3−(5−メタクリロイルオキシ)バレロイルオキシ]プロピル]ピリジニウム(化合物4)5.48g(47%収率)を得た。
H−NMR(270MHz,CDCl,ppm from TMS) 0.86(3H t), 1.2−1.3(32H s), 1.95(3H s), 2.0−2.1(2H m), 2.31(2H t), 2.86(2H t), 4.21(2H t), 4.33(2H t), 4.96(2H t), 5.58(1H s), 6.12(1H s), 8.03(2H d), 9.37(2H d)
【0027】
(実施例5)水分凝縮器を備えた200ml容丸底フラスコに、4−ピリジルメタノール3.27g、12−アミノドデカン酸6.45g、濃硫酸5.88gおよびクロロホルム100mlを仕込み、流出する水分を除きながら48時間加熱還流した。放冷後、反応混合物に200mlの水を加え、苛性ソーダでpHを9に調整し、分した水をクロロホルムで抽出した。合わせた有機層を水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去し残渣を減圧乾燥することで、暗褐色油状物として12−アミノドデカン酸(4−ピリジル)メチル3.86g(42%収率)を得た。窒素雰囲気下、100ml容ナス型フラスコに、上記で得られた12−アミノドデカン酸エステル3.86g、トリエチルアミン2.10mlおよび乾燥アセトニトリル50mlを仕込み、0℃に冷却した。ここへ塩化メタクリロイル1.47mlを滴下し、その後室温で終夜攪拌した。反応混合物から溶媒を留去し、残渣に塩化メチレン50mlを加え溶解し、これを水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色油状物として12−メタクリロイルアミノドデカン酸(4−ピリジル)メチル3.68g(78%収率)得た。
【0028】
還流冷却器および塩化カルシウム管を備えた20ml容ナス型フラスコに、上記で得られた12−メタクリロイルアミノドデカン酸エステル3.66g、1−クロロヘキサデカン2.55gおよび4−メトキシフェノール0.05gを仕込み、120℃で3時間加熱撹拌した。反応混合物を室温まで放冷後、シリカゲルカラムクロマトグラフィーにて精製し、淡褐色固体として塩化ヘキサデシル[4−(12−メタクリロイルアミノ)ドデカノイルオキシメチル]ピリジニウム(化合物5)1.43g(23%収率)を得た。
H−NMR(270MHz,CDCl,ppm from TMS) 0.87(3H t), 1.2−1.3(44H s), 1.93(3H s), 2.0−2.1(2H m), 2.33(2H t), 3.21(2H q−like), 4.98(2H t), 5.45(2H s), 5.58(1H s), 6.11(1H s), 6.7(1H br−s), 8.03(2H d), 9.38(2H d)
【0029】
(実施例6)
窒素雰囲気下、温度計、還流冷却器および滴下漏斗を備えた100ml容三頭フラスコに、ヘキサメチレンジイソシアネート16.2mlを仕込んだ。ここへ室温で4−ピリジルメタノール1.09g、ジブチルスズラウリレート一滴およびジクロロエタン20mlを滴下し、60℃で3時間加熱撹拌した。反応混合物を室温まで放冷した後、ここへ2−ヒドロキシエチルメタクリレート29.8gおよびジクロロエタン20mlを滴下し、60℃で8時間加熱撹拌した。反応混合物を水に注ぎ、これを酢酸エチルで抽出した。合わせた有機層を水、飽和重曹水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色油状物として1,6−ヘキサンジカルバミン酸(2−メタクリロキシエチル)(4−ピリジルメチル)エステル2.56g(63%収率)を得た。
【0030】
還流冷却器および塩化カルシウム管を備えた20ml容ナス型フラスコに、上記で得られた1,6−ヘキサンジカルバミン酸エステル2.56g、1−ブロモヘキサデカン1.93gおよび4−メトキシフェノール0.06gを仕込み、120℃で2時間加熱撹拌した。反応混合物をシリカゲルカラムクロマトグラフィーにて精製し 淡黄褐色微粉末として臭化ヘキサデシル[4−[6−(2−メタクリロキシ)エトキシカルボニルアミノ]ヘキシルアミロキシメチル]ピリジニウム(化合物6)1.75g(39%収率)を得た。
H−NMR(270MHz,CDCl,ppm from TMS) 0.85(3H t), 1.23(26H s), 1.5−1.7(8H m), 1.94(3H s), 2.05(2H m), 3.23(4H q−like), 4.34(4H s), 4.98(2H t), 5.2(2H br−s), 5.50(2H s), 5.57(1H s), 6.12(1H s), 8.05(2H d), 9.38(2H d)
【0031】
(試験片の調製方法)
重合性単量体、抗菌性基を有する単量体、光重合開始剤を含有する組成物を、直径20mm、厚さ0.5mmの金型に填入、両面を1分間ずつ光照射して重合硬化させ、円盤状の試験片を作成した。得られた試験片をメタノールに1時間浸漬し、表面の未重合モノマーを除去した後、エチレンオキサイドガス滅菌を行った。
【0032】
(抗菌性試験方法)
S.mutans(IFO13955)を、BHI(ブレインハートインフージョン)培地中で一夜培養した後、細菌濃度が5×10(CFU/ml)になるように生理食塩水で希釈した。この希釈液10μlを試験片の上にマイクロピペッターを用いて滴下し、そのまま15分間静置した後、試験片をさかさまにして、試験片上の液をBHI寒天培地に押しつけて残存細菌を回収した。さらに、試験片をBHI寒天培地の異なる部分に押しつけて、細菌を残らず寒天培地に回収した。その後、37℃で48時間好気培養を行った後、寒天培地に形成されるコロニー数を計測した。各サンプルについて、形成コロニー数と、接種した全細菌数をもとに、下記の計算式に従って、細菌死滅率を求めた。
(細菌死滅率)=(接種細菌数)−(形成コロニー数)/(接種細菌数)×100(%)
【0033】
同じようにして、細菌濃度が5×10(CFU/ml)、5×10(CFU/ml)になるように希釈した細菌希釈液を用いて、全く同じ試験を行った。さらに、S.mutansの代わりに、枯草菌(B.subtilis、IFO13721)、ブドウ球菌(S.aureus、IFO12732)、大腸菌(E.coli.、IFO12734)を用いて、上記と全く同じ試験を行った。
【0034】
上記の細菌死滅率が100%の場合には、サンプル上に接種した細菌がすべて死滅したことを示し、サンプル表面に非常に強い抗菌性が発現していることを示すものである。逆に細菌死滅率が0%の場合には、接種した細菌がすべて生存していることを示し、サンプル表面には抗菌性がないことを示すものである。さらに、細菌死滅率が0%から100%の間の場合には、細菌を完全に死滅させることはできないものの、ある程度の抗菌性を有していることを示すものである。本発明の目的からすれば、死滅率100%のものが好ましいが、死滅率80%以上の場合には、十分目的を達しうるものと判断される。
【0035】
(溶出試験方法)
S.mutans(IFO13955)を、BHI(ブレインハートインフージョン)培地中で一夜培養した後、細菌濃度が1×10(CFU/ml)になるように生理食塩水で希釈した。この希釈液を、BHI寒天プレートに塗布した後乾燥した。その上に試験片を置き、37℃で48時間好気培養を行った後、試験片の周辺に形成される阻止斑の有無を観察し、以下の判定基準により判定した。
(+):サンプルの周囲に細菌の増殖が抑制された阻止斑が形成された。
(−):サンプルの周囲に阻止斑が全く形成されなかった。
【0036】
さらに、S.mutansの代わりに、枯草菌(B.subtilis、IFO13721)、ブドウ球菌(S.aureus、IFO12732)、大腸菌(E.coli.、IFO12734)を用いて、上記と全く同じ試験を行った。
【0037】
上記の判定の結果、(+)のものは、サンプル表面から抗菌性物質が溶出されたことを示しており、本発明の目的のひとつである非溶出型抗菌性の発現という要求を満たしていないことになる。前述の抗菌性試験の結果、100%の死滅率を示したサンプルであっても、この溶出試験で阻止斑が形成されたものは、本発明の目的を達成することはできないと判断される。
【0038】
(実施例7)
実施例1で合成した化合物1および、ビスフェノールAジ(2−ヒドロキシプロポキシ)ジメタクリレート(以下BisGMAと略称する)、トリエチレングリコールジメタクリレート(以下3Gと略称する)、カンファーキノン(以下CQと略称する)、ジメチルアミノエチルメタクリレート(以下DMAEMAと略称する)を表1に記載した割合で配合したモノマー混合物を調製した。該組成物を用いて前述の方法により試験片を作製し、前述の抗菌性試験方法に従い、S.mutansに対する抗菌性を評価した。結果を表2に示す。さらに、同じ方法で調製した試験片を用いて、前述の溶出試験方法に従い、S.mutans、に対する阻止斑形成の有無を観察した。さらに、S.mutansの代わりに、枯草菌(B.subtilis、IFO13721)、ブドウ球菌(S.aureus、IFO12732)、大腸菌(E.coli.、IFO12734)を用いて、上記と全く同じ試験を行った。結果を表2、3に示す。
【0039】
(実施例8〜12)
実施例2〜6で合成した化合物2〜6および、BisGMA、3G、CQ、DMAEMAを表2に記載した割合で配合したモノマー混合物を調製した。該組成物を用いて実施例1と同様の方法により、S.mutans、B.subtilis、S.aureus、E.coli.に対する抗菌性試験および阻止斑形成試験を行った。結果を表2、3に示す。
【0040】
(比較例1)
実施例1で用いた化合物1の代わりに、塩化ジメチルセチル(4ーベンジル)アンモニウム(化合物7)および、BisGMA、3G、CQ、DMAEMAを表1に記載した割合で配合したモノマー組成物を調製した。該組成物を用いて実施例1と同様の方法により、S.mutans、B.subtilis、S.aureus、E.coli.に対する抗菌性試験および阻止斑形成試験を行った。結果を表2、3に示す。
【0041】
(比較例2)
実施例1で用いた化合物1の代わりに、臭化メタクリロイルオキシドデシルピリジニウム(化合物8)を用いて、BisGMA、3G、CQ、DMAEMAを表1に記載した割合で配合したモノマー組成物を調製した。該組成物を用いて実施例1と同様の方法により、S.mutans、B.subtilis、S.aureus、E.coli.に対する抗菌性試験および阻止斑形成試験を行った。結果を表2、3に示す。
【0042】
(比較例3)
実施例1で用いた化合物1の代わりに、塩化セチルピリジニウム(化合物9)を用いて、BisGMA、3G、CQ、DMAEMAを表1に記載した割合で配合したモノマー組成物を調製した。該組成物を用いて実施例1と同様の方法により、S.mutans、B.subtilis、S.aureus、E.coli.に対する抗菌性試験および阻止斑形成試験を行った。結果を表2、3に示す。
【0043】
表2から明らかなように、実施例1〜6で合成した化合物1〜6を含む組成物の重合硬化後の表面には、接触した4種の細菌を全て死滅させ得るだけの強い抗菌性が発現している(実施例7〜12)。さらに、表3から明らかなように、実施例1〜6で合成した化合物1〜6を含む組成物の重合硬化後の表面からは、抗菌性成分の溶出は見られない。従って、これらの組成物の抗菌性は非溶出型の抗菌性であることは明らかである。これに対して、表2から明らかなように、比較例1〜3の組成物では、接触させた4種の細菌いずれの場合にも、全て死滅させることはできなかった。また、比較例3の化合物では、表2から明らかなように重合後の表面に接触させた細菌は全て死滅したが、表3から明らかなように、この抗菌性は表面から溶出した抗菌性成分による抗菌性である。
【0044】
【表1】
Figure 0003602682
【0045】
【表2】
Figure 0003602682
【0046】
【表3】
Figure 0003602682
【0047】
【発明の効果】
抗菌性を有する重合性単量体を歯科用組成物に配合することにより、重合後の組成物表面に非溶出型の抗菌性を付与することは公知であるが、該技術による歯科用組成物は、重合後の表面に抗菌性を有するものの、接触した細菌を速やかに死滅させることはできなかった。これに対して、本発明では、抗菌性単量体として重合可能なオレフィン性不飽和基と、抗菌活性発現部位である長鎖アルキルピリジニウム基と、これらを結合する原子数6から15の有機基からなる新規な共重合性抗菌剤を配合することによりその重合硬化後の組成物の表面に接触した細菌を速やかに死滅させることができる強い抗菌性が発現することを見いだした。
【0048】
上記の抗菌性は、重合後の組成物をアセトン、メタノールなどで洗浄することにより、未重合の重合性単量体やリン酸化合物を洗浄除去した後にも確認されたことから、これらの抗菌性成分の溶出による効果ではなく、組成物表面に共有結合で固定化された非溶出型の抗菌性であることが判った。従って、抗菌成分が溶出することにより抗菌性が低下することはなく、その抗菌性は半永久的に保持される。[0001]
[Industrial applications]
The present invention relates to a novel linear alkylpyridinium compound, and more particularly to an antibacterial polymerizable monomer capable of producing a polymer having antibacterial properties. More specifically, the present invention relates to a polymerizable monomer capable of producing a non-elutable antibacterial polymer from which an antibacterial component is not eluted. The polymerizable composition produced according to the present invention includes antibacterial medical devices (dental materials, artificial organ modules, artificial blood vessels, catheters, artificial skin, wound dressings, bone cements), refrigerator interior materials, and architectural materials. It can be widely used for interior paints of goods.
[0002]
[Prior art]
Hitherto, polymers having antibacterial properties have been known, and examples thereof include polymers containing eluting antibacterial components. JP-A-62-201106 discloses a dental antibacterial composition containing a known cationic surfactant, cetylpyridinium chloride. However, the elution-type antibacterial polymer loses its antibacterial property over time due to elution of the antibacterial component, and loses its antibacterial property when the antibacterial component disappears. In addition, since the eluted antibacterial component migrated to normal tissues, harmfulness could not be eliminated. Further, there is also a problem that the mechanical strength of the material is reduced by the addition of the antibacterial component.
[0003]
In order to solve the above-mentioned problems of the elution-type polymer, an antibacterial monomer having both a copolymerizable group and a group exhibiting antibacterial properties in the molecule has been developed. For example, a compound having both a vinyl group and a long-chain alkylammonium group, dimethylcetyl (4-vinyl) benzylammonium chloride (Research Report of Textile Polymer Materials Research Institute No. 159, p. 17 (1988)), a methacryloyl group and a long-chain alkylpyridinium A compound having a group, methacryloyloxidedecylpyridinium bromide (Japanese Patent Application Laid-Open No. 6-9725) and the like are known, and a non-eluting type is produced on the surface after polymerization by polymerizing a composition containing these monomers. It is possible to express the antibacterial property of the compound. However, since these antibacterial monomers have low antibacterial properties on the surface after polymerization, they have not been able to sufficiently kill bacteria in contact with the surface.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is a strong antibacterial polymerizable compound capable of expressing a strong non-eluting antibacterial compound on the surface of a cured product even after polymerization in order to solve the above problems. It is to provide a monomer.
[0005]
[Means for Solving the Problems]
The present inventors have made intensive studies to solve the above-described problems, and as a result, have both an antibacterial active portion and a polymerizable group, and maintain a certain distance between the antibacterial activity-expressing site and the polymerizable site. It has been found that such a problem can be achieved by a novel compound having a suitable connecting portion.
[0006]
More specifically, as an antibacterial monomer, a polymerizable olefinically unsaturated group in a molecule, a linear alkylpyridinium group which is a site exhibiting antibacterial activity, and an organic group having 6 to 15 atoms bonding these. The following general formula (1)
[0007]
Embedded image
Figure 0003602682
[0008]
(Where R 1 Represents a hydrogen atom or a methyl group; X represents O or NH; 2 Is -CO-, -CO 2 -, -OCO-, -O-, -S-, -OCONH- and -NHCO 2 One or more groups selected from-are -CR 4 R 5 -Represents an organic residue which is linked through-and has 6 to 15 atoms constituting the main chain; 4 , R 5 Represents a hydrogen atom, lower alkyl group, hydroxyl group or alcohol Kiss Represents the same or different groups selected from 3 Represents a straight-chain alkyl group having 12 to 22 carbon atoms, and Z represents a halogen atom), whereby the above-mentioned problem can be solved by providing an antibacterial monomer which is a polymerizable straight-chain alkylpyridinium compound represented by the formula: And found the present invention.
[0009]
The linear alkylpyridinium compound of the present invention is obtained by reacting a pyridine derivative, a spacer, and a functional polymerizable monomer to produce a polymerizable pyridine derivative, and then reacting a long-chain alkyl halide to form a long-chain pyridine ring. It can be produced by introducing an alkyl group. Further, it can also be produced by reacting a pyridine derivative, a spacer, and a long-chain alkyl halide to produce a long-chain alkylpyridinium compound, and then reacting with a functional polymerizable monomer.
As the pyridine derivative, any one having a functional group capable of binding a spacer can be used.For example, pyridylmethanol, pyridylpropanol, etc. having a hydroxyl group, nicotinic acid, isonicotinic acid, etc. having a carboxyl group can be used. Can be mentioned.
[0010]
Any polymerizable monomer may be used as long as it has both a copolymerizable vinyl group and a functional group capable of binding to a spacer. Examples of the polymerizable monomer include (meth) acrylic acid and itaconic acid having a carboxyl group. Having a hydroxyl group, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, erythritol mono (meth) acrylate, N-methylol (meth) acrylate, or a modified caprolactone thereof Examples thereof include (meth) acrylamide having an amide group, glycidyl (meth) acrylate having an epoxy group, and iminol (meth) acrylate having an aziridyl group.
[0011]
The spacer has two functional groups capable of chemically bonding the functional pyridine derivative and the functional monomer, and has 6 to 15 atoms of the main chain connecting the pyridine ring and the polymerizable group. Compounds can be used. The spacer may form a linking group by one kind of compound, or may form a linking group having the above-mentioned number of atoms by combining two or more kinds of compounds. The two functional groups may form a ring. As the functional group, any functional group capable of forming a chemical bond with the functional group of the pyridine derivative and the monomer, specifically, an ester bond, an ether bond, a thioether bond, a urethane bond, or the like can be used. Examples thereof include a carboxyl group, a hydroxyl group, a mercapto group, an isocyanate group, a halogen atom or an activated form thereof such as an acid halide, an acid anhydride, and an alkoxide.
Examples of these spacers include succinic anhydride, glutaric anhydride, γ-caprolactone, ε-caprolactone, pentaerythritol, hexamethylene isocyanate, 4-chlorobutanol, ethylene bromohydrin and the like.
[0012]
The long-chain alkyl halide is represented by CH3 (CH2) nX, where n is an integer from 11 to 21, and X is fluorine, chlorine, bromine, or iodine. If n is smaller than 10 or larger than 22, the antibacterial property is lowered, so n is preferably in this range. Specific examples of the compound include dodecyl fluoride, cetyl fluoride, stearyl fluoride, dodecyl chloride, cetyl chloride, stearyl chloride, dodecyl bromide, tetradecyl bromide, cetyl bromide, stearyl bromide, eicosyl bromide, iodine Dodecyl iodide, cetyl iodide, stearyl iodide and the like.
[0013]
The bond between the functional pyridine derivative, the functional monomer, the spacer and the long-chain alkyl halide can be formed by a method usually used in organic synthesis. For example, in the case of forming an ester bond, a hydroxyl group or an epoxy group is used on one side, and a carboxyl group or an activated form thereof is used on the other side, and an ester bond is formed in the presence of an acid or base catalyst as necessary. An ester form can be obtained through a purification operation. Similarly, in the urethane bond, a urethane compound can be obtained through a usual post-treatment and purification operation by forming a urethane bond using a hydroxyl group on one side and an isocyanate group on the other side in the presence of a base or a tin compound catalyst. Further, the bond between the pyridine derivative and the alkyl halide is formed by heating both compounds, and a quaternary pyridinium structure can be obtained through a usual purification operation.
[0014]
The following are specific examples of the antibacterial monomer of the present invention thus obtained.
[0015]
Embedded image
Figure 0003602682
[0016]
The antimicrobial monomer of the present invention, when polymerized and cured together with this monomer alone or together with other copolymerizable monomers or resins under the use of a polymerization initiator, has a strong non-strong surface. It is possible to impart an elution type antibacterial property. Copolymerizable monomers or resins that can be easily polymerized without special reaction conditions such as acrylic monomers, epoxy resins, urethane resins, silicone resins, and vinyl chloride Anything can be used. The addition amount of these copolymerizable monomers or resins is preferably 99.99% by weight or less in order to sufficiently exhibit the antibacterial effect of the antibacterial monomer of the present invention.
[0017]
As the polymerization initiator to be used, any ordinary radical polymerization initiator can be used, and specific examples thereof include organic peroxides such as benzoyl peroxide and cumene hydroperoxide, tributyl borane, and benzoyl peroxide / aromatic. Room temperature polymerization initiators such as tertiary amines, aromatic sulfinic acids (or salts thereof), aromatic secondary or tertiary amines / acyl peroxides, and the like. Also, camphorquinone, camphorquinone / p-dimethylaminobenzoate, camphorquinone / p-dimethylaminobenzophenone, camphorquinone / aromatic sulfinate, camphorquinone / peroxide, camphorquinone / aldehyde, camphor Examples thereof include photopolymerization initiators such as quinone / mercaptan and acylphosphine oxide. When photopolymerization by ultraviolet irradiation is performed, benzoin methyl ether, benzyl dimethyl ketal, benzophenone, 2-ethylthioxanthone, diacetyl, benzyl, azobisisobutyronitrile, tetramethylthiuram disulfide, and the like are preferable. Further, both the room temperature polymerization initiator and the photopolymerization initiator can be used simultaneously. The polymerization catalyst is usually used in the range of 0.1 to 10% by weight based on the whole composition.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0019]
(Example 1)
A 500 ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube was charged with 22.4 g of 4-pyridylmethanol, 20.5 g of succinic anhydride, 20 ml of pyridine and 200 ml of toluene, and heated under reflux for 12 hours. After allowing the reaction mixture to cool to room temperature, the precipitated solid was collected by filtration, washed with toluene, and dried under reduced pressure. 39.8 g (93% yield) of succinic acid (4-pyridylmethyl) half ester was obtained as a pale yellow fine powder.
In a 200 ml eggplant-shaped flask equipped with a calcium chloride tube, 19.4 g of the succinic acid half ester obtained above and 50 ml of thionyl chloride were charged, and heated and stirred at 80 ° C. for 5 hours. Excess thionyl chloride was distilled off under reduced pressure, and 80 ml of dry methylene chloride was added to the residue. A solution prepared by dissolving 13.3 g of 2-hydroxyethyl methacrylate in 20 ml of dry methylene chloride was added dropwise, and the mixture was stirred at room temperature overnight. The reaction mixture was washed sequentially with water, saturated aqueous sodium hydrogen carbonate and saturated brine, and dried over magnesium sulfate. The solvent was distilled off, and the residue was dried under reduced pressure to obtain 24.8 g (83% yield) of succinic acid [2- (methacryloyloxyethyl)] (4-pyridylmethyl) ester as a tan oil.
[0020]
2.18 g of the succinic ester obtained above, 1.65 ml of 1-bromododecane and 0.03 g of 4-methoxyphenol were charged into a 20-ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube. Heated and stirred for hours. After cooling, the reaction mixture was purified by silica gel column chromatography to obtain 2.25 g of a light reddish brown solid. This was recrystallized from ethyl acetate to obtain 2.03 g (52% yield) of dodecyl [4- [3- (2-methacryloyloxy) ethoxycarbonyl] propanoyloxymethyl] pyridinium (compound 1) as colorless scale-like crystals. Got.
1 H-NMR (270 MHz, CDCl 3 , Ppm from TMS) 0.87 (3Ht), 1.24 (18Hs), 1.93 (3Hs), 2.0-2.1 (2Hm), 2.7-2.8 (4Ht). m), 4.34 (4Hs), 4.98 (2Ht), 5.43 (2Hs), 5.57 (1Hs), 6.12 (1Hs), 8.03 (2Hd). , 9.37 (2H d)
[0021]
(Example 2)
2.92 g of succinic acid [2- (methacryloyloxyethyl)] (4-pyridylmethyl) ester obtained in Example 1 in a 20 ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube, 1-bromohexadecane 2.80 g and 0.04 g of 4-methoxyphenol were charged. The mixture was heated and stirred at 120 ° C. for 2 hours. The reaction mixture was cooled, and the obtained red-brown semisolid was recrystallized from ethyl acetate to give hexadecyl [4- [3- (2-methacryloyloxy) ethoxycarbonyl] propanoyloxymethyl] pyridinium bromide as pale yellow scales. 2.85 g (50% yield) of compound 2) were obtained.
[0022]
1 H-NMR (270 MHz, CDCl 3 , Ppm from TMS) 0.88 (3Ht), 1.24 (26Hs), 1.95 (3Hs), 2.0-2.1 (2Hm), 2.7-2.8 (4Ht). m), 4.33 (4Hs), 4.98 (2Ht), 5.44 (2Hs), 5.57 (1Hs), 6.12 (1Hs), 8.05 (2Hd). , 9.40 (2H d)
[0023]
(Example 3)
A 200-ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube was charged with 13.7 g of 3- (4-pyridyl) propanol, 10.0 g of succinic anhydride, 10 ml of pyridine and 100 ml of toluene. The mixture was heated under reflux for 20 hours. The reaction mixture was cooled to room temperature, and the precipitated pale yellow solid was collected by filtration. This was washed with toluene and dried under reduced pressure to obtain 22.8 g (96% yield) of 3- (4-pyridyl) propyl succinate half ester as a pale yellow fine powder.
A 200 ml three-necked flask equipped with a reflux condenser and a dropping funnel was charged with 22.8 g of the half ester obtained above and 100 ml of dichloroethane, and cooled at 0 ° C2. A solution prepared by dissolving 13.6 g of glycidyl methacrylate in 50 ml of dichloroethane was added dropwise over 2 hours, and the mixture was heated under reflux for 8 hours. After allowing the reaction mixture to cool, it was washed successively with water and saturated saline, and dried over magnesium sulfate. The solvent was distilled off, and the obtained residue was purified by silica gel column chromatography to give [(2-hydroxy-3-methacryloyloxy) propyl] [3- (4-pyridyl) propyl] succinate as a pale yellow oil. Was obtained in an amount of 19.3 g (53% yield).
[0024]
In a 100 ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube, 19.3 g of the succinic ester obtained above, 12.9 g of 1-bromododecyl and 0.1 g of 4-methoxyphenol were charged, and the mixture was heated at 100 ° C. The mixture was heated and stirred for 3 hours. The reaction mixture was cooled on ice and the resulting reddish brown semi-solid was recrystallized from ethyl acetate, Pale Dodecyl bromide [4- [3- [3- [2- (2-hydroxy-3-methac) as a tan solid Re 12.1 g (38% yield) of [loyloxy) propyloxycarbonyl] propanoyloxy] propyl] pyridinium] (compound 3) were obtained.
1 H-NMR (270 MHz, CDCl 3 , Ppm from TMS) 0.87 (3Ht), 1.24 (18Hs), 1.2-1.3 (2Hm), 1.95 (3Hs), 2.0-2.1 (2Hm ), 2.7-2.8 (4Hm), 2.86 (2Ht), 3.7-3.8 (4Hm), 4.10 (1Hm), 4.32 (4Hs), 5.58 (1Hs), 6.13 (1Hs), 8.03 (2Hd), 9.38 (2Hd)
[0025]
(Example 4)
6.85 g of 3- (4-pyridyl) propanol, 5.00 g of δ-valerolactone, 0.5 g of p-toluenesulfonic acid and 100 ml of toluene were charged into a 200-ml eggplant-shaped flask equipped with a reflux condenser, and heated under reflux for 10 hours. did. After the reaction mixture was cooled to room temperature, it was washed sequentially with water and saturated saline, and dried over magnesium sulfate. After evaporating the solvent, the obtained residue was purified by silica gel column chromatography to obtain 5.33 g (45% yield) of 3- (4-pyridyl) propyl 5-hydroxyvalerate as a pale brown oil. .
Under a nitrogen atmosphere, 5.33 g of the above-obtained 5-hydroxyvaleric acid ester, 3.75 ml of triethylamine and 30 ml of dry methylene chloride were charged into a 100 ml eggplant-shaped flask, and cooled to 0 ° C. 2.64 ml of methacryloyl chloride was added dropwise thereto, and the mixture was stirred at room temperature overnight. 70 ml of methylene chloride was added to the reaction mixture, which was washed with water and saturated saline, and dried over magnesium sulfate. After evaporating the solvent, the residue was dried under reduced pressure to obtain 5.84 g (85% yield) of 3- (4-pyridyl) propyl 5-methacryloyloxyvalerate as a light reddish brown oily substance.
[0026]
In a 50 ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube, 5.84 g of 5-methacryloyloxyvalerate obtained above, 1-bromohexadecane and 0.08 g of 4-methoxyphenol were charged, and the mixture was heated at 120 ° C. For 2 hours. The reaction mixture was cooled on ice, and the precipitated solid was recrystallized from ethyl acetate to give hexadecyl [4- [3- (5-methacryloyloxy) valeroyloxy] propyl] pyridinium (compound 4) 5 as a light reddish brown fine powder. .48 g (47% yield) were obtained.
1 H-NMR (270 MHz, CDCl 3 , Ppm from TMS) 0.86 (3Ht), 1.2-1.3 (32Hs), 1.95 (3Hs), 2.0-2.1 (2Hm), 2.31 (2Hm) t), 2.86 (2Ht), 4.21 (2Ht), 4.33 (2Ht), 4.96 (2Ht), 5.58 (1Hs), 6.12 (1Hs). , 8.03 (2Hd), 9.37 (2Hd)
[0027]
Example 5 A 200 ml round bottom flask equipped with a water condenser was charged with 3.27 g of 4-pyridylmethanol, 6.45 g of 12-aminododecanoic acid, 5.88 g of concentrated sulfuric acid and 100 ml of chloroform, and the water flowing out was charged. The mixture was refluxed for 48 hours while removing the mixture. After cooling, 200 ml of water was added to the reaction mixture, the pH was adjusted to 9 with sodium hydroxide, and liquid Water layer Was extracted with chloroform. The combined organic layers were sequentially washed with water and saturated saline, and dried over magnesium sulfate. The solvent was distilled off, and the residue was dried under reduced pressure to obtain 3.86 g (42% yield) of (4-pyridyl) methyl 12-aminododecanoate as a dark brown oil. Under a nitrogen atmosphere, 3.86 g of the above-obtained 12-aminododecanoic acid ester, 2.10 ml of triethylamine and 50 ml of dry acetonitrile were charged into a 100 ml eggplant-shaped flask, and cooled to 0 ° C. 1.47 ml of methacryloyl chloride was added dropwise thereto, and the mixture was stirred at room temperature overnight. The solvent was distilled off from the reaction mixture, and the residue was dissolved by adding 50 ml of methylene chloride, washed with water and saturated brine in that order, and dried over magnesium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography, and 3.68 g of (4-pyridyl) methyl 12-methacryloylaminododecanoate was obtained as a pale yellow oil (78% yield). To Obtained.
[0028]
In a 20 ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube, 3.66 g of 12-methacryloylaminododecanoate obtained above, 2.55 g of 1-chlorohexadecane and 0.05 g of 4-methoxyphenol were charged. At 120 ° C. for 3 hours. After allowing the reaction mixture to cool to room temperature, it was purified by silica gel column chromatography, and as a pale brown solid, hexadecyl [4- (12-methacryloylamino) dodecanoyloxymethyl] pyridinium (compound 5) 1.43 g (23% yield) Rate).
1 H-NMR (270 MHz, CDCl 3 , Ppm from TMS) 0.87 (3Ht), 1.2-1.3 (44Hs), 1.93 (3Hs), 2.0-2.1 (2Hm), 2.33 (2Hm) t), 3.21 (2H q-like), 4.98 (2Ht), 5.45 (2Hs), 5.58 (1Hs), 6.11 (1Hs), 6.7 (1H). br-s), 8.03 (2Hd), 9.38 (2Hd)
[0029]
(Example 6)
Under a nitrogen atmosphere, 16.2 ml of hexamethylene diisocyanate was charged into a 100 ml three-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel. At room temperature, 1.09 g of 4-pyridylmethanol, one drop of dibutyltin laurylate and 20 ml of dichloroethane were added dropwise thereto, and the mixture was heated and stirred at 60 ° C. for 3 hours. After allowing the reaction mixture to cool to room temperature, 29.8 g of 2-hydroxyethyl methacrylate and 20 ml of dichloroethane were added dropwise thereto, and the mixture was heated and stirred at 60 ° C. for 8 hours. The reaction mixture was poured into water, which was extracted with ethyl acetate. The combined organic layers were sequentially washed with water, saturated aqueous sodium hydrogen carbonate and saturated saline, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography. As a yellow oil, 1,6-hexanedicarbamic acid (2-methacryloxyethyl) (4-pyridylmethyl) ester 2.56 g ( 63% yield).
[0030]
In a 20 ml eggplant-shaped flask equipped with a reflux condenser and a calcium chloride tube, 2.56 g of 1,6-hexanedicarbamic acid ester obtained above, 1.93 g of 1-bromohexadecane and 0.06 g of 4-methoxyphenol were obtained. And stirred under heating at 120 ° C. for 2 hours. The reaction mixture was purified by silica gel column chromatography to give hexadecyl [4- [6- (2-methacryloxy) ethoxycarbonylamino] hexylamyloxymethyl] pyridinium (compound 6) (1.75 g, 39) as a pale yellowish brown fine powder. % Yield).
1 H-NMR (270 MHz, CDCl 3 , Ppm from TMS) 0.85 (3Ht), 1.23 (26Hs), 1.5-1.7 (8Hm), 1.94 (3Hs), 2.05 (2Hm), 3 .23 (4H q-like), 4.34 (4Hs), 4.98 (2Ht), 5.2 (2H br-s), 5.50 (2Hs), 5.57 (1Hs) , 6.12 (1Hs), 8.05 (2Hd), 9.38 (2Hd)
[0031]
(Method of preparing test pieces)
A composition containing a polymerizable monomer, a monomer having an antibacterial group, and a photopolymerization initiator is charged into a mold having a diameter of 20 mm and a thickness of 0.5 mm, and both sides are irradiated with light for 1 minute. It was polymerized and cured to prepare a disc-shaped test piece. The obtained test piece was immersed in methanol for 1 hour to remove unpolymerized monomers on the surface, and then sterilized with ethylene oxide gas.
[0032]
(Antibacterial test method)
S. After culturing mutans (IFO13955) in BHI (Brain Heart Infusion) medium overnight, the bacterial concentration was 5 × 10 5 3 (CFU / ml) with physiological saline. The diluted solution (10 μl) was dropped on the test piece using a micropipettor, and allowed to stand still for 15 minutes. Then, the test piece was turned upside down, and the solution on the test piece was pressed against a BHI agar medium to collect residual bacteria. . Further, the test pieces were pressed against different parts of the BHI agar medium, and all the bacteria were collected on the agar medium. Then, after performing aerobic culture at 37 ° C. for 48 hours, the number of colonies formed on the agar medium was counted. For each sample, based on the number of formed colonies and the total number of inoculated bacteria, the bacterial kill rate was determined according to the following formula.
(Bacterial kill rate) = (number of inoculated bacteria) − (number of formed colonies) / (number of inoculated bacteria) × 100 (%)
[0033]
Similarly, when the bacterial concentration is 5 × 10 4 (CFU / ml), 5 × 10 5 Exactly the same test was performed using a bacterial dilution diluted to (CFU / ml). Further, S.I. The same test as described above was performed using B. subtilis (B. subtilis, IFO 13721), staphylococci (S. aureus, IFO 12732), and Escherichia coli (E. coli, IFO 12734) instead of M. mutans.
[0034]
When the above-mentioned bacterial kill rate is 100%, it indicates that all the bacteria inoculated on the sample have been killed, indicating that a very strong antibacterial property is expressed on the sample surface. Conversely, a bacterial kill rate of 0% indicates that all the inoculated bacteria are alive and that the sample surface has no antimicrobial activity. Further, when the bacterial kill rate is between 0% and 100%, it indicates that the bacteria cannot be completely killed but has some antibacterial properties. For the purpose of the present invention, it is preferable that the mortality is 100%, but if the mortality is 80% or more, it is determined that the object can be sufficiently achieved.
[0035]
(Dissolution test method)
S. After culturing mutans (IFO13955) overnight in BHI (Brain Heart Infusion) medium, the bacterial concentration was 1 × 10 5 6 (CFU / ml) with physiological saline. The diluted solution was applied to a BHI agar plate and dried. After placing the test piece thereon and performing aerobic culture at 37 ° C. for 48 hours, the presence or absence of inhibition spots formed around the test piece was observed, and the evaluation was made according to the following criteria.
(+): An inhibitory plaque in which bacterial growth was suppressed was formed around the sample.
(-): No blocking patches were formed around the sample.
[0036]
Further, S.I. The same test as described above was performed using B. subtilis (B. subtilis, IFO 13721), staphylococci (S. aureus, IFO 12732), and Escherichia coli (E. coli, IFO 12734) instead of M. mutans.
[0037]
As a result of the above determination, a (+) indicates that the antibacterial substance was eluted from the sample surface, and did not satisfy the requirement of expression of the non-elutable antibacterial property which is one of the objects of the present invention. Will be. As a result of the above-mentioned antibacterial test, even if the sample showed a kill rate of 100%, the sample in which the inhibition spot was formed in this dissolution test was judged to be unable to achieve the object of the present invention.
[0038]
(Example 7)
Compound 1 synthesized in Example 1, bisphenol A di (2-hydroxypropoxy) dimethacrylate (hereinafter abbreviated as BisGMA), triethylene glycol dimethacrylate (hereinafter abbreviated as 3G), camphorquinone (hereinafter abbreviated as CQ) ) And dimethylaminoethyl methacrylate (hereinafter abbreviated as DMAEMA) in the proportions shown in Table 1 to prepare a monomer mixture. A test piece was prepared using the composition according to the above-described method, and S.A. The antibacterial properties against mutans were evaluated. Table 2 shows the results. Further, using a test piece prepared by the same method, S.I. mutans, and the presence or absence of inhibition spot formation was observed. Further, S.I. The same test as described above was performed using B. subtilis (B. subtilis, IFO 13721), staphylococci (S. aureus, IFO 12732), and Escherichia coli (E. coli, IFO 12734) instead of M. mutans. The results are shown in Tables 2 and 3.
[0039]
(Examples 8 to 12)
A monomer mixture was prepared by blending Compounds 2 to 6 synthesized in Examples 2 to 6 and BisGMA, 3G, CQ, and DMAEMA at the ratios shown in Table 2. Using the same composition as in Example 1, S.D. mutans, B .; subtilis, S .; aureus, E.A. coli. Was tested for antibacterial activity and inhibition spot formation. The results are shown in Tables 2 and 3.
[0040]
(Comparative Example 1)
A monomer composition was prepared in which dimethylcetyl (4-benzyl) ammonium chloride (Compound 7) and BisGMA, 3G, CQ, and DMAEMA were blended in the proportions shown in Table 1 in place of Compound 1 used in Example 1. Using the same composition as in Example 1, S.D. mutans, B .; subtilis, S .; aureus, E.A. coli. Was tested for antibacterial activity and inhibition spot formation. The results are shown in Tables 2 and 3.
[0041]
(Comparative Example 2)
Using methacryloyloxidedecylpyridinium bromide (compound 8) instead of compound 1 used in Example 1, a monomer composition was prepared in which BisGMA, 3G, CQ, and DMAEMA were blended in the proportions shown in Table 1. Using this composition, the same procedure as in Example 1 was repeated to give S. mutans, B .; subtilis, S .; aureus, E.A. coli. Were tested for antibacterial activity and inhibition spot formation. The results are shown in Tables 2 and 3.
[0042]
(Comparative Example 3)
Using cetylpyridinium chloride (Compound 9) instead of Compound 1 used in Example 1, a monomer composition was prepared in which BisGMA, 3G, CQ, and DMAEMA were blended in the proportions shown in Table 1. Using the same composition as in Example 1, S.D. mutans, B .; subtilis, S .; aureus, E.A. coli. Was tested for antibacterial activity and inhibition spot formation. The results are shown in Tables 2 and 3.
[0043]
As is clear from Table 2, the surface of the composition containing the compounds 1 to 6 synthesized in Examples 1 to 6 after the polymerization and curing has strong antibacterial property enough to kill all four kinds of bacteria in contact. Is expressed (Examples 7 to 12). Furthermore, as is clear from Table 3, no antimicrobial component is eluted from the surface of the composition containing the compounds 1 to 6 synthesized in Examples 1 to 6 after polymerization and curing. Therefore, it is clear that the antibacterial properties of these compositions are non-eluting antibacterial properties. On the other hand, as is clear from Table 2, the compositions of Comparative Examples 1 to 3 were not able to kill all of the four types of bacteria contacted. In addition, in the compound of Comparative Example 3, all the bacteria that were brought into contact with the surface after polymerization were killed as evident from Table 2, but as evident from Table 3, this antibacterial property was the antibacterial component eluted from the surface. It is antibacterial.
[0044]
[Table 1]
Figure 0003602682
[0045]
[Table 2]
Figure 0003602682
[0046]
[Table 3]
Figure 0003602682
[0047]
【The invention's effect】
It is known that by adding a polymerizable monomer having antibacterial properties to a dental composition, a non-eluting antibacterial property is imparted to the surface of the composition after polymerization. Although the compound had antibacterial properties on the surface after polymerization, it was not able to kill bacteria in contact with it promptly. On the other hand, in the present invention, an olefinically unsaturated group polymerizable as an antibacterial monomer, a long-chain alkylpyridinium group which is a site exhibiting antibacterial activity, and an organic group having 6 to 15 atoms bonding these. It has been found that by blending a novel copolymerizable antibacterial agent consisting of the following, a strong antibacterial property capable of rapidly killing bacteria in contact with the surface of the composition after polymerization and curing is developed.
[0048]
The antibacterial properties described above were confirmed by washing the composition after polymerization with acetone, methanol, etc., even after washing and removing unpolymerized polymerizable monomers and phosphate compounds. It was found that it was not an effect due to elution of the component, but a non-elutable antibacterial property immobilized on the surface of the composition by covalent bonds. Therefore, the antibacterial properties are not reduced by the elution of the antibacterial components, and the antibacterial properties are maintained semipermanently.

Claims (2)

下記一般式(1)で表される重合性直鎖アルキルピリジニウム化合物。
Figure 0003602682
(式中、Rは水素原子またはメチル基を表し、XはOまたはNHを表し、Rは−CO−,−CO−,−OCO−,−O−,−S−,−OCONH−および−NHCO−から選ばれる一つ以上の基が−CR−を介して連結してなる有機基であって主鎖を構成する原子数が6から15となる有機残基を表し、R、Rは水素原子、低級アルキル基、ヒドロキシル基またはアルコキシ基から選ばれる同一もしくは異なる基を表し、Rは炭素数12から22の直鎖アルキル基を表し、Zはハロゲン原子を表す)
A polymerizable linear alkylpyridinium compound represented by the following general formula (1).
Figure 0003602682
(Wherein, R 1 represents a hydrogen atom or a methyl group, X represents O or NH, and R 2 represents —CO—, —CO 2 —, —OCO—, —O—, —S—, —OCONH— And an organic residue in which one or more groups selected from —NHCO 2 — are linked via —CR 4 R 5 — and the number of atoms constituting the main chain is 6 to 15. , R 4, R 5 is a hydrogen atom, a lower alkyl group, the same or different groups selected from a hydroxyl group or an alkoxy group, R 3 represents a linear alkyl group having 12 carbon atoms 22, Z is a halogen atom Represents)
(a)重合性単量体、(b)請求項1に記載される重合性直鎖アルキルピリジニウム化合物および(c)重合開始剤を含むことを特徴とする重合性組成物。A polymerizable composition comprising (a) a polymerizable monomer, (b) the polymerizable linear alkylpyridinium compound according to claim 1, and (c) a polymerization initiator.
JP7097297A 1996-04-01 1997-03-25 Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same Expired - Lifetime JP3602682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7097297A JP3602682B2 (en) 1996-04-01 1997-03-25 Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-78667 1996-04-01
JP7866796 1996-04-01
JP7097297A JP3602682B2 (en) 1996-04-01 1997-03-25 Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same

Publications (2)

Publication Number Publication Date
JPH09324015A JPH09324015A (en) 1997-12-16
JP3602682B2 true JP3602682B2 (en) 2004-12-15

Family

ID=26412087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7097297A Expired - Lifetime JP3602682B2 (en) 1996-04-01 1997-03-25 Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same

Country Status (1)

Country Link
JP (1) JP3602682B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822609B2 (en) * 2000-05-22 2011-11-24 クラレメディカル株式会社 Antibacterial composition
EP1254896A1 (en) * 2001-05-03 2002-11-06 Applied NanoSystems B.V. Cationic amphiphiles, preparation and method for transfection
WO2008144248A1 (en) * 2007-05-14 2008-11-27 Tyco Healthcare Group Lp Furanone copolymers

Also Published As

Publication number Publication date
JPH09324015A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JP4391686B2 (en) Mixed cyanoacrylate composition
JP6334405B2 (en) Biodegradable medical adhesive, its preparation and use
US5026902A (en) Dental compsition of perfluoroalkyl group-containing (meth-)acrylate esters
JP6426712B2 (en) Polymerizable monomer composition for dental materials
US5733949A (en) Antimicrobial adhesive composition for dental uses
US6031015A (en) Dental materials based on liquid crystalline monomers
US4744828A (en) (Meth)-acrylic acid esters and the use thereof
JP2004143169A (en) Polymerizable bicyclic cyclopropane derivative and its application for preparing dental material
Björkner Plastic materials
JP2007302651A (en) Photocurable monomer including imidazolium salt, antimicrobial and photocurable composition containing the monomer, and antimicrobial polymeric material produced from the composition
KR20140024924A (en) Alkylaminoalkyl oligomers as broad-spectrum antimicrobial agent
Manouchehri et al. Synthesis and characterization of novel polymerizable bis-quaternary ammonium dimethacrylate monomers with antibacterial activity as an efficient adhesive system for dental restoration
JP6734990B2 (en) Adhesive monomer for dental materials
CA2740118A1 (en) Carbamate-methacrylate monomers and their use in dental applications
DE4419386A1 (en) X-ray opaque dental materials
JP3602682B2 (en) Polymerizable linear alkylpyridinium compound and polymerizable composition containing the same
JP2006298771A (en) Organic phosphorus compound
US5886212A (en) Multifunctional vinyl cyclopropane derivatives
JP2865794B2 (en) Adhesive composition
JPH1025218A (en) Antimicrobial filler
JP6836646B2 (en) Polyfunctional monomer for dental materials and hydroxyl group-containing monomer for dental materials
WO2018181711A1 (en) Phosphorus-containing compound
US3639361A (en) Fluorocyanoacrylates
CN113332486A (en) Adhesive composition for hard tissue repair and kit for hard tissue repair
CA2538255C (en) Cyanoacrylate monomer formulation containing diiodomethyl-p-tolylsulfone

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term