JP3601530B2 - Method for producing aliphatic polyester copolymer - Google Patents

Method for producing aliphatic polyester copolymer Download PDF

Info

Publication number
JP3601530B2
JP3601530B2 JP2002374757A JP2002374757A JP3601530B2 JP 3601530 B2 JP3601530 B2 JP 3601530B2 JP 2002374757 A JP2002374757 A JP 2002374757A JP 2002374757 A JP2002374757 A JP 2002374757A JP 3601530 B2 JP3601530 B2 JP 3601530B2
Authority
JP
Japan
Prior art keywords
aliphatic
acid
mol
polyester copolymer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002374757A
Other languages
Japanese (ja)
Other versions
JP2003206337A (en
Inventor
景子 宮崎
浩 野口
厚 笠井
隆之 太田
弘明 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002374757A priority Critical patent/JP3601530B2/en
Publication of JP2003206337A publication Critical patent/JP2003206337A/en
Application granted granted Critical
Publication of JP3601530B2 publication Critical patent/JP3601530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形法、中空成形法および押出成形法などの汎用プラスチック成形法で、目的の成形品に成形可能な高分子量脂肪族ポリエステル共重合体の製造方法に関するものである。更に詳しくは、生分解性を有し、実用上十分な高分子量を有し、熱安定性および引張り強度等にすぐれた脂肪族ポリエステル共重合体の製造方法に関する。
【0002】
【従来の技術】
従来、フィルム、繊維、その他の成形品の成形に用いられていたポリエステルは、その数平均分子量が1万以上の高分子量ポリエステルであった。この高分子量ポリエステルは、テレフタル酸とエチレングリコールまたは1,4−ブタンジオールとから調製された芳香族ポリエステルに限られ、脂肪族ポリエステルは極めて少なかった。脂肪族ポリエステルがそれほど実用化されなかった理由としては、(1) 脂肪族ポリエステルの融点が比較的低いこと、(2) 脂肪族ポリエステルが通常知られた重縮合反応では数平均分子量で15,000以上にならず、熱分解しやすく、数平均分子量1万程度の分子量では実用上十分な強度が得られなかったこと、などが挙げられる。
【0003】
特開平4−189822号公報、および特開平5−287043号公報などに提案されているように、数平均分子量が5,000以上、望ましくは10,000以上で、末端基が実質的にヒドロキシル基であるポリエステルジオールに、その融点以上の溶融状態において、カップリング剤としてのイソシアナートを添加することにより、高分子量のウレタン結合を含む脂肪族ポリエステルが得られているが、高分子量のウレタン結合を含む脂肪族ポリエステルは、汎用プラスチック成形法で成形する場合、条件によっては着色したり、ミクロゲルが発生したりするなどの問題がある。
【0004】
また、特開平5−310898号公報に提案されているように、グリコール成分と脂肪族ジカルボン酸成分とをエステル化し、生成したポリエステルジオールを触媒の存在下、温度180〜230℃の範囲、および0.005〜0.1mmHgの高真空下で脱グリコール反応を行うことにより、数平均分子量が25,000〜70,000で、末端基に実質的にヒドロキシル基を有する高分子量脂肪族ポリエステルが合成されているが、このような高真空状態を得ることは工業的には困難を伴う。
【0005】
更に、特開平5−43665号公報には、乳酸、グリコール酸等の脂肪族オキシカルボン酸をゲルマニウム化合物の存在下で、不活性ガス気流下または減圧下で加熱脱水重縮合して還元粘度が0.67〜0.89の脂肪族ポリエステルを製造する方法が開示されている。この脂肪族ポリエステルから得られるフィルム、成形品も実用上充分な機械強度を有するものではない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、生分解性を有し、実用上十分な高分子量を有し、熱安定性および引張り強度等にすぐれた、脂肪族ポリエステル共重合体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記問題を解消し、生分解性を有すると同時に十分に実用に耐え得る脂肪族ポリエステルを提供すべく、鋭意検討を行った結果、ゲルマニウム化合物等の触媒の存在下、脂肪族または脂環式ジオールおよび脂肪族ジカルボン酸またはその誘導体を主成分とし、乳酸、グリコール酸等の脂肪族オキシカルボン酸を特定量共重合させることにより、重合速度の著しい増大が見られ、結果的に鎖延長剤を使用することなしに、極めて容易に、数平均分子量1万以上の高分子量脂肪族ポリエステル共重合体が得られることを見い出した。この高分子量脂肪族ポリエステル共重合体は、融点が比較的高く、実用上十分な強度を有し、また、オキシカルボン酸成分の導入により、結晶性が低下し、可撓性を有している。更には、この高分子量脂肪族ポリエステル共重合体は、優れた生分解性を示す。
【0008】
本発明はかかる知見に基づき達成されたもので、本発明によれば、触媒の存在下、かつ有機溶剤の不存在下で、下記式(I)で表される脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸、下記式(II)で表される脂肪族または脂環式ジオール単位を与える脂肪族または脂環式ジオール、および下記式(III)で表される脂肪族ジカルボン酸単位を与える脂肪族ジカルボン酸またはその誘導体を共重縮合させることにより、(I)式で表される単位が0.02〜30モル%、(II)式で表される単位が35〜49.99モル%、および(III)式で表される単位が35〜49.99モル%からなり、かつ数平均分子量が1万ないし20万である脂肪族ポリエステル共重合体を製造することができる。
(I)−O−R −CO−(式中、R は2価の脂肪族炭化水素基)
(II)−O−R −O−(式中、R は2価の脂肪族炭化水素基または2価の脂環式炭化水素基)
(III)−OC−R −CO−(式中、R は直接結合または2価の脂肪族炭化水素基)
【0009】
すなわち本発明によれば、脂肪族ジオールまたは脂環式ジオールと、脂肪族ジカルボン酸またはその誘導体とを重縮合させて脂肪族ポリエステルを製造するに際し、脂肪族オキシカルボン酸を生成するポリエステルが所望の物性となる量、例えば脂肪族ジカルボン酸100モルに対して0.04〜60モル共重合させる。
【0010】
以下、本発明をさらに詳細に説明する。
本発明における上記(I)式の脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸としては、分子中に1個の水酸基とカルボン酸基を有する脂肪族化合物であれば特に限定されるものではなく、式、HO−R −COOH、(式中、R は2価の脂肪族炭化水素基)で表わされるものをいう。更には、式(IV)、
【0011】
【化2】

Figure 0003601530
【0012】
(式中、pは0または1〜10、好ましくは0または1〜5の整数である)で示される脂肪族オキシカルボン酸が重合反応性向上効果が認められる点で特に好ましい。
【0013】
脂肪族オキシカルボン酸の具体例としては、乳酸、グリコール酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシカプロン酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−ヒドロキシイソカプロン酸、あるいはこれらの混合物が挙げられる。これらに光学異性体が存在する場合には、D体、L体、またはラセミ体のいずれでもよく、形態としては固体、液体、または水溶液であってもよい。これらの中で好ましいのは、乳酸またはグリコール酸であり、特に好ましいのは、使用時の重合速度の増大が特に顕著で、かつ入手の容易な乳酸またはグリコール酸である。形態は、30〜95%の水溶液のものが容易に入手することができるので好ましい。これら脂肪族オキシカルボン酸は単独でも、二種以上の混合物として使用することもできる。
【0014】
(II)式の脂肪族または脂環式ジオール単位を与えるジオールとしては、特に限定されないが、式、HO−R −OHで表される化合物をいう。ここで、R は、2価の脂肪族炭化水素基または2価の脂環式炭化水素基である。
好ましい2価の脂肪族炭化水素基としては、R が−(CH−(nは2〜10の整数)で表される脂肪族炭化水素基が挙げられる。中でも特に好ましいのは、nが2〜6の脂肪族炭化水素基である。
好ましい2価の脂環式炭化水素基としては、上記式のR が炭素数3〜10の脂環式炭化水素基であり、中でも特に好ましいのは4〜6の2価の脂環式炭化水素基である。
【0015】
(II)式で表される脂肪族または脂環式ジオールの具体例としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノールが好適に挙げられる。得られる共重合体の物性の面から、特に1,4−ブタンジオールであることが好ましい。これらは単独でも、二種以上の混合物として使用することもできる。
【0016】
(III)式の脂肪族ジカルボン酸単位を与える脂肪族ジカルボン酸またはその誘導体としては、式、HOOC−R −COOH、(式中、R は直接結合または2価の脂肪族炭化水素基、好ましくは、−(CH−、ただしmは0または1〜10の整数、好ましくは0または1〜6の整数)で表されるもの、またはそれらの炭素数1〜4の低級アルコールエステル、例えばジメチルエステル等、またはそれらの酸無水物をいう。
【0017】
その具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、およびそれらの低級アルコールエステル、無水コハク酸、無水アジピン酸、等が挙げられる。得られる共重合体の物性の面から、コハク酸、アジピン酸、セバシン酸またはこれらの無水物、及びこれらの低級アルコールエステルが好ましく、特にはコハク酸、無水コハク酸、またはこれらの混合物が好ましい。これらは単独でも2種以上混合して使用することもできる。
【0018】
これらの脂肪族または脂環式ジオール、脂肪族ジカルボン酸またはその誘導体および少量の脂肪族オキシカルボン酸とからの高分子量の脂肪族ポリエステル共重合体の製造は、公知技術で行うことができる。すなわちこのポリエステル共重合体を製造する際の重縮合反応は、従来から採用されている重縮合反応の範囲内で適切な条件を設定することができ、特に制限されない。
【0019】
脂肪族または脂環式ジオールの使用量は、脂肪族ジカルボン酸またはその誘導体に対し、実質的に等モルであるが、一般には、エステル化反応中での留出があることから、1〜20モル%過剰に用いられる。
添加される脂肪族オキシカルボン酸の量は、脂肪族オキシカルボン酸が少なすぎると添加効果が表れず、多すぎると得られるポリエステル共重合体の結晶性が失われ成形上好ましくなく、かつ耐熱性、機械的特性などが不十分となる。脂肪族オキシカルボン酸の量は、脂肪族ジカルボン酸またはその誘導体100モルに対し好ましくは0.04〜60モル、より好ましくは1.0〜40モル、特に好ましくは2〜20モルである。
【0020】
脂肪族オキシカルボン酸の添加時期・方法は、重縮合反応以前であれば特に限定されず、例えば、(1) あらかじめ触媒を脂肪族オキシカルボン酸溶液に溶解させた状態で添加する方法、(2) 原料仕込み時触媒を添加すると同時に添加する方法、などが挙げられる。
本発明方法による脂肪族ポリエステル共重合体の製造は、重合触媒の存在下で行われる。触媒としては、ゲルマニウム化合物が好適である。ゲルマニウム化合物としては、特に制限されるものではなく、酸化ゲルマニウム、テトラアルコキシゲルマニウムなどの有機ゲルマニウム化合物、塩化ゲルマニウムなどの無機ゲルマニウム化合物が挙げられる。価格や入手の容易さなどから、酸化ゲルマニウム、テトラエトキシゲルマニウム、テトラブトキシゲルマニウムなどが好ましく、特には、酸化ゲルマニウムが好適である。また、本発明の目的を損なわない限り、他の触媒の併用を妨げない。
【0021】
触媒の使用量は、使用するモノマー量に対して0.001〜3重量%、より好ましくは0.005〜1.5重量%である。触媒の添加時期は、重縮合以前であれば特に限定されないが、原料仕込み時に添加しておいてもよく、減圧開始時に添加してもよい。原料仕込み時に乳酸、グリコール酸等の脂肪族オキシカルボン酸と同時に添加するか、または脂肪族オキシカルボン酸水溶液に触媒を溶解して添加する方法が好ましく、特には、触媒の保存性が良好となる点で脂肪族オキシカルボン酸水溶液に触媒を溶解して添加する方法が好ましい。
【0022】
脂肪族ポリエステル共重合体を製造する際の温度、時間、圧力などの条件は、温度が150〜260℃、好ましくは180〜230℃の範囲で選ぶのがよく、重合時間は2時間以上、好ましくは4〜15時間の範囲で選ぶのがよい。減圧度は10mmHg以下、より好ましくは2mmHg以下で選ぶのがよい。
本発明方法により得られる脂肪族ポリエステル共重合体の組成比は、(II)式の脂肪族または脂環式ジオール単位と(III)式の脂肪族ジカルボン酸単位のモル比が、実質的に等しいことが必要である。脂肪族または脂環式ジオール単位と脂肪族ジカルボン酸単位とは、各々35〜49.99モル%の範囲、好ましくは40〜49.75モル%、より好ましくは45〜49.5モル%の範囲で選ぶのがよい。また、(I)式の脂肪族オキシカルボン酸単位は0.02〜30モル%の範囲で選ぶのがよい。脂肪族オキシカルボン酸が30モル%を超えると結晶性が失われ、成形上好ましくなく、また0.02モル%未満だと添加効果が現れない。上記範囲で好ましいのは0.5〜20モル%、より好ましくは1.0〜10モル%の範囲である。
【0023】
また、本発明方法により得られる脂肪族ポリエステル共重合体の数平均分子量は1万〜20万、好ましくは3万〜20万である。
また、本発明の効果を損なわない限り、本発明方法により製造される脂肪族ポリエステル共重合体に、他の共重合成分を導入することができる。他の共重合成分としては、ヒドロキシ安息香酸等の芳香族オキシカルボン酸類、ビスフェノールA等の芳香族ジオール類、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸、またはトリメチロールプロパン、グリセリンなどの多価アルコール、多価カルボン酸またはその無水物、リンゴ酸などの多価オキシカルボン酸等が挙げられる。
【0024】
以上のように、本発明は、脂肪族または脂環式ジオール単位、脂肪族カルボン酸単位、および脂肪族オキシカルボン酸単位を特定の比率で有し、かつ数平均分子量が1万以上、より好ましくは3万以上である高分子量脂肪族ポリエステル共重合体が、実用上十分な強度と融点を有することに基づいたものである。特には、乳酸等の脂肪族オキシカルボン酸を用いることにより、極めて容易に高分子量化を達成できたものである。
【0025】
本発明方法で得られる高分子量の脂肪族ポリエステル共重合体は、射出成形法、中空成形法および押出成形法などの汎用プラスチック成形法などにより、フィルム、ラミネートフィルム、シート、板、延伸シート、モノフィラメント、マルチフィラメント、不織布、フラットヤーン、ステープル、捲縮繊維、筋付きテープ、スプリットヤーン、複合繊維、ブローボトル、発泡体などの成形品に利用可能である。その際、結晶核剤、酸化防止剤、滑剤、着色剤、離型剤、フィラー、他のポリマーなど、必要に応じ添加することができる。
【0026】
さらに、本発明方法により得られる高分子量の脂肪族ポリエステル共重合体は、生分解性を有しており、土中のバクテリアによって、2〜12カ月で完全に分解する特性があり、環境衛生上極めて有用なポリマーである。従って、今後、ショッピングバッグ、ゴミ袋、農業用フィルム、化粧品容器、洗剤容器、漂白剤容器、釣り糸、漁網、ロープ、結束材、手術糸、衛生用カバーストック材、保冷箱、クッション材などの用途への使用が期待される。
【0027】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はその要旨を超えない限り、これら実施例に限定されるものではない。
なお、以下の例における特性値は、次の方法により測定した。
(1)ポリマー組成; H−NMR法により、得られたスペクトルの面積比により組成を計算した。
(2)数平均分子量(Mn);GPC法によって測定した。サンプルをクロロホルムに溶解し、東ソー社製GPC HLC−8020を用いてポリスチレン換算により測定した。カラムはPLgel−10μ−MIXを使用した。
【0028】
(3)熱的性質;DSC法(昇温速度16℃/minで窒素下で測定)により融点を求めた。
(4)引張り特性;実施例、比較例で得られたポリエステルから、卓上熱プレス法によって厚さ0.30〜0.37mmのフィルム作成し、このフィルムからJIS K7127に準拠して2号ダンベルを作成した。このダンベルにつき、JIS K7127に準拠し、破断伸度と破断強度とを測定した。
(5)生分解性試験:得られたポリエステルから、卓上熱プレス法によって厚さ0.30〜0.37mmのフィルムを作成し、これを2cm×2cmに切断しテストピースを作成した。このテストピースを3ヵ月間土中に埋没させて、目視により生分解性を確認した。
【0029】
[実施例1]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量100mlの反応容器に、コハク酸を35.4g、1,4−ブタンジオールを28.4g、酸化ゲルマニウムをあらかじめ1重量%溶解させた90%乳酸水溶液2.9gを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下180℃に昇温し、この温度で45分間反応させたあと、20mmHgの減圧下で1.75時間反応させた。引き続いて温度を220℃とし、0.5mmHgの減圧下において4時間重合を行った。
得られたポリエステルの H−NMRによるポリマー組成は、乳酸単位4.6モル%、1,4−ブタンジオール単位47.7モル%、コハク酸単位47.7モル%であり、Mnは58,900、融点は108℃であった。このポリマーを卓上熱プレスでフィルムを作成したところ、強靱なフィルムが得られた。また、生分解性試験の結果、3ヵ月後のフィルムには、多数の虫食い状の穴が見られ、生分解性が確認された。
【0030】
[実施例2]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量150mlの反応容器に、コハク酸を59.1g、1,4−ブタンジオールを49.6g、90%L−乳酸水溶液を5.0g、テトラブトキシゲルマニウム180μlを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下185℃に昇温し、この温度で50分間反応させたあと、20mmHgの減圧下において1.8時間反応させた。引き続いて温度を220℃とし、0.5mmHgの減圧下において2時間重合を行った。
得られたポリエステルの H−NMRによるポリマー組成は、乳酸単位4.4モル%、1,4−ブタンジオール単位47.8モル%、コハク酸単位47.8モル%であり、Mnは69,000であり、引張り特性は表−1に示した通りであった。また、実施例1と同程度の生分解性が認められた。
【0031】
[実施例3]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器に、コハク酸を118.1g、1,4−ブタンジオールを99.1g、酸化ゲルマニウムをあらかじめ1重量%溶解させた90%乳酸水溶液6.3gを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下185℃に昇温し、この温度で0.5時間反応させたあと、内温を220℃に昇温し、この温度で0.5時間反応させた。引き続いて、0.5mmHgの減圧下において4時間重合を行った。
得られたポリエステルの H−NMRによるポリマー組成は、乳酸単位3.0モル%、1,4−ブタンジオール単位48.5モル%、コハク酸単位48.5モル%であり、Mnは62,500であり、引張り特性は表−1に示した通りであった。また、実施例1と同程度の生分解性が認められた。
【0032】
[実施例4]
実施例3で使用したのと同じ反応容器に、コハク酸を118.1g、1,4−ブタンジオールを99.1g、酸化ゲルマニウムをあらかじめ1重量%溶解させた70%グリコール酸水溶液6.3gを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下185℃に昇温し、この温度で0.5時間反応させたあと、内温を220℃に昇温し、この温度で0.5時間反応させた。引き続いて、0.5mmHgの減圧下において6時間重合を行った。
得られたポリエステルの H−NMRによるポリマー組成は、グリコール酸単位2.4モル%、1,4−ブタンジオール単位48.8モル%、コハク酸単位48.8モル%であり、Mnは42,500であった。また、実施例1と同程度の生分解性が認められた。
【0033】
[実施例5]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器にコハク酸を100.3g、アジピン酸を21.9g、1,4−ブタンジオールを103.1g、酸化ゲルマニウムをあらかじめ1重量%溶解させた90%乳酸水溶液6.3gを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下185℃に昇温し、0.5時間反応させた後、220℃に昇温し、0.5時間反応した。引き続いて0.5mmHgの減圧下において4時間重合をおこなった。得られたポリエステルのMnは71,000、融点は95℃であり、引張り特性は表1に示した通りであった。またH−NMRによるポリマー組成は、乳酸単位2.8モル%、1,4−ブタンジオール単位48.9モル%、コハク酸単位40.8モル%、アジピン酸単位7.5モル%であり、生分解性試験の結果、3ヵ月後のフィルムは、ボロボロになっており、生分解性が確認された。
【0034】
[比較例1]
実施例2で使用したのと同じ反応容器に、コハク酸を59.1g、1,4−ブタンジオールを47.3g、酸化ゲルマニウムを0.05gを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下185℃に昇温し、この温度で50分間反応させたあと、20mmHgの減圧下において2時間反応させた。引き続いて温度を220℃とし、0.5mmHgの減圧下において4時間重合を行った。
得られたポリエステルのMnは1,500であり、引張り特性は表−1に示した通りであった。
【0035】
[比較例2]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器にコハク酸を118.0g、1,4−ブタンジオールを99.1g、酸化アンチモンをあらかじめ1重量%溶解させた90%乳酸水溶液6.3gを仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下185℃に昇温し、0.5時間反応させた後、220℃に昇温し、0.5時間反応した。引き続いて0.5mmHgの減圧下において4時間重合をおこなった。得られたポリエステルのMnは8,800であった。またH−NMRによるポリマー組成は、乳酸単位2.9モル%、1,4−ブタンジオール単位48.7モル%、コハク酸単位48.4モル%であった。
【0036】
【表1】
Figure 0003601530
【0037】
以上の実施例および比較例の結果より、次のことが明らかである。
(1) 本発明方法で得られる脂肪族オキシカルボン酸単位を有するポリエステル共重合体は、高い分子量を有し(実施例1〜実施例5)、高い引張り特性を発揮している(実施例2〜実施例3)。
(2) これに対して、比較例のポリエステル共重合体は、分子量が小さく、引張り特性も十分ではない(比較例1〜比較例2)。
【0038】
[実施例6]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器内に、無水コハク酸を100.1g、1,4−ブタンジオール99.1g、酸化ゲルマニウムをあらかじめ1重量%溶解させた90%乳酸水溶液6.3g(無水コハク酸のモル数に対し、6.3モル%)を仕込み、窒素雰囲気中185℃にて0.5時間反応させた後、220℃に昇温し、0.5時間反応した。引き続いて0.5mmHgの減圧下において6時間重合を行った。
【0039】
得られたポリエステルは白色であり、Mnは67,600であった。また融点は108℃であった。またH−NMRによるポリマー組成は、乳酸単位3.2モル%、コハク酸単位48.4モル%、1,4−ブタンジオール単位48.4モル%であった。得たポリエステルを卓上熱プレス200℃、100kg/cmで厚さ0.35mmのフィルムを作成したところ、強靱なフィルムが得られた。その引張り強さは、破断強度が320kg/cm、伸びは330%であった。生分解性試験の結果、3ヵ月後のフィルムには多数の虫食い状の穴が見られ生分解性が確認された。
【0040】
[実施例7]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器内に、無水コハク酸を100.1g、1,4−ブタンジオールを99.1g、90%乳酸水溶液10.6g(無水コハク酸のモル数に対して、10.6モル%)、テトラブトキシゲルマニウム0.2gを仕込み、窒素雰囲気中185℃にて0.5時間反応させた後、220℃に昇温し、0.5時間反応した。引き続いて0.5mmHgの減圧下において5時間重合を行なった。
【0041】
得たポリエステルは白色であり、Mnが70,000であった。また、融点は103℃であった。またH−NMRによるポリマー組成は、乳酸単位4.9モル%、コハク酸単位47.6モル%、1,4−ブタンジオール単位47.5モル%であった。得たポリエステルを卓上熱プレスで厚さ0.35mmのフィルムを作成したところ、強靱なフィルムが得られ、その引張り強さは、破断強度が470kg/cm、伸びは630%であった。また、実施例6と同程度の生分解性が認められた。
【0042】
[実施例8]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器内に、無水コハク酸を50.1g、コハク酸を59.1g、1,4−ブタンジオールを99.1g、酸化ゲルマニウムをあらかじめ1重量%溶解させた70%グリコール酸水溶液6.3g(無水コハク酸およびコハク酸の合計モル数に対し、11モル%)を仕込み、窒素雰囲気中185℃にて0.5時間反応させた後、220℃に昇温し、0.5時間反応を行った。引き続いて0.5mmHgの減圧下において5時間重合を行った。
【0043】
得たポリエステルは白色であり、Mnが60,000であった。またH−NMRによるポリマー組成は、グリコール酸単位5.0モル%、コハク酸単位47.5モル%、1,4−ブタンジオール単位47.5モル%であった。得たポリエステルを卓上熱プレスで厚さ0.35mmのフィルムを作成したところ、強靱なフィルムが得られ、その引張り強さは、破断強度が300kg/cm、伸びは310%であった。また、実施例6と同程度の生分解性が認められた。
【0044】
[比較例3]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量300mlの反応容器内に、無水コハク酸を100.1g、1,4−ブタンジオールを99.1gを仕込み窒素雰囲気中185℃にて0.5時間反応させた後、220℃に昇温し、0.5分間反応した。引き続いてテトラブチルチタネート0.06gを添加し、0.5mmHgの減圧下において4時間重合を行なった。
得たポリエステルは灰白色のワックス状であり、Mnは7,500であった。得たポリエステルを卓上熱プレスでフィルムを作成しようとしたが、脆く、フィルムは得られなかった。
【0045】
[比較例4]
数平均分子量が65,100の少量のウレタン結合を含む、1,4−ブタンジオール単位とコハク酸単位からなる脂肪族ポリエステル(昭和高分子社製、ビオノーレ#1010)を卓上熱プレスで厚さ35mmのフィルムを作成し、引張試験を行なったところ、破断強度は330kg/cm、伸びは280%であった。
【0046】
[比較例5]
攪拌装置、窒素導入管、加熱装置、温度計、助剤添加口を備えた容量200mlの反応容器内に、90%L−乳酸水溶液103.5gおよび酸化ゲルマニウム0.05gを仕込み、窒素雰囲気中180℃にて2時間、常圧で攪拌し、その後、1時間かけて20mmHgまで減圧し、2時間反応させた。続いて1時間かけて昇温を行ない、200℃、2mmHgの条件で8時間重縮合反応させた。
得たポリ乳酸はやや黄色味を帯びているものの透明であり、Mnは28,000であった。得たポリエステルを卓上熱プレスでフィルムを作成しようとしたが、脆く、フィルムは得られなかった。
【0047】
【発明の効果】
本発明は、次のような特別に有利な効果を奏し、その産業上の利用価値は極めて大である。
1.本発明方法で得られる脂肪族ポリエステル共重合体は、実用上十分な高分子量を有し、汎用プラスチック成形法で目的の成形品に成形可能であり、得られたフィルム、成形品、繊維などの成形品は、優れた熱安定性と、優れた引張り強度等の物性を有する。
2.本発明方法で得られる脂肪族ポリエステル共重合体は、優れた生分解性を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high molecular weight aliphatic polyester copolymer which can be molded into a target molded article by a general-purpose plastic molding method such as an injection molding method, a hollow molding method, and an extrusion molding method. More specifically, the present invention relates to a method for producing an aliphatic polyester copolymer having biodegradability, having a practically high molecular weight, and having excellent heat stability, tensile strength, and the like.
[0002]
[Prior art]
Conventionally, polyesters used for molding films, fibers, and other molded articles have been high molecular weight polyesters having a number average molecular weight of 10,000 or more. This high molecular weight polyester was limited to aromatic polyesters prepared from terephthalic acid and ethylene glycol or 1,4-butanediol, with very few aliphatic polyesters. The reason why aliphatic polyesters have not been put to practical use is that (1) the melting point of aliphatic polyesters is relatively low, and (2) aliphatic polyesters have a number average molecular weight of 15,000 in a commonly known polycondensation reaction. In addition to the above, thermal decomposition is liable to occur, and a molecular weight with a number average molecular weight of about 10,000 cannot provide sufficient strength for practical use.
[0003]
As proposed in JP-A-4-189822 and JP-A-5-287043, the number average molecular weight is 5,000 or more, preferably 10,000 or more, and the terminal group is substantially a hydroxyl group. Polyester diol is, in a molten state above its melting point, by adding an isocyanate as a coupling agent to obtain an aliphatic polyester containing a high-molecular-weight urethane bond, When the aliphatic polyester containing is molded by a general-purpose plastic molding method, there are problems such as coloring and generation of a microgel depending on conditions.
[0004]
Further, as proposed in JP-A-5-310898, a glycol component and an aliphatic dicarboxylic acid component are esterified, and the resulting polyester diol is reacted in the presence of a catalyst at a temperature of 180 to 230 ° C. and 0 ° C. By performing the deglycolization reaction under a high vacuum of 0.005 to 0.1 mmHg, a high molecular weight aliphatic polyester having a number average molecular weight of 25,000 to 70,000 and substantially having a hydroxyl group in a terminal group is synthesized. However, it is industrially difficult to obtain such a high vacuum state.
[0005]
Furthermore, JP-A-5-43665 discloses that polycondensation of aliphatic oxycarboxylic acids such as lactic acid and glycolic acid is carried out by dehydration under heating in the presence of a germanium compound under an inert gas stream or under reduced pressure to reduce the reduced viscosity to 0. A process for producing aliphatic polyesters of 0.67 to 0.89 is disclosed. Films and molded products obtained from this aliphatic polyester do not have practically sufficient mechanical strength.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an aliphatic polyester copolymer which is biodegradable, has a practically sufficient high molecular weight, and is excellent in heat stability, tensile strength and the like.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems and provide an aliphatic polyester which is biodegradable and can sufficiently withstand practical use.As a result, in the presence of a catalyst such as a germanium compound, fat The polymerization rate is markedly increased by copolymerizing a specific amount of an aliphatic oxycarboxylic acid such as lactic acid or glycolic acid with an aliphatic or alicyclic diol and an aliphatic dicarboxylic acid or a derivative thereof as a main component, and as a result, It has been found that a high molecular weight aliphatic polyester copolymer having a number average molecular weight of 10,000 or more can be obtained very easily without using a chain extender. This high molecular weight aliphatic polyester copolymer has a relatively high melting point and sufficient strength for practical use, and has reduced crystallinity and flexibility by introducing an oxycarboxylic acid component. . Furthermore, this high molecular weight aliphatic polyester copolymer exhibits excellent biodegradability.
[0008]
The present invention has been achieved based on such findings, and according to the present invention, an aliphatic oxycarboxylic acid unit represented by the following formula (I) is provided in the presence of a catalyst and in the absence of an organic solvent. An aliphatic oxycarboxylic acid, an aliphatic or alicyclic diol which gives an aliphatic or alicyclic diol unit represented by the following formula (II), and an aliphatic or alicyclic diol unit which gives an aliphatic dicarboxylic acid unit represented by the following formula (III) By copolycondensing an aliphatic dicarboxylic acid or a derivative thereof, the unit represented by the formula (I) is 0.02 to 30 mol%, and the unit represented by the formula (II) is 35 to 49.99 mol%. And an aliphatic polyester copolymer comprising 35 to 49.99 mol% of the unit represented by the formula (III) and having a number average molecular weight of 10,000 to 200,000.
(I) -OR 1 -CO- (wherein, R 1 Is a divalent aliphatic hydrocarbon group)
(II) -OR 2 -O- (wherein, R 2 Is a divalent aliphatic hydrocarbon group or a divalent alicyclic hydrocarbon group)
(III) -OC-R 3 -CO- (wherein, R 3 Is a direct bond or a divalent aliphatic hydrocarbon group)
[0009]
That is, according to the present invention, when an aliphatic polyester is produced by polycondensing an aliphatic diol or an alicyclic diol with an aliphatic dicarboxylic acid or a derivative thereof, a polyester that produces an aliphatic oxycarboxylic acid is desired. Copolymerization is carried out in an amount of physical properties, for example, 0.04 to 60 mol per 100 mol of aliphatic dicarboxylic acid.
[0010]
Hereinafter, the present invention will be described in more detail.
The aliphatic oxycarboxylic acid for providing the aliphatic oxycarboxylic acid unit of the above formula (I) in the present invention is not particularly limited as long as it is an aliphatic compound having one hydroxyl group and carboxylic acid group in the molecule. Without the formula, HO-R 1 —COOH, where R 1 Is a divalent aliphatic hydrocarbon group). Further, the formula (IV):
[0011]
Embedded image
Figure 0003601530
[0012]
(Wherein p is 0 or 1 to 10, preferably 0 or an integer of 1 to 5), is particularly preferable in that an effect of improving polymerization reactivity is recognized.
[0013]
Specific examples of the aliphatic oxycarboxylic acid include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, -Hydroxyisocaproic acid, or a mixture thereof. When these optical isomers are present, they may be D-, L-, or racemic, and may be in the form of solid, liquid, or aqueous solution. Among these, lactic acid or glycolic acid is preferred, and particularly preferred is lactic acid or glycolic acid, which has a particularly remarkable increase in polymerization rate during use and is easily available. The form is preferable because a 30-95% aqueous solution can be easily obtained. These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
[0014]
The diol that provides the aliphatic or alicyclic diol unit of the formula (II) is not particularly limited, but includes a diol represented by the formula: HO-R 2 Refers to a compound represented by -OH. Where R 2 Is a divalent aliphatic hydrocarbon group or a divalent alicyclic hydrocarbon group.
Preferred divalent aliphatic hydrocarbon groups include R 2 Is-(CH 2 ) n An aliphatic hydrocarbon group represented by-(n is an integer of 2 to 10); Among them, particularly preferred are aliphatic hydrocarbon groups wherein n is 2 to 6.
Preferred divalent alicyclic hydrocarbon groups include those represented by the above formula 2 Is an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and particularly preferred is a divalent alicyclic hydrocarbon group having 4 to 6 carbon atoms.
[0015]
Specific examples of the aliphatic or alicyclic diol represented by the formula (II) include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexane. Diol, 1,4-cyclohexanediol, and 1,4-cyclohexanedimethanol are preferred. From the viewpoint of physical properties of the obtained copolymer, 1,4-butanediol is particularly preferred. These can be used alone or as a mixture of two or more.
[0016]
(III) As the aliphatic dicarboxylic acid giving an aliphatic dicarboxylic acid unit of the formula or a derivative thereof, a HOOC-R 3 —COOH, where R 3 Is a direct bond or a divalent aliphatic hydrocarbon group, preferably-(CH 2 ) m -, Wherein m is 0 or an integer of 1 to 10, preferably 0 or an integer of 1 to 6), or a lower alcohol ester having 1 to 4 carbon atoms, such as dimethyl ester, or the like. Refers to acid anhydride.
[0017]
Specific examples thereof include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecandioic acid, and lower alcohol esters thereof, succinic anhydride, adipic anhydride, and the like. From the viewpoint of the physical properties of the obtained copolymer, succinic acid, adipic acid, sebacic acid or anhydrides thereof, and lower alcohol esters thereof are preferable, and succinic acid, succinic anhydride, or a mixture thereof is particularly preferable. These can be used alone or in combination of two or more.
[0018]
The production of a high-molecular-weight aliphatic polyester copolymer from these aliphatic or alicyclic diols, aliphatic dicarboxylic acids or derivatives thereof and a small amount of aliphatic oxycarboxylic acids can be carried out by known techniques. That is, the polycondensation reaction at the time of producing the polyester copolymer can be set under appropriate conditions within the range of conventionally employed polycondensation reactions, and is not particularly limited.
[0019]
The amount of the aliphatic or alicyclic diol used is substantially equimolar to the aliphatic dicarboxylic acid or a derivative thereof, but is generally 1 to 20 due to distillation during the esterification reaction. Used in molar% excess.
When the amount of the aliphatic oxycarboxylic acid to be added is too small, the effect of addition is not exhibited, and when the amount is too large, the crystallinity of the obtained polyester copolymer is lost, which is not preferable for molding, and heat resistance. , Mechanical properties and the like become insufficient. The amount of the aliphatic oxycarboxylic acid is preferably from 0.04 to 60 mol, more preferably from 1.0 to 40 mol, particularly preferably from 2 to 20 mol, per 100 mol of the aliphatic dicarboxylic acid or its derivative.
[0020]
The timing and method of adding the aliphatic oxycarboxylic acid are not particularly limited as long as it is before the polycondensation reaction. For example, (1) a method in which a catalyst is dissolved in an aliphatic oxycarboxylic acid solution in advance and (2) ) The method of adding the catalyst at the same time as adding the catalyst at the time of charging the raw materials.
The production of the aliphatic polyester copolymer according to the method of the present invention is performed in the presence of a polymerization catalyst. As a catalyst, a germanium compound is suitable. The germanium compound is not particularly limited, and examples thereof include organic germanium compounds such as germanium oxide and tetraalkoxygermanium, and inorganic germanium compounds such as germanium chloride. From the viewpoint of price and availability, germanium oxide, tetraethoxygermanium, tetrabutoxygermanium, and the like are preferable, and germanium oxide is particularly preferable. Also, the use of other catalysts is not prevented unless the object of the present invention is impaired.
[0021]
The amount of the catalyst used is 0.001 to 3% by weight, more preferably 0.005 to 1.5% by weight, based on the amount of the monomer used. The timing of addition of the catalyst is not particularly limited as long as it is before the polycondensation. A method of adding simultaneously with an aliphatic oxycarboxylic acid such as lactic acid or glycolic acid at the time of raw material charging, or dissolving a catalyst in an aqueous solution of an aliphatic oxycarboxylic acid and adding it is preferable, and particularly, the storage stability of the catalyst is improved. In this respect, a method in which a catalyst is dissolved in an aqueous solution of an aliphatic oxycarboxylic acid and added is preferable.
[0022]
Conditions for producing the aliphatic polyester copolymer, such as temperature, time, and pressure, are preferably such that the temperature is in the range of 150 to 260 ° C, preferably 180 to 230 ° C, and the polymerization time is 2 hours or more, preferably Should be selected in the range of 4 to 15 hours. The degree of pressure reduction is preferably selected to be 10 mmHg or less, more preferably 2 mmHg or less.
The composition ratio of the aliphatic polyester copolymer obtained by the method of the present invention is such that the molar ratio of the aliphatic or alicyclic diol unit of the formula (II) to the aliphatic dicarboxylic acid unit of the formula (III) is substantially equal. It is necessary. The aliphatic or alicyclic diol unit and the aliphatic dicarboxylic acid unit are each in the range of 35 to 49.99 mol%, preferably 40 to 49.75 mol%, more preferably 45 to 49.5 mol%. It is better to choose at. The aliphatic oxycarboxylic acid unit of the formula (I) is preferably selected in the range of 0.02 to 30 mol%. If the amount of the aliphatic oxycarboxylic acid exceeds 30 mol%, the crystallinity is lost, which is not preferable for molding. The above range is preferably 0.5 to 20 mol%, more preferably 1.0 to 10 mol%.
[0023]
The number average molecular weight of the aliphatic polyester copolymer obtained by the method of the present invention is 10,000 to 200,000, preferably 30,000 to 200,000.
Further, as long as the effects of the present invention are not impaired, other copolymer components can be introduced into the aliphatic polyester copolymer produced by the method of the present invention. Other copolymerization components include aromatic oxycarboxylic acids such as hydroxybenzoic acid, aromatic diols such as bisphenol A, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, or polyvalent such as trimethylolpropane and glycerin. Examples include alcohols, polycarboxylic acids or anhydrides thereof, and polyoxycarboxylic acids such as malic acid.
[0024]
As described above, the present invention has an aliphatic or alicyclic diol unit, an aliphatic carboxylic acid unit, and an aliphatic oxycarboxylic acid unit in a specific ratio, and has a number average molecular weight of 10,000 or more, more preferably Is based on the fact that a high molecular weight aliphatic polyester copolymer having a molecular weight of 30,000 or more has practically sufficient strength and melting point. Particularly, by using an aliphatic oxycarboxylic acid such as lactic acid, it is possible to extremely easily increase the molecular weight.
[0025]
The high molecular weight aliphatic polyester copolymer obtained by the method of the present invention can be used as a film, a laminated film, a sheet, a plate, a stretched sheet, a monofilament, by a general-purpose plastic molding method such as an injection molding method, a hollow molding method and an extrusion molding method. It can be used for molded articles such as multifilaments, non-woven fabrics, flat yarns, staples, crimped fibers, tapes with split lines, split yarns, composite fibers, blow bottles, and foams. At that time, a nucleating agent, an antioxidant, a lubricant, a coloring agent, a release agent, a filler, another polymer, and the like can be added as necessary.
[0026]
Furthermore, the high molecular weight aliphatic polyester copolymer obtained by the method of the present invention has biodegradability, has the property of being completely degraded by bacteria in the soil in 2 to 12 months, and is environmentally friendly. It is a very useful polymer. Therefore, in the future, shopping bags, garbage bags, agricultural films, cosmetic containers, detergent containers, bleach containers, fishing lines, fishing nets, ropes, binding materials, surgical threads, hygienic cover stock materials, cool boxes, cushion materials, etc. Expected to be used for
[0027]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.
The characteristic values in the following examples were measured by the following methods.
(1) polymer composition; 1 The composition was calculated by the H-NMR method based on the area ratio of the obtained spectrum.
(2) Number average molecular weight (Mn): measured by GPC method. The sample was dissolved in chloroform, and measured in terms of polystyrene using GPC HLC-8020 manufactured by Tosoh Corporation. The column used was PLgel-10μ-MIX.
[0028]
(3) Thermal properties: The melting point was determined by the DSC method (measured under nitrogen at a heating rate of 16 ° C./min).
(4) Tensile properties: A film having a thickness of 0.30 to 0.37 mm was prepared from the polyesters obtained in Examples and Comparative Examples by a tabletop hot press method, and a No. 2 dumbbell was formed from this film in accordance with JIS K7127. Created. The dumbbell was measured for elongation at break and strength at break in accordance with JIS K7127.
(5) Biodegradability test: A film having a thickness of 0.30 to 0.37 mm was prepared from the obtained polyester by a tabletop hot press method, and cut into 2 cm x 2 cm to prepare a test piece. This test piece was buried in the soil for 3 months, and the biodegradability was visually confirmed.
[0029]
[Example 1]
35.4 g of succinic acid, 28.4 g of 1,4-butanediol, and 1 g of germanium oxide in advance in a 100 ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port. 2.9 g of a 90% aqueous solution of lactic acid dissolved in weight% was charged. Nitrogen gas was introduced while stirring the contents of the container, the temperature was raised to 180 ° C. in a nitrogen gas atmosphere, the reaction was performed at this temperature for 45 minutes, and then the reaction was performed under a reduced pressure of 20 mmHg for 1.75 hours. Subsequently, the polymerization was carried out at a temperature of 220 ° C. under a reduced pressure of 0.5 mmHg for 4 hours.
Of the obtained polyester 1 The polymer composition by H-NMR was 4.6 mol% of lactic acid units, 47.7 mol% of 1,4-butanediol units, and 47.7 mol% of succinic acid units, Mn was 58,900, and the melting point was 108 ° C. Met. When a film was formed from this polymer by a tabletop hot press, a tough film was obtained. As a result of the biodegradability test, a large number of worm-like holes were observed in the film after three months, and the biodegradability was confirmed.
[0030]
[Example 2]
In a 150-ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port, 59.1 g of succinic acid, 49.6 g of 1,4-butanediol, and 90% L-lactic acid. 5.0 g of the aqueous solution and 180 μl of tetrabutoxygermanium were charged. Nitrogen gas was introduced while stirring the contents of the container, the temperature was raised to 185 ° C. in a nitrogen gas atmosphere, the reaction was performed at this temperature for 50 minutes, and then the reaction was performed under a reduced pressure of 20 mmHg for 1.8 hours. Subsequently, the temperature was set to 220 ° C., and polymerization was performed under a reduced pressure of 0.5 mmHg for 2 hours.
Of the obtained polyester 1 The polymer composition by H-NMR was as follows: 4.4 mol% of lactic acid units, 47.8 mol% of 1,4-butanediol units, and 47.8 mol% of succinic acid units, Mn was 69,000, and tensile properties. Was as shown in Table 1. In addition, the same degree of biodegradability as in Example 1 was observed.
[0031]
[Example 3]
In a 300 ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port, 118.1 g of succinic acid, 99.1 g of 1,4-butanediol, and 1 part of germanium oxide were added in advance. 6.3 g of a 90% aqueous solution of lactic acid dissolved in weight% was charged. Nitrogen gas was introduced while stirring the contents of the vessel, and the temperature was raised to 185 ° C. in a nitrogen gas atmosphere. After reacting at this temperature for 0.5 hour, the internal temperature was raised to 220 ° C. The reaction was carried out for 5 hours. Subsequently, polymerization was carried out under a reduced pressure of 0.5 mmHg for 4 hours.
Of the obtained polyester 1 The polymer composition by H-NMR was as follows: lactic acid unit: 3.0 mol%, 1,4-butanediol unit: 48.5 mol%, succinic acid unit: 48.5 mol%, Mn was 62,500, and tensile properties Was as shown in Table 1. In addition, the same degree of biodegradability as in Example 1 was observed.
[0032]
[Example 4]
In the same reaction vessel as used in Example 3, 118.1 g of succinic acid, 99.1 g of 1,4-butanediol, and 6.3 g of a 70% aqueous solution of glycolic acid in which germanium oxide was previously dissolved by 1% by weight were placed. I charged. Nitrogen gas was introduced while stirring the contents of the vessel, and the temperature was raised to 185 ° C. in a nitrogen gas atmosphere. After reacting at this temperature for 0.5 hour, the internal temperature was raised to 220 ° C. The reaction was carried out for 5 hours. Subsequently, polymerization was performed for 6 hours under a reduced pressure of 0.5 mmHg.
Of the obtained polyester 1 The polymer composition by H-NMR was 2.4 mol% of glycolic acid units, 48.8 mol% of 1,4-butanediol units, and 48.8 mol% of succinic acid units, and Mn was 42,500. In addition, the same degree of biodegradability as in Example 1 was observed.
[0033]
[Example 5]
100.3 g of succinic acid, 21.9 g of adipic acid, and 103.1 g of 1,4-butanediol are placed in a 300 ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port. Then, 6.3 g of a 90% lactic acid aqueous solution in which germanium oxide was previously dissolved at 1% by weight was charged. Nitrogen gas was introduced while stirring the contents of the vessel, and the temperature was raised to 185 ° C. in a nitrogen gas atmosphere and reacted for 0.5 hour. Then, the temperature was raised to 220 ° C. and reacted for 0.5 hour. Subsequently, polymerization was carried out under a reduced pressure of 0.5 mmHg for 4 hours. The Mn of the obtained polyester was 71,000, the melting point was 95 ° C., and the tensile properties were as shown in Table 1. Also 1 The polymer composition by H-NMR was 2.8 mol% of lactic acid units, 48.9 mol% of 1,4-butanediol units, 40.8 mol% of succinic acid units, and 7.5 mol% of adipic acid units. As a result of the degradability test, the film after three months was tattered, and biodegradability was confirmed.
[0034]
[Comparative Example 1]
In the same reaction vessel as used in Example 2, 59.1 g of succinic acid, 47.3 g of 1,4-butanediol, and 0.05 g of germanium oxide were charged. Nitrogen gas was introduced while stirring the contents of the container, the temperature was raised to 185 ° C. in a nitrogen gas atmosphere, the reaction was performed at this temperature for 50 minutes, and then the reaction was performed under a reduced pressure of 20 mmHg for 2 hours. Subsequently, the polymerization was carried out at a temperature of 220 ° C. under a reduced pressure of 0.5 mmHg for 4 hours.
The Mn of the obtained polyester was 1,500, and the tensile properties were as shown in Table 1.
[0035]
[Comparative Example 2]
118.0 g of succinic acid, 99.1 g of 1,4-butanediol, and 1 weight of antimony oxide in advance in a 300-ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port. Then, 6.3 g of a 90% aqueous solution of lactic acid dissolved therein was charged. Nitrogen gas was introduced while stirring the contents of the vessel, and the temperature was raised to 185 ° C. in a nitrogen gas atmosphere and reacted for 0.5 hour. Then, the temperature was raised to 220 ° C. and reacted for 0.5 hour. Subsequently, polymerization was carried out under a reduced pressure of 0.5 mmHg for 4 hours. Mn of the obtained polyester was 8,800. Also 1 The polymer composition by H-NMR was 2.9 mol% of lactic acid units, 48.7 mol% of 1,4-butanediol units, and 48.4 mol% of succinic acid units.
[0036]
[Table 1]
Figure 0003601530
[0037]
The following is clear from the results of the above examples and comparative examples.
(1) The polyester copolymer having an aliphatic oxycarboxylic acid unit obtained by the method of the present invention has a high molecular weight (Examples 1 to 5) and exhibits high tensile properties (Example 2). -Example 3).
(2) On the other hand, the polyester copolymer of the comparative example has a small molecular weight and insufficient tensile properties (Comparative Examples 1 and 2).
[0038]
[Example 6]
In a 300 ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port, 100.1 g of succinic anhydride, 99.1 g of 1,4-butanediol, and germanium oxide were previously charged. 6.3 g of a 90% aqueous lactic acid solution (6.3 mol% based on the number of moles of succinic anhydride) in which 1% by weight was dissolved was charged and reacted at 185 ° C. in a nitrogen atmosphere for 0.5 hour, and then 220 ° C. , And reacted for 0.5 hour. Subsequently, polymerization was carried out for 6 hours under a reduced pressure of 0.5 mmHg.
[0039]
The obtained polyester was white and Mn was 67,600. The melting point was 108 ° C. Also 1 The polymer composition by H-NMR was 3.2 mol% of lactic acid units, 48.4 mol% of succinic acid units, and 48.4 mol% of 1,4-butanediol units. The obtained polyester is subjected to a tabletop hot press at 200 ° C. and 100 kg / cm. 2 When a film having a thickness of 0.35 mm was prepared, a tough film was obtained. Its tensile strength is such that the breaking strength is 320 kg / cm. 2 And the elongation was 330%. As a result of the biodegradability test, a large number of worm-like holes were observed in the film after three months, and the biodegradability was confirmed.
[0040]
[Example 7]
In a 300-ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port, 100.1 g of succinic anhydride, 99.1 g of 1,4-butanediol, and 90% lactic acid. 10.6 g of an aqueous solution (10.6 mol% based on the number of moles of succinic anhydride) and 0.2 g of tetrabutoxygermanium were charged, and reacted at 185 ° C. for 0.5 hour in a nitrogen atmosphere. The temperature was raised and the reaction was carried out for 0.5 hour. Subsequently, polymerization was carried out under a reduced pressure of 0.5 mmHg for 5 hours.
[0041]
The obtained polyester was white and Mn was 70,000. The melting point was 103 ° C. Also 1 The polymer composition by H-NMR was 4.9 mol% of lactic acid units, 47.6 mol% of succinic acid units, and 47.5 mol% of 1,4-butanediol units. When a film having a thickness of 0.35 mm was formed from the obtained polyester by a tabletop hot press, a tough film was obtained, and its tensile strength was measured at a breaking strength of 470 kg / cm. 2 And the elongation was 630%. In addition, the same degree of biodegradability as in Example 6 was observed.
[0042]
Example 8
50.1 g of succinic anhydride, 59.1 g of succinic acid, and 1,4-butanediol were placed in a 300-ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port. 99.1 g and 6.3 g of a 70% aqueous solution of glycolic acid (11 mol% based on the total moles of succinic anhydride and succinic acid) in which germanium oxide was previously dissolved at 1% by weight were charged at 185 ° C. in a nitrogen atmosphere. After reacting for 0.5 hour, the temperature was raised to 220 ° C., and the reaction was performed for 0.5 hour. Subsequently, polymerization was carried out under a reduced pressure of 0.5 mmHg for 5 hours.
[0043]
The obtained polyester was white and Mn was 60,000. Also 1 The polymer composition by H-NMR was 5.0 mol% of glycolic acid units, 47.5 mol% of succinic acid units, and 47.5 mol% of 1,4-butanediol units. When a film having a thickness of 0.35 mm was formed from the obtained polyester by a tabletop hot press, a tough film was obtained, and its tensile strength was such that the breaking strength was 300 kg / cm. 2 And the elongation was 310%. In addition, the same degree of biodegradability as in Example 6 was observed.
[0044]
[Comparative Example 3]
In a 300-ml reactor equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port, 100.1 g of succinic anhydride and 99.1 g of 1,4-butanediol were charged, and a nitrogen atmosphere was charged. After the reaction at 185 ° C. for 0.5 hour, the temperature was raised to 220 ° C. and the reaction was performed for 0.5 minute. Subsequently, 0.06 g of tetrabutyl titanate was added, and polymerization was carried out under a reduced pressure of 0.5 mmHg for 4 hours.
The obtained polyester was in the form of an off-white wax, and Mn was 7,500. An attempt was made to form a film from the obtained polyester by a tabletop hot press, but the film was brittle and no film was obtained.
[0045]
[Comparative Example 4]
Aliphatic polyester (Bionole # 1010, manufactured by Showa Polymer Co., Ltd.) containing a small amount of urethane bonds having a number average molecular weight of 65,100 and comprising 1,4-butanediol units and succinic acid units was 35 mm thick by a desktop heat press. And a tensile test was performed, and the breaking strength was 330 kg / cm. 2 And the elongation was 280%.
[0046]
[Comparative Example 5]
103.5 g of 90% L-lactic acid aqueous solution and 0.05 g of germanium oxide were charged into a 200-ml reaction vessel equipped with a stirrer, a nitrogen inlet tube, a heating device, a thermometer, and an auxiliary agent addition port. The mixture was stirred at a normal pressure for 2 hours, then reduced to 20 mmHg over 1 hour and reacted for 2 hours. Subsequently, the temperature was raised over 1 hour, and a polycondensation reaction was performed at 200 ° C. and 2 mmHg for 8 hours.
The obtained polylactic acid was slightly yellowish but transparent, and Mn was 28,000. An attempt was made to form a film from the obtained polyester by a tabletop hot press, but the film was brittle and no film was obtained.
[0047]
【The invention's effect】
The present invention has the following particularly advantageous effects, and its industrial utility value is extremely large.
1. Aliphatic polyester copolymer obtained by the method of the present invention has a practically sufficient high molecular weight, can be molded into a desired molded article by a general-purpose plastic molding method, the resulting film, molded articles, fibers and the like The molded article has excellent thermal stability and physical properties such as excellent tensile strength.
2. The aliphatic polyester copolymer obtained by the method of the present invention has excellent biodegradability.

Claims (9)

触媒の存在下、かつ有機溶剤の不存在下で、下記式(I)で表される脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸、下記式(II)で表される脂肪族または脂環式ジオール単位を与える脂肪族または脂環式ジオール、および下記式(III)で表される脂肪族ジカルボン酸単位を与える脂肪族ジカルボン酸またはその誘導体を共重縮合させることを特徴とする、(I)式で表される単位が0.02〜30モル%、(II)式で表される単位が35〜49.99モル%、および(III)式で表される単位が35〜49.99モル%からなり、かつ数平均分子量が1万〜20万である脂肪族ポリエステル共重合体の製造方法。
(I)−O−R −CO−(式中、R は2価の脂肪族炭化水素基)
(II)−O−R −O−(式中、R は2価の脂肪族炭化水素基または2価の脂環式炭化水素基)
(III)−OC−R −CO−(式中、R は直接結合または2価の脂肪族炭化水素基)
In the presence of a catalyst and in the absence of an organic solvent, an aliphatic oxycarboxylic acid which gives an aliphatic oxycarboxylic acid unit represented by the following formula (I), an aliphatic or fatty acid represented by the following formula (II) (C) co-polycondensing an aliphatic or alicyclic diol that provides a cyclic diol unit and an aliphatic dicarboxylic acid or a derivative thereof that provides an aliphatic dicarboxylic acid unit represented by the following formula (III): 0.02 to 30 mol% of the unit represented by the formula (I), 35 to 49.99 mol% of the unit represented by the formula (II), and 35 to 44.9 mol% of the unit represented by the formula (III). A process for producing an aliphatic polyester copolymer comprising 99 mol% and having a number average molecular weight of 10,000 to 200,000.
(I) —O—R 1 —CO— (wherein R 1 is a divalent aliphatic hydrocarbon group)
(II) —OR 2 —O— (wherein R 2 is a divalent aliphatic hydrocarbon group or a divalent alicyclic hydrocarbon group)
(III) -OC-R 3 -CO- ( wherein, R 3 is a direct bond or a divalent aliphatic hydrocarbon group)
(II)式で表される脂肪族または脂環式ジオール単位と(III)式で表される脂肪族ジカルボン酸単位のモル%が実質的に等しく、それぞれ45〜49.5モル%であることを特徴とする請求項1記載の脂肪族ポリエステル共重合体の製造方法。The mole% of the aliphatic or alicyclic diol unit represented by the formula (II) and the aliphatic dicarboxylic acid unit represented by the formula (III) are substantially equal to each other, and are 45 to 49.5 mol%, respectively. The method for producing an aliphatic polyester copolymer according to claim 1, wherein 数平均分子量が3万〜20万であることを特徴とする請求項1または2記載の脂肪族ポリエステル共重合体の製造方法。The method for producing an aliphatic polyester copolymer according to claim 1 or 2, wherein the number average molecular weight is 30,000 to 200,000. 脂肪族または脂環式ジオールが一般式HO−(CH−OH(式中、nは2〜10の整数)で表されるポリメチレングリコールまたは炭素数3〜10の脂環式ジオールであり、脂肪族ジカルボン酸またはその誘導体がHOOC−(CH−COOH)(式中、mは0または1〜10の整数)で表される直鎖脂肪族ジカルボン酸またはその誘導体であることを特徴とする請求項1ないし3のいずれかに記載の脂肪族ポリエステル共重合体の製造方法。The aliphatic or alicyclic diol is a polymethylene glycol represented by the general formula HO— (CH 2 ) n —OH (where n is an integer of 2 to 10) or an alicyclic diol having 3 to 10 carbon atoms. The aliphatic dicarboxylic acid or a derivative thereof is a linear aliphatic dicarboxylic acid or a derivative thereof represented by HOOC- (CH 2 ) m —COOH (where m is an integer of 0 or 1 to 10). The method for producing an aliphatic polyester copolymer according to any one of claims 1 to 3, characterized in that: 脂肪族オキシカルボン酸が下記式(IV)で表されるものであることを特徴とする請求項1ないし4のいずれかに記載の脂肪族ポリエステル共重合体の製造方法。
Figure 0003601530
(式中、pは0または1〜10の整数)
The method for producing an aliphatic polyester copolymer according to any one of claims 1 to 4, wherein the aliphatic oxycarboxylic acid is represented by the following formula (IV).
Figure 0003601530
(Where p is 0 or an integer of 1 to 10)
脂肪族オキシカルボン酸が乳酸またはグリコール酸であり、脂肪族または脂環式ジオールが1,4−ブタンジオールであり、脂肪族ジカルボン酸またはその誘導体がコハク酸またはその誘導体であることを特徴とする請求項1ないし5のいずれかに記載の脂肪族ポリエステル共重合体の製造方法。The aliphatic oxycarboxylic acid is lactic acid or glycolic acid, the aliphatic or alicyclic diol is 1,4-butanediol, and the aliphatic dicarboxylic acid or its derivative is succinic acid or its derivative. A method for producing the aliphatic polyester copolymer according to any one of claims 1 to 5. 触媒がゲルマニウム化合物であることを特徴とする請求項1ないし6のいずれかに記載の脂肪族ポリエステル共重合体の製造方法。The method for producing an aliphatic polyester copolymer according to any one of claims 1 to 6, wherein the catalyst is a germanium compound. 触媒が酸化ゲルマニウムであり、これを脂肪族オキシカルボン酸水溶液に溶解して反応系に供給することを特徴とする請求項1ないし6のいずれかに記載の脂肪族ポリエステル共重合体の製造方法。The method for producing an aliphatic polyester copolymer according to any one of claims 1 to 6, wherein the catalyst is germanium oxide, which is dissolved in an aqueous solution of an aliphatic oxycarboxylic acid and supplied to the reaction system. 重縮合反応を、150〜260℃の温度、10mmHg以下の減圧下において、所望の重縮合度に達するまで行うことを特徴とする請求項1ないし8のいずれかに記載の脂肪族ポリエステル共重合体の製造方法。The aliphatic polyester copolymer according to any one of claims 1 to 8, wherein the polycondensation reaction is carried out at a temperature of 150 to 260 ° C and under a reduced pressure of 10 mmHg or less until a desired degree of polycondensation is reached. Manufacturing method.
JP2002374757A 1994-08-31 2002-12-25 Method for producing aliphatic polyester copolymer Expired - Lifetime JP3601530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374757A JP3601530B2 (en) 1994-08-31 2002-12-25 Method for producing aliphatic polyester copolymer

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP20700094 1994-08-31
JP6-207000 1994-08-31
JP27784694 1994-11-11
JP6-277846 1994-11-11
JP31995 1995-01-05
JP7-319 1995-01-05
JP2002374757A JP3601530B2 (en) 1994-08-31 2002-12-25 Method for producing aliphatic polyester copolymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22196995A Division JP3402006B2 (en) 1994-08-31 1995-08-30 Aliphatic polyester copolymer

Publications (2)

Publication Number Publication Date
JP2003206337A JP2003206337A (en) 2003-07-22
JP3601530B2 true JP3601530B2 (en) 2004-12-15

Family

ID=27670836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374757A Expired - Lifetime JP3601530B2 (en) 1994-08-31 2002-12-25 Method for producing aliphatic polyester copolymer

Country Status (1)

Country Link
JP (1) JP3601530B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301918B2 (en) * 2003-11-06 2009-07-22 三菱化学株式会社 Polyester production method
CN102268131A (en) * 2010-06-01 2011-12-07 东丽纤维研究所(中国)有限公司 Poly lactic acid copolymer and preparation method thereof
CN102807670B (en) * 2011-05-31 2015-09-09 东丽纤维研究所(中国)有限公司 A kind of copolymer of poly lactic acid and preparation method thereof

Also Published As

Publication number Publication date
JP2003206337A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3402006B2 (en) Aliphatic polyester copolymer
EP0675913B1 (en) Thermoplastic biodegradable resins and a process of preparation thereof
JP3377143B2 (en) Method for producing aliphatic polyester copolymer
JP3339297B2 (en) Aliphatic polyester composition
WO2006002006A1 (en) Telechelic ionomeric polyester and method of preparation thereof
JPH0629316B2 (en) Copolyetherester based on poly (propylene oxide) glycol blocked with ethylene oxide
EP0792901B1 (en) Production of aliphatic copolyesters
JP3480274B2 (en) Method for producing aliphatic polyester copolymer
JP3601530B2 (en) Method for producing aliphatic polyester copolymer
JP3377142B2 (en) Method for producing aliphatic polyester copolymer
JP3374616B2 (en) Method for producing aliphatic polyester copolymer
JP2016520706A (en) Biodegradable polyester resin and article containing the same
JP4047160B2 (en) Film made of aliphatic polyester copolymer
JP2004211008A (en) Biodegradable copolymer and manufacturing method thereof
JP2004124085A (en) Method for producing aliphatic polyester
JP3211651B2 (en) Agricultural multi-film
JP2004143400A (en) High molecular weight polyoxalate and method for producing the same
JP4569127B2 (en) Aliphatic polyester and method for producing the same
JP3374617B2 (en) Method for producing aliphatic polyester copolymer
JP3389737B2 (en) Method for producing high molecular weight aliphatic polyester copolymer
JP3421955B2 (en) Copolyester
JP3387304B2 (en) Method for producing high molecular weight aliphatic polyester copolymer having amide bond
EP1553121A1 (en) Aliphatic polyester polyether copolymer, process for producing the same and aliphatic polyester composition using the copolymer
JP2004244598A (en) Polyester block copolymer and process for preparing the same
JP4171891B2 (en) Polyester carbonate copolymer and process for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term