JP3601395B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3601395B2
JP3601395B2 JP2000014119A JP2000014119A JP3601395B2 JP 3601395 B2 JP3601395 B2 JP 3601395B2 JP 2000014119 A JP2000014119 A JP 2000014119A JP 2000014119 A JP2000014119 A JP 2000014119A JP 3601395 B2 JP3601395 B2 JP 3601395B2
Authority
JP
Japan
Prior art keywords
fuel injection
exhaust
cylinder
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000014119A
Other languages
Japanese (ja)
Other versions
JP2001159363A (en
Inventor
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000014119A priority Critical patent/JP3601395B2/en
Publication of JP2001159363A publication Critical patent/JP2001159363A/en
Application granted granted Critical
Publication of JP3601395B2 publication Critical patent/JP3601395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関し、詳細には排気通路に配置した排気浄化触媒に必要に応じて理論空燃比またはリッチ空燃比の排気を供給する排気浄化装置に関する。
【0002】
【従来の技術】
リーン空燃比下で排気中のNOを浄化する排気浄化触媒が知られている。この種の排気浄化触媒としては、例えば排気の空燃比がリーン空燃比のときに排気中のNOを吸収し、排気空燃比が理論空燃比以下に低下したときに吸収したNOを放出するとともに還元浄化するNO吸蔵還元触媒や、排気中の炭化水素や還元剤成分を吸着し、リーン空燃比下で排気中のNOと吸着した炭化水素等とを選択的に反応させてNOを還元するNO選択還元触媒等がある。
【0003】
上記のようにNOを浄化する排気浄化触媒では、例えばNO吸蔵還元触媒では吸収したNOを放出、還元浄化する際に、またNO選択還元触媒では炭化水素等を選択還元触媒に吸着させるために、それぞれ定期的に理論空燃比またはリッチ空燃比の炭化水素等を多く含む排気を排気浄化触媒に供給する必要がある。
【0004】
ディーゼル機関等のように筒内に直接燃料を噴射する筒内燃料噴射弁を有する機関では、主燃料噴射に加えて膨張または排気行程に追加燃料噴射を実施することにより、筒内で燃焼する(すなわち出力トルクを増大させる)ことなく燃料を気化させて排気とともに触媒に供給することが可能である。これにより、機関出力トルクの大幅な変動を生じることなく排気浄化触媒に理論空燃比またはリッチ空燃比の炭化水素等を多く含む排気を供給することが可能となる。
【0005】
ディーゼル機関に関するものではないが、追加燃料噴射により排気浄化触媒に供給する排気の空燃比を理論空燃比以下にする内燃機関の例としては、例えば特開平9−32619号公報に記載されたものがある。
同公報の内燃機関では、ガソリン機関の気筒の膨張行程または排気行程中に筒内に複数回追加燃料噴射を行うことにより、気筒内で燃焼することなく気化した燃料を排気とともに排気浄化触媒に到達させ、排気浄化触媒で燃焼させることにより排気浄化触媒の昇温と触媒に付着した浄化能力低下物質の分解とを行っている。
【0006】
【発明が解決しようとする課題】
上記特開平9−32619号公報では、内燃機関としてガソリンエンジンを使用して、追加燃料噴射を行うことにより気化した燃料を排気浄化触媒に到達させている。ところが、排気浄化触媒に理論空燃比またはリッチ空燃比の排気を到達させるためにディーゼル機関で追加燃料噴射を行おうとすると、ガソリン機関の場合に較べて極めて多量の燃料を追加燃料噴射で気筒に供給する必要が生じる。
【0007】
通常、ディーゼル機関は極めてリーンな空燃比で運転されている。例えばディーゼル機関の常用運転領域における運転空燃比は約30程度の極めてリーンな空燃比になっている。このため、ディーゼル機関において追加燃料噴射により排気空燃比を理論空燃比以下(理論空燃比またはリッチ空燃比)にするためには追加燃料噴射により主燃料噴射量とほぼ同程度の量の燃料を噴射する必要がある。
【0008】
ところが、ディーゼル機関では追加燃料噴射により多量の燃料を噴射すると、噴射された燃料が液状のまま直接気筒内壁に到達してしまい気筒壁面の潤滑油膜を洗い流してしまう、いわゆるボアフラッシングが生じ、潤滑が悪化する問題がある。ボアフラッシングの発生を防止するためには、ピストンが膨張行程または排気行程の上死点付近にあるときに追加燃料噴射を行い、噴射した燃料のほぼ全量がピストン上面の燃焼室に入射、気化するようにすれば良い。しかし、例えば膨張行程上死点付近で追加燃料噴射を行なうと主燃料噴射により噴射された燃料の燃焼時期と追加燃料噴射時期とが接近するために追加燃料噴射により噴射された燃料の一部が燃焼してしまい、排気スモークが発生する問題が生じる。また、排気行程上死点付近で追加燃料噴射を行なうと、排気弁と吸気弁との両方が開弁するバルブオーバラップ期間中に追加燃料噴射を行なうことになるため、追加燃料噴射により噴射された燃料が吸気ポートに逆流して吸気行程時に再度気筒内に吸入されるようになり、追加燃料噴射で噴射された燃料が気筒の次のサイクルに残留するようになる。気筒内に追加噴射による未燃燃料が残留すると、残留燃料が圧縮行程中に燃焼を開始する異常燃焼が生じたり、残留燃料の燃焼による機関出力トルク変動が生じたりする問題がある。
【0009】
また上記問題に加えて、ディーゼル機関では排気空燃比を理論空燃比またはリッチ空燃比にするためには比較的多量の追加燃料噴射を行なう必要があるため、追加燃料噴射の実施により燃料消費量が大幅に増大してしまう問題がある。
追加燃料噴射量が多量になることを防止するためには、例えばディーゼル機関の吸気通路にスロットル弁を設け、追加燃料噴射を行う際に吸入空気量を絞ることも考えられる。しかし、この場合には吸入空気量絞りによるポンピングロスが増大するため、吸入空気量を絞っても機関の燃料消費量の増大を抑制することができない問題が生じる。
【0010】
本発明は、上記問題に鑑み追加燃料噴射により内燃機関の排気空燃比を理論空燃比またはリッチ空燃比にする際に、ボアフラッシングや燃料消費量の増大を防止可能な手段を提供することを目的としている。
【0011】
【課題を解決するための手段】
請求項1に記載の発明によれば、気筒内に直接燃料を噴射する筒内燃料噴射弁を有する内燃機関の排気通路に配置された排気浄化触媒と、必要に応じて前記排気浄化触媒に供給される排気の空燃比を理論空燃比またはリッチ空燃比にする際に、主燃料噴射に加えて前記筒内燃料噴射弁から気筒の膨張または排気行程中に追加燃料噴射を行う制御手段と、を備えた内燃機関の排気浄化装置において、更に、吸気弁と排気弁との少なくとも一方のバルブタイミングを変更可能な可変バルブタイミング手段を備え、該可変バルブタイミング手段は、前記制御手段が前記追加燃料噴射を行うときには、追加燃料噴射を行わないときに較べて気筒内に吸入される空気量が減少するように吸気弁と排気弁との少くとも一方のバルブタイミングを変更する、内燃機関の排気浄化装置が提供される。
【0012】
すなわち、請求項1の発明では追加燃料噴射を行う場合には、可変バルブタイミング手段により吸気弁と排気弁との少なくとも一方のバルブタイミングが変更され、気筒内に吸入される空気量が低減される。このため、追加燃料噴射を実施する場合に少ない燃料で排気空燃比を理論空燃比またはリッチ空燃比にすることができるようになり、多量の燃料を噴射することによるボアフラッシングの発生や燃料消費量の増大を防止することができる。
【0013】
この場合、バルブタイミングの変更は吸気弁と排気弁とのうちいずれか一方について行うものであっても良いし、両方について行うものであっても良い。バルブタイミングの変更による吸入空気量の低減は、例えば吸気弁の閉弁時期を遅角させることにより行う。吸気弁閉弁時期を遅角させることにより、気筒が圧縮行程に入ってから吸気弁が閉するまでの時間が長くなるため、一旦気筒に吸入された空気がピストンの上昇とともに吸気ポートに押し戻されるようになり、吸気弁閉弁時に気筒内に充填されている空気量が減少する。
【0014】
請求項2に記載の発明によれば、前記制御手段は、気筒の膨張または排気行程中に前記追加燃料噴射を複数回に分けて実施するとともに、1回の追加燃料噴射で噴射される燃料量を気筒でボアフラッシングが生じる燃料噴射量より小さく設定する、請求項1に記載の内燃機関の排気浄化装置が提供される。
すなわち、請求項2の発明では、追加燃料噴射により気筒内に供給されるべき燃料は複数回の追加燃料噴射に分割して気筒内に噴射される。これにより、1回に噴射される燃料の量が低減されるためボアフラッシングの発生を完全に防止することが可能となる。
【0015】
請求項3に記載の発明によれば、更に、前記排気浄化触媒上流側の機関排気通路に排気空燃比を検出する空燃比センサを備え、前記制御装置は、前記追加燃料噴射実施時に前記空燃比センサで検出した排気空燃比が予め定めたリッチ空燃比になるように追加燃料噴射により気筒に供給される燃料量を制御する、請求項2に記載の内燃機関の排気浄化装置が提供される。
【0016】
すなわち、請求項3の発明では、追加燃料噴射実施時に排気空燃比が所定の空燃比になるように追加燃料噴射の燃料噴射量が空燃比センサ出力に基づいてフィードバック制御される。このため、追加燃料噴射実施時に排気空燃比は真に排気浄化触媒に必要とされる空燃比に制御され、追加燃料噴射により気筒に供給される燃料量は真に必要な量のみとされ、燃料の過不足が生じない。
【0017】
請求項4に記載の発明によれば、更に、前記触媒温度を検出する手段を備え、前記制御手段と前記可変バルブタイミング手段とは、前記検出した触媒温度が予め定めた温度になるように追加燃料噴射により気筒に供給される燃料と前記バルブタイミングとをそれぞれ制御する請求項1に記載の内燃機関の排気浄化装置が提供される。
【0018】
すなわち、請求項4の発明では、触媒温度を検出し、この触媒温度が予め定めた値になるようにバルブタイミングと追加燃料噴射の燃料噴射量とが制御される。排気浄化触媒は、通常触媒の活性化温度以下の温度では排気浄化作用が低下するため、機関運転中常に触媒温度を活性化温度以上に維持することが好ましい。しかし、機関の冷間始動時や排気温度が低い場合には触媒温度が活性化温度以下になる場合があり、触媒を昇温する必要がある。特に、ディーゼル機関では排気温度が低いため軽負荷運転が続いたような場合には触媒温度が低下する場合がある。本発明では、例えば触媒温度が低下したような場合には、触媒温度が所定の温度になるように、機関バルブタイミングの調整と追加燃料噴射とが行われる。検出した触媒温度に基づいて、触媒温度が所定の温度以上になるように機関バルブタイミングと追加燃料噴射量とが調整されるため、触媒には適量の空気(酸素)と追加燃料噴射により供給された未燃燃料とが到達するようになるため、排気浄化触媒では燃料が燃焼し、触媒が短時間て所定の温度まで昇温するようになる。なお、触媒温度の検出は温度センサ等により直接検出しても良いし、或いは排気温度を実測により、または運転状態に基づいて推定し、この排気温度を用いて触媒温度を推定することにより検出しても良い。
【0019】
請求項5に記載の発明によれば、気筒内に直接燃料を噴射する筒内燃料噴射弁を有する内燃機関の排気通路に配置された排気浄化触媒と、必要に応じて前記排気浄化触媒に供給される排気の空燃比を理論空燃比またはリッチ空燃比にする際に、主燃料噴射に加えて前記筒内燃料噴射弁から追加燃料噴射を行う制御手段と、を備えた内燃機関の排気浄化装置において、更に、機関吸気弁の開弁時期を変更可能な可変バルブタイミング手段を備え、前記制御手段は、気筒が排気工程にあり気筒ピストンが、前記追加燃料噴射により噴射された燃料の気筒内壁への到達を阻止する位置にあるときに前記追加燃料噴射を行い、前記可変バルブタイミング手段は、前記制御手段が前記追加燃料噴射を行うときには追加燃料噴射を行わないときに較べて、吸気弁と排気弁とが同時に開弁するバルブオーバラップ期間が短くなるように吸気弁開弁時期を遅延させる、内燃機関の排気浄化装置が提供される。
【0020】
すなわち、請求項5の発明では気筒が排気行程にあり、しかも追加燃料噴射により噴射された燃料が直接気筒内壁に到達しないような位置にピストンがある時、すなわち、例えばピストンが排気行程上死点近くにあるようなときに追加燃料噴射が行なわれる。これにより、噴射された燃料のほぼ全量がピストン上面の燃焼室内に入射し噴射燃料が直接気筒内壁に到達することが阻止されるようになり、例えば多量の燃料を1回の追加燃料噴射で噴射するような場合にもボアフラッシングが発生することが防止される。
更に、本発明では追加燃料噴射を行なう場合にはバルブオーバラップ期間が短くなるように吸気弁開弁時期が遅延される。排気行程上死点近くでは吸気弁が開弁を始めるため吸気弁と排気弁との両方が開弁するバルブオーバラップ期間が生じるが、バルブオーバラップ期間内に追加燃料噴射を行なうと噴射燃料が気筒内に残留して次サイクルで燃焼するために異常燃焼や機関出力トルクの変動が生じる。本発明では、追加燃料噴射を行なう場合には、吸気弁の開弁時期が遅延されバルブオーバラップ期間が短縮されるため、追加燃料噴射による気筒内残留燃料が生じることが抑制され、異常燃焼や機関出力トルクの変動が防止される。
また、吸気弁開弁時期とともに吸気弁閉弁時期をも遅延させ、気筒内に吸入される空気量を減少させるようにすれば、追加燃料噴射量を低減して燃料噴射量の増大を防止することも可能となる。
【0021】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明する。
図1は、本発明を自動車用ディーゼル機関に適用した場合の実施形態の概略構成を示す図である。
図1において、1は自動車用内燃機関を示す。本実施形態では機関1は#1から#6の6つの気筒を備えた6気筒ディーゼル機関とされ、各気筒には気筒内に直接燃料を噴射する筒内燃料噴射弁111が設けられている。燃料は高圧燃料噴射ポンプ(図示せず)から各燃料噴射弁111が接続されたコモンレール(蓄圧室)(図示せず)に圧送され、コモンレールから各燃料噴射弁111により各気筒内に所定のタイミングで噴射される。
【0022】
図1において21は各気筒の吸気ポートを吸気通路2に接続するサージタンク、31は各気筒の排気ポートを排気通路3に接続する排気マニホルドである。
本実施形態では、機関1の過給を行なう過給機35が設けられており、排気通路3は過給機35の排気出口に、吸気通路2は過給機35の吸気吐出口に、それぞれ接続されている。また、吸気通路2には過給機35から供給される吸気の冷却を行なうインタークーラ25及び吸気絞り弁27が設けられている。吸気絞り弁27は、機関アイドル運転時等に機関吸入空気量を絞り、後述するEGRガス量を増大させるため等に使用される。
【0023】
図1において、33は機関排気マニホルド31と吸気系のサージタンク21とを接続し機関排気の一部を吸気系に還流するEGR通路、32はEGR通路を通る排気を冷却するEGRクーラ、23はEGR通路に配置されたEGR弁である。EGR弁23はステッパモータ、負圧アクチュエータ等の適宜なアクチュエータ(図示せず)を備え、ECU30からの信号に応じた開度をとりEGR通路33を通って吸気系に還流する排気(EGRガス)流量を機関運転状態に応じて制御するものである。
【0024】
図1に50で示すのは、機関のバルブタイミングを変更する可変バルブタイミング装置である。本実施形態では、可変バルブタイミング装置50は吸気カムシャフトのクランクシャフトに対する回転位相を変化させることにより、無段階に吸気弁の開弁時期と閉弁時期とを変更可能な形式のものが用いられる。なお、本発明では、可変バルブタイミング装置50の種類については特に制限はなく、吸気弁と排気弁のうち一方もしくは両方の開閉タイミングを変更可能なものであれば公知のいずれの形式のものをも使用することができる。
【0025】
図1に70で示すのは、排気通路3に配置されたNO吸蔵還元触媒である。本実施形態のNO吸蔵還元触媒70は、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa 、リチウムLi 、セシウムCs のようなアルカリ金属、バリウムBa 、カルシウムCa のようなアルカリ土類、ランタンLa 、セリウムCe、イットリウムYのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持したものである。NO吸蔵還元触媒は流入する排気ガスの空燃比がリーンのときに、排気中のNO(NO、NO)を硝酸イオンNO の形で吸収し、流入排気ガスがリッチになると吸収したNOを放出するNOの吸放出作用を行う。
【0026】
この吸放出のメカニズムについて、以下に白金PtおよびバリウムBaを使用した場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。
流入排気中の酸素濃度が増大すると(すなわち排気の空燃比がリーン空燃比になると)、これら酸素は白金Pt上にO またはO2−の形で付着し、排気中のNOは白金Pt上のO またはO2−と反応し、これによりNOが生成される。また、流入排気中のNO及び上記により生成したNOは白金Pt上で更に酸化されつつ吸収剤としての酸化バリウムBaOと結合しながら硝酸イオンNO の形で吸収剤内に拡散する。このため、リーン雰囲気下では排気中のNOがNO吸蔵還元触媒内に硝酸塩の形で吸収されるようになる。
【0027】
また、流入排気中の酸素濃度が低下すると(すなわち、排気の空燃比が低下すると)、白金Pt上でのNO生成量が減少するため、反応が逆方向に進むようになり、吸収剤内の硝酸イオンNO はNOの形でNO吸蔵還元触媒から放出されるようになる。この場合、排気中にHC、CO等の成分が存在すると白金Pt上でこれらの成分によりNOが還元される。
【0028】
本実施形態では、機関1としてディーゼル機関が使用されているため機関排気は通常リーン空燃比であり、NO吸蔵還元触媒70は排気中のNOを吸収する。しかし、NO吸蔵還元触媒に吸収されたNO量が増大すると吸収剤(BaO等)が硝酸イオンで飽和してしまい、NO吸蔵還元触媒が排気中のNOを吸収できなくなる。そこで、本実施形態ではNO吸蔵還元触媒に一定のタイミングで未燃燃料を多く含むリッチ空燃比の排気を供給し、NO吸蔵還元触媒がNOで飽和する前に吸収したNOを放出させ、還元浄化するようにしてNO吸蔵還元触媒のNO吸収能力の低下を防止している。
【0029】
図1に30で示すのは機関1の電子制御ユニット(ECU)である。ECU30は、本実施形態ではRAM、ROM、CPUを備えた公知の構成のマイクロコンピュータとされ、機関1の燃料噴射制御等の基本制御を行なう他、後述するようにNO吸蔵還元触媒70から吸収したNOを放出させるべきときに、機関1の各気筒に追加燃料噴射を行って排気空燃比を理論空燃比以下にする操作を行う。
【0030】
これらの制御を行なうため、ECU30の入力ポートには、機関吸気通路に設けられたエアフローメータ51から機関吸入空気量に対応した信号が、また機関1の冷却水ジャケット(図示せず)に設けた冷却水温度センサ53から機関冷却水温度に対応した信号が、それぞれ図示しないADコンバータを介して入力されている。また、本実施形態では、排気通路3のNO吸蔵還元触媒70入口には排気空燃比に応じた電圧信号を出力する空燃比センサ41が、NO吸蔵還元触媒70出口には排気温度に応じた電圧信号を出力する排気温度センサ43が、それぞれ配置されている。空燃比センサ41、排気温度センサ43の出力は、それぞれ図示しないADコンバータを介してECU30の入力ポートに供給されている。更に、ECU30の入力ポートには、機関クランク軸(図示せず)近傍に配置された回転数センサ55から機関クランク軸一定回転角毎にパルス信号が入力されている他、本実施形態では、機関1のアクセルペダル(図示せず)近傍に配置したアクセル開度センサ57から運転者のアクセルペダル踏込み量(アクセル開度)を表す電圧信号が図示しないADコンバータを介して入力されている。
【0031】
ECU30は、所定間隔毎にエアフローメータ51出力とアクセル開度センサ57出力、温度センサ53及び空燃比センサ41、排気温度センサ43の出力をAD変換して吸入空気量Gとアクセル開度ACCP、冷却水温度TW及び排気空燃比AF、排気温度TEXとしてECU30のRAMの所定領域に格納するとともに、回転数センサ55からのパルス信号の間隔から機関回転数NEを算出し、RAMの所定の領域に格納している。ECU30は、アクセル開度センサ57で検出したアクセル開度ACCPと機関回転数NEとに基づいて予めROMに格納した関係に基づいて機関基本燃料噴射量を算出し、この基本燃料噴射量に機関運転状態に応じた補正を加えて機関の主燃料噴射量Qを設定する。なお、本発明では燃料噴射量の設定方法には特に制限はなく、ディーゼル機関における公知の設定方法のいずれをも使用することができる。
【0032】
一方、ECU30の出力ポートは、各気筒への燃料噴射量及び燃料噴射時期を制御するために、図示しない燃料噴射回路を介して各気筒の燃料噴射弁111に接続されている他、図示しない高圧燃料ポンプを制御して、高圧燃料ポンプからコモンレールへの燃料圧送量を制御している。また、ECU30の出力ポートは更に、図示しない駆動回路を介してEGR弁23のアクチュエータに接続され、EGR弁23を通過するEGRガス量を制御するとともに、図示しない駆動回路を介して可変バルブタイミング装置50に接続され、吸気弁バルブタイミングを制御している。
【0033】
次に、本実施形態における追加燃料噴射について説明する。
本実施形態では、ECU30はNO吸蔵還元触媒70に吸収されたNOの量を推定し、このNO吸収量が予め定めた値(例えばNO吸蔵還元触媒70が吸収したNOで飽和する量の約70パーセント程度)に到達する毎に各気筒で追加燃料噴射を行い、NO吸蔵還元触媒70からNOを放出させ還元浄化する。
【0034】
NO吸蔵還元触媒70に吸収されたNO量は、例えば機関運転状態に基づいて推測することができる。機関で単位時間当たりに生成されるNO量は機関負荷、回転数等の機関運転状態により定まる。また、NO吸蔵還元触媒70に単位時間当たりに吸収されるNO量は、機関から単位時間当たりに放出されるNO量、すなわち機関の単位時間当たりのNO生成量に所定の係数を乗じた値となる。そこで、本実施形態では、予め機関燃料噴射量(負荷)と回転数との組合せを変えて実験を行い、機関が単位時間当たりに放出するNO量を計測しておき、このNO量と機関負荷、回転数との関係をECU30のROMに格納してある。そして、機関運転中に一定時間(上記単位時間)毎に実際の燃料噴射量と機関回転数とに基づいて、単位時間当たりに機関から放出されるNO量を算出し、このNO量に所定の係数を乗じた値を積算する。これにより、算出された積算値は、NO吸蔵還元触媒に吸収されたNO量に一致するようになる。なお、追加燃料噴射が行われてNO吸蔵還元触媒70から吸収したNOが放出された後はNO吸蔵還元触媒70のNO吸収量は0にリセットされ、再度NO吸収量の積算が開始される。
【0035】
なお、NO吸蔵還元触媒70のNO吸収量が増大するにつれて、NO吸蔵還元触媒70下流側の排気中のNO濃度が増大する。そこで、上記のように機関運転状態に基づいてNO吸蔵還元触媒70のNO吸収量を推定する代りに、例えばNO吸蔵還元触媒70の下流側排気通路に排気中のNO濃度を検出可能なNOセンサを配置し、このNOセンサで検出したNO濃度が所定値以上になったときに、NO吸蔵還元触媒70に吸収されたNO量が増大したと判断して追加燃料噴射を実施するようにしても良い。
【0036】
ECU30は、上記によりNO吸蔵還元触媒70のNO吸収量が増大したと判断されたときに、各気筒の燃料噴射弁111から主燃料噴射に加えて追加燃料噴射を行うことにより、機関1の排気空燃比をリッチ空燃比にしてNO吸蔵還元触媒70から吸収したNOを放出させる。
本実施形態では、各気筒の追加燃料噴射量は、以下に説明するように設定される。
【0037】
すなわち、本実施形態では、エアフローメータ51で計測した機関の吸気量と、機関の主燃料噴射における燃料噴射量と追加燃料噴射により機関に供給された燃料との合計との比(すなわち排気空燃比)が予め定めた理論空燃比以下の空燃比(本実施形態では、理論空燃比に近いリッチ空燃比とされる)になるように追加燃料噴射量が決定される。
【0038】
すなわち、ECU30はエアフローメータ51で計測した機関の吸入空気量(グラム/秒)と機関回転数とに基づいて、機関1回転当たりの機関吸入空気量G(グラム/回転)を算出する。
次いで、ECU30はアクセル開度と機関回転数とに基づいて各燃料噴射弁111からの1回当たりの主燃料噴射量を算出し、気筒数を乗じて機関1回転当たりに主燃料噴射により機関に供給される燃料合計量Q(グラム/回転)を算出する。
【0039】
機関1回転当たりに追加燃料噴射により機関1に供給すべき燃料量QAは、吸入空気量Gと主燃料噴射合計量Qとに基づいて、
QA=(G/AF)−Q ……(1)
として算出される。ここで、AFは追加燃料噴射により到達すべき目標空燃比である。
【0040】
各燃料噴射弁111から、機関1行程サイクル当たりに追加燃料噴射により供給すべき燃料量QAは、上記QAを気筒数N(本実施形態ではN=6)で割った値、すなわちQA=QA/Nとなる。
QAは、機関1回転当たりに追加燃料噴射により1つの気筒に供給すべき燃料量の合計である。
【0041】
ところが、前述したようにディーゼル機関は通常、空燃比で30程度の非常にリーンな(希薄な)空燃比で運転されている。このため、通常の運転を続けたままで排気空燃比を理論空燃比以下にしようとすると、追加燃料噴射では主燃料噴射と同程度の多量の燃料を噴射する必要が生じる。
一方、追加燃料噴射が行われる膨張行程の後期と排気行程では気筒内の温度が低下しており、ピストンも気筒内で下降位置にある。このため、多量の燃料をこの時期に気筒内に噴射すると噴射された燃料はピストン頂面の燃焼室に入射せずに液体のまま気筒内壁に到達してしまう、いわゆるボアフラッシングが生じる。ボアフラッシングが生じると、潤滑油の希釈や油膜切れによる潤滑不良等が生じやすくなる。
【0042】
このため、ディーゼル機関では追加燃料噴射で多量の燃料を噴射すると機関燃料消費量が増大するだけではなく、ボアフラッシングが生じる問題がある。
この問題を解決するために、少量の追加燃料噴射で理論空燃比以下の排気空燃比を得るようにするためには、例えば吸気通路の吸入空気量絞り弁27を絞り、機関吸入空気量を減少させることも考えられる。しかし、吸気絞りにより吸入空気量を低減した場合には、絞り損失による機関ポンピングロスが増大してしまい、機関出力の低下を防止するために主燃料噴射量を増大しなければならず、機関の燃料消費量はそれほど大きく低減できない。
【0043】
そこで、本実施形態では機関バルブタイミングを変更することにより、以下に説明する方法でポンピングロスを増大させることなく、機関に吸入される空気量を減少させ、追加燃料噴射実施時の機関燃料消費量の増大とボアフラッシングの発生を防止している。
以下、本発明の追加燃料噴射について説明する。
(1)第1の実施形態
本実施形態では、排気空燃比を理論空燃比以下にすべきときに、可変バルブタイミング装置50を作動させて、吸気弁の閉弁時期を遅延させることにより気筒内に吸入される空気量を低減する。
【0044】
図2は、本実施形態における機関1の通常運転時(追加燃料噴射を実施していない場合)(図2、(A) )と追加燃料噴射実施時(図2、(B) )とにおける、機関バルブタイミングの設定を示すタイミング図である。
図2において、EX、INは、それぞれ排気弁と吸気弁のバルブリフトカーブを示し、ETDC、EBDCは膨張行程上死点と下死点を、ITDCは吸気行程の上死点(すなわち排気行程の上死点)、IBDCは吸気行程のと下死点(すなわち圧縮行程の下死点)、CTDCは圧縮行程上死点を、それぞれ示している。
【0045】
図2(A) に示すように、通常運転時には、排気弁(EX)は、膨張行程下死点(EBDC)前から開弁し、吸気行程上死点(ITDC)後に閉弁する。また、吸気弁(IN)は吸気行程上死点(ITDC)前から開弁し、吸気行程下死点(IBDC)を少し越えた位置で閉弁する。
一方、本実施形態では、追加燃料噴射実施時には、排気弁の開閉タイミングは通常運転時と同一に維持されるが、吸気弁開閉タイミングは大きく遅角される。すなわち、図2(B) に示すように、本実施形態では追加燃料噴射実施時には吸気弁は吸気行程上死点後に開弁し、圧縮行程中央付近(吸気下死点IBDCと圧縮行程上死点CTDCとの中間)で閉弁するようにされる。
【0046】
図2(B) に示すように、吸気弁の閉弁時期を遅延させると、吸気弁は圧縮行程中期まで開弁していることになるため、吸気行程でピストンの下降により気筒内に吸入された吸気が圧縮行程中にピストンの上昇とともに吸気ポートに吐出されるようになる。このため、吸気弁閉弁時に気筒内に充填される吸気の量は通常運転時に較べて大幅に減少する。一方、前述したように、本実施形態では主燃料噴射量はアクセル開度と回転数とにより定まるため、気筒の吸入空気量が減少しても主燃料噴射量は大幅には低減されない。従って、前述の(1)式において、吸入空気量Gが減少し、主燃料噴射量Qは変化しないため、所定の空燃比を得るのに必要な追加燃料噴射の噴射量QAは大幅に低減される。
【0047】
更に、吸気弁閉弁時期遅延による吸入量の低減は、吸気絞り弁27による吸気絞りとは異なり、吸気絞りによるポンピングロスは生じない。このため、追加燃料噴射における噴射量は吸気量が減った分だけ低減され、追加燃料噴射実施時の機関燃料消費量の増大が抑制される。
次に、本実施形態の追加燃料噴射操作について説明する。上述のように本実施形態では吸気弁の閉弁時期を遅延させることにより追加燃料噴射時の吸入空気量が大幅に低減されるため、追加燃料噴射の機関1回転当たりの1気筒当たりの噴射量QAも大きく減少する。このため、吸入空気量を低減せずに追加燃料噴射を行った場合に較べてボアフラッシングが生じる可能性が大幅に低下するようになる。
【0048】
しかし、前述したように追加燃料噴射は気筒内の温度が低下する膨張行程と排気行程とに行われる。また、この時期はピストンが下降位置になり燃料噴射弁から噴射された燃料が液状のまま気筒内壁に到達しやすい条件になっている。そこで、本実施形態では、追加燃料噴射により気筒に供給されるべき燃料量QAの全量を1回の燃料噴射で噴射せずに、図2(B) にqaで示したように膨張行程と吸気行程中に複数回に分割して追加燃料噴射を行っている。これにより、1回の追加燃料噴射で噴射される燃料量を少量にすることができるため、噴射された燃料は直ちに気化するようになり、ボアフラッシングの発生を更に完全に防止することが可能となる。
【0049】
本実施形態では、実験等により予めボアフラッシングを生じずに1回の追加燃料噴射で噴射可能な最大燃料量を求めておき、この最大燃料に対して余裕を持った小さい値を追加燃料噴射における最大燃料噴射量QAiMAXとして設定しておく。そして、1気筒当たりの追加燃料噴射量の合計QAとQAiMAXとから追加燃料噴射の回数NIを決定する。すなわち、追加燃料噴射の回数NIは、NI=(QA/QAiMAX)+1となる。そして、各追加燃料噴射における燃料噴射量QAIは、1回目からNI回目の追加燃料噴射ではQAiMAX、NI+1回目の追加燃料噴射では(QA−QAiMAX×NI)となる。
【0050】
なお、ボアフラッシングを生じずに噴射可能な最大燃料量は、予め最もボアフラッシングが生じやすい条件で追加燃料噴射を行い、ボアフラッシングが生じない最大燃料噴射量を測定することにより求められる。例えば、膨張行程終期では、ピストンが最も下降しており、気筒内温度も低下しているため、最もボアフラッシングが生じやすくなる。本実施形態では、膨張行程終期に燃料噴射を行った時に、ボアフラッシングを生じずに噴射可能な最大燃料噴射量を測定しておき、この最大燃料噴射量に充分な余裕を持った値をQAiMAXとして設定する。QAiMAXは、一般に20CC/噴射に相当する燃料量より小さい値となる。
【0051】
また、追加燃料噴射は1行程サイクルだけでなく、NO吸蔵還元触媒70から吸収したNOを放出するために必要とされる未燃燃料を供給するまで、複数サイクルにわたって行なうようにされる。
上述のように、本実施形態ではECU30は、NO吸蔵還元触媒70に吸収されたNO量が増大すると、可変バルブタイミング装置50を制御して、予め定めた量だけ吸気弁開閉タイミングを遅角させる。この遅角量は機関負荷状態に応じて設定され、軽負荷時等のように主燃料噴射量が少なく運転空燃比が高くなる条件では吸気弁バルブタイミングの遅角量は大きく設定され、吸入空気量は大幅に低減される。
【0052】
そして、ECU30は吸気弁バルブタイミングが上記所定の遅角量になったときに、各気筒の膨張行程と排気行程中に複数回の追加燃料噴射を行う。このとき、1回の追加燃料噴射で噴射される燃料量はボアフラッシングが生じない少ない量に設定され、気筒の行程サイクル中に行う追加燃料噴射の回数は、上記(1)式で計算される燃料量と、1回の追加燃料噴射に噴射される燃料量とにより決定される。
【0053】
これにより、ポンピングロスを生じることなく追加燃料噴射により気筒に供給すべき燃料量を大幅に低減することが可能となり、追加燃料噴射実施時の燃料消費量の増大が防止されるとともに、追加燃料噴射によるボアフラッシングの発生が完全に防止される。
(2)第2の実施形態
次に、本発明の第2の実施形態について説明する。
【0054】
第1の実施形態では吸気弁の閉弁時期を遅延させて、機関の吸入空気量を低減することにより追加燃料噴射実施時の燃料消費量増大とボアフラッシングの発生とを防止していた。本実施形態では、更に上記に加えて機関排気通路3に配置した空燃比センサ41出力に基づいて、各追加燃料噴射の噴射量をフィードバック制御する。
【0055】
すなわち、本実施形態ではECU30は追加燃料噴射実施時に、空燃比センサ41出力に基づいてNO吸蔵還元触媒70に流入する排気の実際の空燃比を検出する。そして、所定の目標空燃比(例えば理論空燃比)と検出した実際の排気空燃比との偏差に応じて気筒に供給される合計燃料量(主燃料噴射量と追加燃料噴射量との合計量)を増減補正する。例えば、追加燃料噴射実施時の排気空燃比が目標空燃比より高い場合(実際の排気空燃比が目標空燃比よりリーンな場合)には、合計燃料量を増大し、実際の排気空燃比が目標空燃比より低い場合には合計燃料量を低減する。この、合計燃料量の制御は目標空燃比と実際の空燃比との偏差に基づく公知の比例積分微分制御(PID制御)により行なわれる。
【0056】
また、主燃料噴射量と追加燃料噴射量との増減補正は、合計燃料量に占めるそれぞれの噴射量の割合に応じて決定される。
このように、本実施形態では空燃比センサ41で検出した実際の排気空燃比が目標空燃比に一致するように気筒に供給される燃料量が補正されるため、NO吸蔵還元触媒70に供給する排気の空燃比を極めて正確に制御することが可能となり、追加燃料噴射実施時の主燃料噴射量と追加燃料噴射量との合計量は常に目標空燃比を得るために必要な量だけになる。このため、燃料量に過不足を生じることがなくなり、NO吸蔵還元触媒70からのNO放出が効率的に行なえるとともに、過剰な燃料が供給されることを防止して燃料消費量の増大を防止することが可能となる。
(3)第3の実施形態
本実施形態では、第1の実施形態の制御に加えて、NO吸蔵還元触媒70の温度が低い場合等に、NO吸蔵還元触媒温度を所定温度まで昇温させる操作を行なう。前述したように、ディーゼル機関は一般にガソリン機関に較べて排気温度が低いため、低負荷運転が続いた場合などにはNO吸蔵還元触媒の温度が触媒の活性化温度(例えば350℃程度)以下に低下してしまう場合がある。このような場合には、NO吸蔵還元触媒のNO吸蔵能力とNO放出時の還元能力が低下してしまい、排気浄化を充分に行なうことができなくなる。また、NO吸蔵還元触媒の温度が活性化温度以上であった場合でも、触媒温度を上昇させる必要が生じる場合がある。例えば、排気中のSO成分は前述したNO成分と同一なメカニズムでNO吸蔵還元触媒に吸蔵され安定した硫酸塩を生成する。この硫酸塩を分解してNO吸蔵還元触媒からSOを放出させるためには、NO吸蔵還元触媒を活性化温度より更に高い高温に保持した状態でリッチ空燃比の排気を供給する必要がある。
【0057】
本実施形態では、ECU30は排気通路3に配置した排気温度センサ43出力に基づいてNO吸蔵還元触媒70の温度を検出する。そして、NO吸蔵還元触媒からNOを放出させるべきとき、またはSOを放出させるべきときには、追加燃料噴射を実施するとともにNO吸蔵還元触媒70温度が所定の目標値になるように吸気弁バルブタイミングと追加燃料噴射量とを排気温度センサ43出力と空燃比センサ41出力とに基づいてフィードバック制御する。なお、上記所定の目標温度は、例えば、NOを放出させるべきときには触媒活性化温度である約350℃、SOを放出させるべき時には約550℃に設定される。
【0058】
次に、上記NO吸蔵還元触媒の温度制御の詳細について説明する。
NO吸蔵還元触媒70からNOを放出させるべきとき、またはSOを放出させるべきとき、ECU30はNO吸蔵還元触媒70出口に配置した排気温度センサ43で検出した排気温度に基づいてNO吸蔵還元触媒70の温度を検出する。NO吸蔵還元触媒70の触媒床温度と触媒通過後の排気温度とは略等しくなっているため本実施形態では、排気温度センサ43で検出した排気温度をNO吸蔵還元触媒70温度として使用する。
【0059】
次いで、ECU30は可変バルブタイミング50を制御して吸気弁閉弁時期を予め定めた量だけ遅角するとともに追加燃料噴射を開始する。本実施形態では、触媒昇温時には排気空燃比は排気温度が最も高くなる空燃比(理論空燃比近傍の値)になるように設定されており、ECU30は空燃比センサ41で検出した排気空燃比が上記空燃比になるように追加燃料噴射量をフィードバック制御する。
【0060】
更に、ECU30は、排気温度センサ43出力に基づいてNO吸蔵還元触媒70の温度を検出し、検出した実際のNO吸蔵還元触媒温度の、前述したNO吸蔵還元触媒目標温度からの偏差を算出し、この偏差に基づいて吸気弁バルブタイミングを補正する。すなわち、実際の温度が目標温度より低い場合には吸気弁バルブタイミングを進角させて気筒内に吸入される空気量を増大する。上述したように本実施形態では追加燃料噴射量は排気空燃比が目標空燃比になるように制御されており、吸入空気量に応じて追加燃料噴射量も増量されるため、これにより排気温度が所定の温度に維持されたまま排気流量が増大しNO吸蔵還元触媒70温度が上昇する。また、実際のNO吸蔵還元触媒温度が目標温度より低い場合には、ECU30は吸気弁バルブタイミングを遅角させて気筒内に吸入される空気量を低減する。この場合も追加燃料噴射量は排気空燃比が所定の空燃比になるように制御されるため、排気流量の低下によりNO吸蔵還元触媒温度が低下する。上記NO吸蔵還元触媒温度制御時の吸気弁バルブタイミングは、NO吸蔵還元触媒の目標温度と実際のNO吸蔵還元触媒温度との偏差に基づく比例積分微分制御により制御するようにしても良い。
【0061】
本実施形態では、上記のように吸気弁バルブタイミングと燃料噴射量とが、実際のNO吸蔵還元触媒温度が予め定めた目標温度になるよう制御されるため、触媒には常に適切な温度と流量の排気が供給されるようになり、短時間で正確にNO吸蔵還元触媒温度を目標温度に制御することが可能となる。
【0062】
(4)第4の実施形態
次に、本発明の第4の実施形態について説明する。
前述の第1の実施形態では追加燃料噴射を膨張行程または排気行程に複数回に分けて行うことによりボアフラッシングの発生を防止していた。これに対して、本実施形態では追加燃料噴射を排気行程後期に実施し、必要とされる量の燃料を1回の追加燃料噴射で噴射する点が第1の実施形態と相違している。
排気行程後期では、ピストンは上昇位置にあるため、気筒内壁の大部分はピストンにより覆われている。また、追加燃料噴射により噴射された燃料はピストン上面の燃焼室内に入射して気化するため、噴射燃料が液状のまま直接気筒内壁に到達することがなくなりボアフラッシングが生じない。
【0063】
ところが、前述したように通常の運転では排気行程後期は吸気弁が開弁を始めバルブオーバラップ期間が生じ、この期間に噴射された燃料の一部は開弁している吸気弁を通って吸気ポートに逆流する。この逆流燃料は吸気行程中に吸入空気とともに気筒内に流入するため、気筒内には未燃燃料が残留するようになり、この残留燃料が気筒の次サイクルの圧縮行程中に主燃料噴射が行なわれる前に燃焼すると異常燃焼が生じる。また、異常燃焼が生じない場合でも気筒内では主燃料噴射による燃料と残留燃料との両方が燃焼することになるため、気筒の発生トルクが増大してしまい機関出力トルクの変動が生じるようになる。
本実施形態では、追加燃料噴射実施時に吸気弁開弁時期を遅延させることにより、追加燃料噴射により噴射された燃料が気筒内に残留して次サイクルで燃焼することを防止している。
【0064】
図3は、本実施形態における追加燃料噴射時期と吸気弁開閉タイミングとを示す図2と同様な図であり、図3 (A)は通常運転時を、図3(B) は追加燃料噴射実施時を示している。
図3に示すように、本実施形態では追加燃料噴射実施時には吸気弁は排気行程上死点(すなわち吸気行程上死点ITDC)後に開弁を開始する。このため、追加燃料噴射実施時には吸気弁は閉弁しているようになり、追加燃料噴射により噴射された燃料の一部が吸気ポートに逆流することが防止される。これにより、追加燃料噴射による気筒内残留燃料が生じることが防止される。
また、本実施形態では、追加燃料噴射は排気行程後期(例えば排気行程上死点ITDC近傍)に1回のみ実施される。このため、追加燃料噴射により噴射された燃料の気筒内壁への到達は上昇位置にあるピストンにより阻止されるようになり、ボアフラッシングが生じない。なお、追加燃料噴射により噴射された燃料が気筒内壁に直接到達することを阻止可能なピストン位置は、気筒内径(シリンダボア径)、燃料噴射弁の噴霧角、燃料噴射弁の気筒内への突出長さなどにより異なるため、実際の追加燃料噴射実施時期は上記条件に基づいて機関形式毎に決定される。
【0065】
なお、追加燃料噴射時の吸気弁開弁時期(開弁時期の遅延量)は、バルブオーバラップ期間が全く生じないように設定すれば気筒内残留燃料の発生を完全に防止可能であるが、実際には多少の残留燃料が発生しても異常燃焼や機関出力トルク変動は生じないため、多少のバルブオーバラップ期間が生じる程度に吸気弁開弁時期を遅延させるようにしても良い。この場合、実際の吸気弁開弁時期は実際の機関を用いた実験により追加燃料噴射時に異常燃焼や出力トルク変動が生じない範囲に設定するようにすれば良い。
また、図3に示したように吸気弁開弁時期とともに吸気弁閉弁時期をも同時に遅延させるようにすれば、第1の実施形態と同様に気筒内に充填される吸気の量が低減されるため、追加燃料噴射量を大幅に低減して機関燃料消費量の増大を防止することが可能となる。
なお、本実施形態においても、第2の実施形態で説明した空燃比センサ41出力に基づく追加燃料噴射の噴射量のフィードバック制御と、第3の実施形態で説明したNO吸蔵還元触媒温度の昇温操作とのいずれか一方または両方を併用することが可能であることは言うまでもない。
【0066】
【発明の効果】
各請求項に記載の発明によれば、追加燃料噴射により排気浄化触媒に理論空燃比またはリッチ空燃比の排気を供給する際に、機関の燃料消費量の増大を抑制しつつボアフラッシングの発生を完全に防止可能となるという共通の効果が得られる。
【図面の簡単な説明】
【図1】本発明を、自動車用ディーゼル機関に適用した場合の実施形態の概略構成を示す図である。
【図2】図1の実施形態における追加燃料噴射実施時の吸気弁バルブタイミングを説明する図である。
【図3】図2とは異なる追加燃料噴射実施形態における追加燃料噴射実施時のバルブオーバラップを説明する、図2と同様な図である。
【符号の説明】
1…ディーゼル機関
23…EGR制御弁
30…電子制御ユニット(ECU)
41…空燃比センサ
43…排気温度センサ
50…可変バルブタイミング装置
70…NO吸蔵還元触媒
111…筒内燃料噴射弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly, to an exhaust gas purification device for supplying exhaust gas having a stoichiometric air-fuel ratio or a rich air-fuel ratio to an exhaust gas purification catalyst disposed in an exhaust passage as required.
[0002]
[Prior art]
NO in exhaust under lean air-fuel ratioXAn exhaust purification catalyst for purifying exhaust gas is known. As this kind of exhaust purification catalyst, for example, when the air-fuel ratio of the exhaust is a lean air-fuel ratio, NOXNO when the exhaust air-fuel ratio falls below the stoichiometric air-fuel ratioXTo release and purify NOXIt adsorbs hydrocarbons and reducing agent components in the storage reduction catalyst, exhaust gas, and NO in exhaust gas at a lean air-fuel ratio.XAnd selectively react with adsorbed hydrocarbons and the like to form NOXNO to reduceXThere are selective reduction catalysts and the like.
[0003]
NO as aboveXIn an exhaust purification catalyst for purifying NO, for example, NOXNO absorbed by the storage reduction catalystXRelease and reduction purification, and NOXIn the selective reduction catalyst, it is necessary to periodically supply exhaust gas containing a large amount of hydrocarbons having a stoichiometric air-fuel ratio or a rich air-fuel ratio to the exhaust purification catalyst in order to cause hydrocarbons and the like to be adsorbed by the selective reduction catalyst.
[0004]
In an engine such as a diesel engine having an in-cylinder fuel injection valve that injects fuel directly into a cylinder, combustion is performed in the cylinder by performing additional fuel injection during expansion or exhaust stroke in addition to main fuel injection ( That is, it is possible to vaporize the fuel without increasing the output torque) and supply it to the catalyst together with the exhaust gas. This makes it possible to supply exhaust gas containing a large amount of hydrocarbons having a stoichiometric air-fuel ratio or a rich air-fuel ratio to the exhaust purification catalyst without causing a large fluctuation in engine output torque.
[0005]
Although it is not related to a diesel engine, an example of an internal combustion engine in which an air-fuel ratio of exhaust gas supplied to an exhaust purification catalyst by additional fuel injection is set to be equal to or lower than a stoichiometric air-fuel ratio is described in, for example, JP-A-9-32619. is there.
In the internal combustion engine of the publication, the fuel vaporized without burning in the cylinder reaches the exhaust purification catalyst together with the exhaust by performing multiple additional fuel injections into the cylinder of the gasoline engine during the expansion stroke or the exhaust stroke of the cylinder. Then, the exhaust gas is burned by the exhaust gas purifying catalyst to raise the temperature of the exhaust gas purifying catalyst and to decompose the substance having a reduced purifying ability attached to the catalyst.
[0006]
[Problems to be solved by the invention]
In Japanese Patent Application Laid-Open No. 9-32619, a gasoline engine is used as an internal combustion engine, and fuel vaporized by performing additional fuel injection is caused to reach an exhaust purification catalyst. However, when attempting to perform additional fuel injection with a diesel engine in order to make the exhaust purification catalyst reach exhaust gas with a stoichiometric air-fuel ratio or rich air-fuel ratio, an extremely large amount of fuel is supplied to the cylinder by additional fuel injection as compared with a gasoline engine. Need to be done.
[0007]
Normally, diesel engines are operated at an extremely lean air-fuel ratio. For example, the operating air-fuel ratio in a normal operation region of a diesel engine is an extremely lean air-fuel ratio of about 30. For this reason, in order to make the exhaust air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio (stoichiometric air-fuel ratio or rich air-fuel ratio) by additional fuel injection in a diesel engine, the additional fuel injection injects approximately the same amount of fuel as the main fuel injection amount. There is a need to.
[0008]
However, in a diesel engine, when a large amount of fuel is injected by additional fuel injection, the injected fuel directly reaches the cylinder inner wall in a liquid state, and the lubricating oil film on the cylinder wall is washed away. There is a problem that gets worse. In order to prevent the occurrence of bore flushing, additional fuel injection is performed when the piston is near the top dead center of the expansion stroke or the exhaust stroke, and almost all the injected fuel enters the combustion chamber on the top surface of the piston and evaporates. What should I do? However, when additional fuel injection is performed near the top dead center of the expansion stroke, for example, the combustion timing of the fuel injected by the main fuel injection and the additional fuel injection timing are close to each other, so that a part of the fuel injected by the additional fuel injection is reduced. A problem arises in that combustion occurs and exhaust smoke is generated. Further, if additional fuel injection is performed near the top dead center of the exhaust stroke, additional fuel injection will be performed during the valve overlap period in which both the exhaust valve and the intake valve are opened. The fuel that has flowed back to the intake port and is again drawn into the cylinder during the intake stroke, so that the fuel injected by the additional fuel injection remains in the next cycle of the cylinder. If unburned fuel due to the additional injection remains in the cylinder, there is a problem that abnormal combustion occurs in which the residual fuel starts burning during the compression stroke, and engine output torque fluctuates due to combustion of the residual fuel.
[0009]
In addition to the above-mentioned problem, in order to make the exhaust air-fuel ratio a stoichiometric air-fuel ratio or a rich air-fuel ratio in a diesel engine, it is necessary to perform a relatively large amount of additional fuel injection. There is a problem that it increases significantly.
In order to prevent the additional fuel injection amount from becoming large, for example, it is conceivable to provide a throttle valve in an intake passage of a diesel engine to reduce the amount of intake air when performing additional fuel injection. However, in this case, the pumping loss due to the restriction of the intake air amount increases, so that there is a problem that even if the intake air amount is restricted, the increase in the fuel consumption of the engine cannot be suppressed.
[0010]
The present invention has been made in view of the above problems, and has an object to provide means capable of preventing bore flushing and increase in fuel consumption when the exhaust air-fuel ratio of an internal combustion engine is set to a stoichiometric air-fuel ratio or a rich air-fuel ratio by additional fuel injection. And
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, an exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine having an in-cylinder fuel injection valve that injects fuel directly into a cylinder, and is supplied to the exhaust purification catalyst as needed. Control means for performing additional fuel injection during the cylinder expansion or exhaust stroke from the in-cylinder fuel injection valve in addition to the main fuel injection when setting the air-fuel ratio of the exhaust gas to be the stoichiometric air-fuel ratio or the rich air-fuel ratio. The exhaust gas purifying apparatus for an internal combustion engine further includes variable valve timing means capable of changing at least one valve timing of an intake valve and an exhaust valve, wherein the variable valve timing means is configured such that the control means controls the additional fuel injection. When at least one of the valve timing of the intake valve and the exhaust valve is changed so that the amount of air taken into the cylinder is reduced as compared to when the additional fuel injection is not performed, Exhaust purification system of combustion engine is provided.
[0012]
That is, in the first aspect of the present invention, when performing additional fuel injection, the valve timing of at least one of the intake valve and the exhaust valve is changed by the variable valve timing means, and the amount of air taken into the cylinder is reduced. . Therefore, when performing additional fuel injection, the exhaust air-fuel ratio can be set to the stoichiometric air-fuel ratio or the rich air-fuel ratio with a small amount of fuel, and the occurrence of bore flushing and fuel consumption by injecting a large amount of fuel can be achieved. Can be prevented from increasing.
[0013]
In this case, the change of the valve timing may be performed for one of the intake valve and the exhaust valve, or may be performed for both. Reduction of the intake air amount by changing the valve timing is performed, for example, by delaying the closing timing of the intake valve. By delaying the closing timing of the intake valve, the time from when the cylinder enters the compression stroke to when the intake valve closes becomes longer, so that the air once taken into the cylinder is pushed back to the intake port with the rise of the piston. As a result, the amount of air charged into the cylinder when the intake valve is closed decreases.
[0014]
According to the invention described in claim 2, the control means performs the additional fuel injection in a plurality of times during the expansion or exhaust stroke of the cylinder, and the amount of fuel injected in one additional fuel injection. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein is set smaller than a fuel injection amount at which bore flushing occurs in the cylinder.
That is, according to the second aspect of the present invention, the fuel to be supplied into the cylinder by the additional fuel injection is divided into a plurality of additional fuel injections and injected into the cylinder. Thus, the amount of fuel injected at one time is reduced, so that the occurrence of bore flushing can be completely prevented.
[0015]
According to the third aspect of the invention, an air-fuel ratio sensor for detecting an exhaust air-fuel ratio is further provided in an engine exhaust passage upstream of the exhaust purification catalyst, and the control device is configured to perform the air-fuel ratio when the additional fuel injection is performed. 3. An exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein the amount of fuel supplied to the cylinder by additional fuel injection is controlled such that the exhaust air-fuel ratio detected by the sensor becomes a predetermined rich air-fuel ratio.
[0016]
That is, in the third aspect of the invention, the fuel injection amount of the additional fuel injection is feedback-controlled based on the output of the air-fuel ratio so that the exhaust air-fuel ratio becomes a predetermined air-fuel ratio when the additional fuel injection is performed. Therefore, at the time of performing additional fuel injection, the exhaust air-fuel ratio is controlled to the air-fuel ratio truly required for the exhaust purification catalyst, and the amount of fuel supplied to the cylinder by the additional fuel injection is limited to the truly necessary amount. No excess or deficiency occurs.
[0017]
According to the invention as set forth in claim 4, further comprising means for detecting the catalyst temperature, the control means and the variable valve timing means are added so that the detected catalyst temperature becomes a predetermined temperature. 2. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the valve controls the fuel supplied to the cylinder by the fuel injection and the valve timing.
[0018]
That is, in the invention of claim 4, the catalyst temperature is detected, and the valve timing and the fuel injection amount of the additional fuel injection are controlled so that the catalyst temperature becomes a predetermined value. Since the exhaust gas purifying catalyst generally has a lower exhaust gas purifying action at a temperature lower than the activation temperature of the catalyst, it is preferable to always maintain the catalyst temperature at the activation temperature or higher during operation of the engine. However, when the engine is cold started or when the exhaust gas temperature is low, the catalyst temperature may become lower than the activation temperature, and it is necessary to raise the temperature of the catalyst. Particularly, in a diesel engine, the catalyst temperature may decrease when the light load operation is continued because the exhaust gas temperature is low. In the present invention, for example, when the catalyst temperature decreases, the adjustment of the engine valve timing and the additional fuel injection are performed so that the catalyst temperature becomes a predetermined temperature. Based on the detected catalyst temperature, the engine valve timing and the additional fuel injection amount are adjusted so that the catalyst temperature becomes equal to or higher than a predetermined temperature. Therefore, an appropriate amount of air (oxygen) and the additional fuel injection are supplied to the catalyst. Since the unburned fuel reaches the fuel, the fuel burns in the exhaust purification catalyst, and the temperature of the catalyst rises to a predetermined temperature in a short time. The catalyst temperature may be directly detected by a temperature sensor or the like, or may be detected by actually measuring the exhaust gas temperature or estimating based on the operating state, and estimating the catalyst temperature using the exhaust gas temperature. May be.
[0019]
According to the fifth aspect of the present invention, an exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine having an in-cylinder fuel injection valve that injects fuel directly into a cylinder, and supplies the exhaust purification catalyst as needed. Control means for performing additional fuel injection from the in-cylinder fuel injection valve in addition to main fuel injection when setting the air-fuel ratio of the exhaust gas to be stoichiometric or rich air-fuel ratio. Further, there is provided a variable valve timing means capable of changing the opening timing of the engine intake valve, wherein the control means is arranged such that the cylinder is in the exhaust process and the cylinder piston moves to the cylinder inner wall of the fuel injected by the additional fuel injection. Performing the additional fuel injection at a position where the additional fuel injection is prevented, and the variable valve timing means, when the control means performs the additional fuel injection, compared to when the additional fuel injection is not performed. Valves and the exhaust valve to delay the intake valve opening timing so that the valve overlap period is shortened to be opened at the same time, the exhaust gas purification apparatus is provided for an internal combustion engine.
[0020]
That is, in the invention of claim 5, when the cylinder is in the exhaust stroke and the piston is located at a position where the fuel injected by the additional fuel injection does not directly reach the cylinder inner wall, that is, for example, when the piston is in the exhaust stroke top dead center Additional fuel injection is performed when it is nearby. As a result, almost all of the injected fuel is prevented from entering the combustion chamber on the upper surface of the piston and the injected fuel is prevented from directly reaching the inner wall of the cylinder. For example, a large amount of fuel is injected by one additional fuel injection. In such a case, bore flushing is prevented from occurring.
Further, in the present invention, when additional fuel injection is performed, the intake valve opening timing is delayed so that the valve overlap period is shortened. Near the top dead center of the exhaust stroke, the intake valve starts to open, so there is a valve overlap period in which both the intake valve and the exhaust valve open.However, if additional fuel injection is performed during the valve overlap period, the injected fuel will decrease. Since it remains in the cylinder and burns in the next cycle, abnormal combustion and fluctuations in engine output torque occur. According to the present invention, when performing additional fuel injection, the valve opening time of the intake valve is delayed and the valve overlap period is shortened, so that the occurrence of residual fuel in the cylinder due to the additional fuel injection is suppressed, and abnormal combustion and The fluctuation of the engine output torque is prevented.
Further, by delaying the intake valve closing timing together with the intake valve opening timing to reduce the amount of air taken into the cylinder, the additional fuel injection amount is reduced to prevent an increase in the fuel injection amount. It is also possible.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an embodiment when the present invention is applied to an automobile diesel engine.
In FIG. 1, reference numeral 1 denotes an internal combustion engine for a vehicle. In the present embodiment, the engine 1 is a six-cylinder diesel engine having six cylinders # 1 to # 6, and each cylinder is provided with an in-cylinder fuel injection valve 111 for directly injecting fuel into the cylinder. The fuel is pressure-fed from a high-pressure fuel injection pump (not shown) to a common rail (accumulator) (not shown) to which each fuel injection valve 111 is connected. Injected in.
[0022]
In FIG. 1, reference numeral 21 denotes a surge tank that connects an intake port of each cylinder to the intake passage 2, and 31 denotes an exhaust manifold that connects an exhaust port of each cylinder to the exhaust passage 3.
In the present embodiment, a supercharger 35 for supercharging the engine 1 is provided, and the exhaust passage 3 is provided at an exhaust outlet of the supercharger 35, and the intake passage 2 is provided at an intake outlet of the supercharger 35. It is connected. The intake passage 2 is provided with an intercooler 25 for cooling intake air supplied from the supercharger 35 and an intake throttle valve 27. The intake throttle valve 27 is used, for example, to throttle the engine intake air amount during idling of the engine and to increase the EGR gas amount described later.
[0023]
In FIG. 1, reference numeral 33 denotes an EGR passage which connects an engine exhaust manifold 31 and a surge tank 21 of an intake system and recirculates a part of the engine exhaust to an intake system, 32 denotes an EGR cooler which cools exhaust gas passing through the EGR passage, and 23 denotes an EGR cooler. An EGR valve arranged in the EGR passage. The EGR valve 23 includes an appropriate actuator (not shown) such as a stepper motor and a negative pressure actuator. The EGR valve 23 takes an opening in accordance with a signal from the ECU 30 and returns to the intake system through the EGR passage 33 (EGR gas). The flow rate is controlled according to the engine operating state.
[0024]
A variable valve timing device for changing the valve timing of the engine is shown at 50 in FIG. In the present embodiment, the variable valve timing device 50 is of a type that can change the opening timing and closing timing of the intake valve in a stepless manner by changing the rotation phase of the intake camshaft with respect to the crankshaft. . In the present invention, the type of the variable valve timing device 50 is not particularly limited, and any known type can be used as long as the opening / closing timing of one or both of the intake valve and the exhaust valve can be changed. Can be used.
[0025]
In FIG. 1, reference numeral 70 denotes the NO disposed in the exhaust passage 3.XIt is a storage reduction catalyst. NO of this embodimentXThe occlusion reduction catalyst 70 uses, for example, alumina as a carrier, and on the carrier, for example, an alkali metal such as potassium K, sodium Na, lithium Li, or cesium Cs, an alkaline earth such as barium Ba, calcium Ca, lanthanum La, or cerium. It supports at least one component selected from rare earths such as Ce and yttrium Y and a noble metal such as platinum Pt. NOXWhen the air-fuel ratio of the inflowing exhaust gas is lean, the NOx in the exhaustX(NO2, NO) to nitrate ion NO3 NO when the inflow exhaust gas becomes richXReleases NOXPerforms the absorption and release action.
[0026]
The mechanism of this absorption and release will be described below by taking platinum Pt and barium Ba as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths, and rare earths.
When the oxygen concentration in the inflowing exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes a lean air-fuel ratio), these oxygens become2 Or O2-NO in the exhaustXIs O on platinum Pt2 Or O2-With NO2Is generated. Also, NO in the inflow exhaust2And the NO generated above2Is combined with barium oxide BaO as an absorbent while being further oxidized on platinum Pt and nitrate ions NO3 Diffuses into the absorbent in the form of Therefore, in a lean atmosphere, NOXIs NOXIt becomes absorbed in the form of nitrate in the storage reduction catalyst.
[0027]
Also, when the oxygen concentration in the inflowing exhaust gas decreases (that is, when the air-fuel ratio of the exhaust gas decreases), NO on the platinum Pt becomes NO.2Since the amount of production is reduced, the reaction proceeds in the reverse direction, and nitrate ion NO3 Is NO2NO in the form ofXIt is released from the storage reduction catalyst. In this case, if components such as HC and CO are present in the exhaust gas, these components cause NO on the platinum Pt.2Is reduced.
[0028]
In this embodiment, since a diesel engine is used as the engine 1, the engine exhaust usually has a lean air-fuel ratio, and NOXThe NOx in the storage reduction catalyst 70 isXAbsorb. But NOXNO absorbed by the storage reduction catalystXWhen the amount increases, the absorbent (such as BaO) becomes saturated with nitrate ions, and NOXNO in storage exhaust catalystXCan not be absorbed. Therefore, in the present embodiment, NOXAt a certain timing, a rich air-fuel ratio exhaust gas containing a large amount of unburned fuel is supplied to the storage reduction catalyst, and NOXNO storage reduction catalystXAbsorbed before saturation withXTo reduce and purify NOXNO of storage reduction catalystXPrevents a decrease in absorption capacity.
[0029]
Reference numeral 30 in FIG. 1 denotes an electronic control unit (ECU) of the engine 1. In the present embodiment, the ECU 30 is a microcomputer having a known configuration including a RAM, a ROM, and a CPU. The ECU 30 performs basic control such as fuel injection control of the engine 1 and also has a NOXNO absorbed from the storage reduction catalyst 70XIs to be performed, an additional fuel injection is performed to each cylinder of the engine 1 to make the exhaust air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio.
[0030]
In order to perform these controls, a signal corresponding to the amount of engine intake air from an air flow meter 51 provided in the engine intake passage is provided to an input port of the ECU 30 in a cooling water jacket (not shown) of the engine 1. A signal corresponding to the engine cooling water temperature is input from the cooling water temperature sensor 53 via an AD converter (not shown). In the present embodiment, the NO in the exhaust passage 3XAn air-fuel ratio sensor 41 that outputs a voltage signal corresponding to the exhaust air-fuel ratio is provided at the entrance of the storage reduction catalyst 70,XAt the outlet of the storage reduction catalyst 70, exhaust temperature sensors 43 for outputting a voltage signal corresponding to the exhaust temperature are arranged. Outputs of the air-fuel ratio sensor 41 and the exhaust temperature sensor 43 are supplied to input ports of the ECU 30 via AD converters (not shown). Further, a pulse signal is input to the input port of the ECU 30 at every constant rotation angle of the engine crankshaft from a rotation speed sensor 55 disposed near the engine crankshaft (not shown). A voltage signal indicating the driver's accelerator pedal depression amount (accelerator opening) is input from an accelerator opening sensor 57 disposed near one accelerator pedal (not shown) via an AD converter (not shown).
[0031]
The ECU 30 performs AD conversion on the output of the air flow meter 51 and the output of the accelerator opening sensor 57, the output of the temperature sensor 53, the air-fuel ratio sensor 41, and the output of the exhaust temperature sensor 43 at predetermined intervals to convert the intake air amount G, the accelerator opening ACCP, and the cooling. Water temperature TW, exhaust air-fuel ratio AF, exhaust temperature TEXThe engine speed NE is calculated from the interval of the pulse signal from the speed sensor 55 and stored in a predetermined area of the RAM. The ECU 30 calculates an engine basic fuel injection amount based on a relationship previously stored in a ROM based on the accelerator opening ACCP detected by the accelerator opening sensor 57 and the engine speed NE. The main fuel injection amount Q of the engine is set by adding a correction according to the state. In the present invention, the method for setting the fuel injection amount is not particularly limited, and any of the known setting methods for a diesel engine can be used.
[0032]
On the other hand, an output port of the ECU 30 is connected to a fuel injection valve 111 of each cylinder via a fuel injection circuit (not shown) for controlling a fuel injection amount and a fuel injection timing to each cylinder. The fuel pump is controlled to control the amount of fuel pumped from the high-pressure fuel pump to the common rail. Further, an output port of the ECU 30 is further connected to an actuator of the EGR valve 23 via a drive circuit (not shown) to control the amount of EGR gas passing through the EGR valve 23 and a variable valve timing device via a drive circuit (not shown). 50, and controls the intake valve timing.
[0033]
Next, additional fuel injection in the present embodiment will be described.
In the present embodiment, the ECU 30XNO absorbed by the storage reduction catalyst 70XIs estimated and this NOXThe absorption amount is a predetermined value (for example, NOXNO absorbed by the storage reduction catalyst 70XApproximately 70% of the amount saturated by the fuel injection), additional fuel injection is performed in each cylinder.XNO from the storage reduction catalyst 70XTo release and purify.
[0034]
NOXNO absorbed by the storage reduction catalyst 70XThe quantity can be estimated, for example, based on engine operating conditions. NO generated by the engine per unit timeXThe amount is determined by the engine operating conditions such as the engine load and the number of revolutions. NOXNO absorbed per unit time by the storage reduction catalyst 70XThe amount is the amount of NO released per unit time from the engine.XQuantity, ie NO per unit time of the engineXA value obtained by multiplying the generation amount by a predetermined coefficient. Therefore, in the present embodiment, an experiment is performed by changing the combination of the engine fuel injection amount (load) and the rotational speed in advance, and the engine releases NO per unit time.XMeasure the amount and use this NOXThe relationship among the quantity, the engine load, and the rotation speed is stored in the ROM of the ECU 30. Then, based on the actual fuel injection amount and the engine speed at regular intervals (unit time) during engine operation, NO released from the engine per unit time is determined.XThe amount is calculated and this NOXThe value obtained by multiplying the quantity by a predetermined coefficient is integrated. As a result, the calculated integrated value becomes NOXNO absorbed by the storage reduction catalystXTo match the quantity. Note that additional fuel injection is performed and NOXNO absorbed from the storage reduction catalyst 70XIs released after NO is releasedXNO of the storage reduction catalyst 70XThe absorption amount is reset to 0, and NOXIntegration of the absorption amount is started.
[0035]
Note that NOXNO of the storage reduction catalyst 70XAs the absorption increases, NOXNO in exhaust gas downstream of the storage reduction catalyst 70XThe concentration increases. Therefore, as described above, NOXNO of the storage reduction catalyst 70XInstead of estimating the amount of absorption, for example, NOXNO in the exhaust passage downstream of the storage reduction catalyst 70XNO whose concentration can be detectedXA sensor is placed and this NOXNO detected by sensorXWhen the concentration exceeds a predetermined value, NOXNO absorbed by the storage reduction catalyst 70XThe additional fuel injection may be performed by determining that the amount has increased.
[0036]
The ECU 30 determines NOXNO of the storage reduction catalyst 70XWhen it is determined that the absorption amount has increased, the fuel injection valve 111 of each cylinder performs an additional fuel injection in addition to the main fuel injection, thereby setting the exhaust air-fuel ratio of the engine 1 to the rich air-fuel ratio and setting the NO.XNO absorbed from the storage reduction catalyst 70XRelease.
In the present embodiment, the additional fuel injection amount of each cylinder is set as described below.
[0037]
That is, in the present embodiment, the ratio of the intake air amount of the engine measured by the air flow meter 51 to the sum of the fuel injection amount in the main fuel injection of the engine and the fuel supplied to the engine by the additional fuel injection (that is, the exhaust air-fuel ratio) ) Is determined to be an air-fuel ratio equal to or lower than a predetermined stoichiometric air-fuel ratio (in this embodiment, a rich air-fuel ratio close to the stoichiometric air-fuel ratio).
[0038]
That is, the ECU 30 calculates an engine intake air amount G per one engine revolution G (gram / revolution) based on the engine intake air amount (gram / second) measured by the air flow meter 51 and the engine speed.
Next, the ECU 30 calculates the main fuel injection amount per one time from each of the fuel injection valves 111 based on the accelerator opening and the engine speed, multiplies the number of cylinders, and injects the main fuel into the engine per main engine revolution by the main fuel injection. The total amount of supplied fuel Q (gram / rotation) is calculated.
[0039]
The fuel amount QA to be supplied to the engine 1 by the additional fuel injection per one revolution of the engine is based on the intake air amount G and the total main fuel injection amount Q.
QA = (G / AF0) -Q (1)
Is calculated as Where AF0Is a target air-fuel ratio to be reached by additional fuel injection.
[0040]
Fuel quantity QA to be supplied from each fuel injection valve 111 by additional fuel injection per engine stroke cycleiIs a value obtained by dividing the above QA by the number of cylinders N (N = 6 in this embodiment), that is, QAi= QA / N.
QAiIs the total amount of fuel to be supplied to one cylinder by additional fuel injection per one revolution of the engine.
[0041]
However, as described above, a diesel engine is usually operated at a very lean (lean) air-fuel ratio of about 30 at an air-fuel ratio. For this reason, if the exhaust air-fuel ratio is set to be equal to or lower than the stoichiometric air-fuel ratio while the normal operation is continued, it is necessary to inject a large amount of fuel in the additional fuel injection as much as the main fuel injection.
On the other hand, in the late stage of the expansion stroke in which the additional fuel injection is performed and in the exhaust stroke, the temperature in the cylinder is lowered, and the piston is also at the lowered position in the cylinder. For this reason, when a large amount of fuel is injected into the cylinder at this time, the injected fuel does not enter the combustion chamber on the top surface of the piston and reaches the cylinder inner wall in a liquid state, that is, so-called bore flushing occurs. When bore flushing occurs, poor lubrication or the like due to dilution of the lubricating oil or breakage of the oil film tends to occur.
[0042]
For this reason, in a diesel engine, when a large amount of fuel is injected by additional fuel injection, not only does the engine fuel consumption increase, but also there is a problem that bore flushing occurs.
In order to solve this problem, in order to obtain an exhaust air-fuel ratio lower than the stoichiometric air-fuel ratio with a small amount of additional fuel injection, for example, the intake air amount throttle valve 27 in the intake passage is throttled to reduce the engine intake air amount. It is also conceivable to let them. However, when the intake air amount is reduced by the intake throttle, the engine pumping loss due to the throttle loss increases, and the main fuel injection amount must be increased in order to prevent a decrease in engine output. Fuel consumption cannot be reduced so much.
[0043]
Therefore, in this embodiment, by changing the engine valve timing, the amount of air taken into the engine is reduced without increasing the pumping loss in the method described below, and the engine fuel consumption at the time of performing the additional fuel injection is reduced. And the occurrence of bore flushing is prevented.
Hereinafter, the additional fuel injection of the present invention will be described.
(1) First embodiment
In this embodiment, when the exhaust air-fuel ratio is to be lower than the stoichiometric air-fuel ratio, the variable valve timing device 50 is operated to delay the closing timing of the intake valve, thereby reducing the amount of air drawn into the cylinder. I do.
[0044]
FIG. 2 shows the normal operation of the engine 1 in the present embodiment (when the additional fuel injection is not performed) (FIG. 2, (A)) and the additional fuel injection execution (FIG. 2, (B)). FIG. 4 is a timing chart showing setting of engine valve timing.
In FIG. 2, EX and IN indicate the valve lift curves of the exhaust valve and the intake valve, respectively, ETDC and EBDC indicate the top dead center and bottom dead center of the expansion stroke, and ITDC indicates the top dead center of the intake stroke (that is, the exhaust stroke). Top dead center), IBDC indicates the intake stroke and bottom dead center (that is, the bottom dead center of the compression stroke), and CTDC indicates the compression stroke top dead center.
[0045]
As shown in FIG. 2A, during normal operation, the exhaust valve (EX) opens before the bottom dead center (EBDC) of the expansion stroke and closes after the top dead center (ITDC) of the intake stroke. The intake valve (IN) opens before the intake stroke top dead center (ITDC) and closes at a position slightly beyond the intake stroke bottom dead center (IBDC).
On the other hand, in the present embodiment, when the additional fuel injection is performed, the opening and closing timing of the exhaust valve is maintained at the same level as in the normal operation, but the opening and closing timing of the intake valve is greatly delayed. That is, as shown in FIG. 2 (B), in the present embodiment, when additional fuel injection is performed, the intake valve opens after the intake stroke top dead center, and near the center of the compression stroke (the intake bottom dead center IBDC and the compression stroke top dead center). (Between CTDC).
[0046]
As shown in FIG. 2 (B), if the closing timing of the intake valve is delayed, the intake valve is opened until the middle stage of the compression stroke. The intake air is discharged to the intake port as the piston rises during the compression stroke. For this reason, the amount of intake air charged into the cylinder at the time of closing the intake valve is greatly reduced as compared with the normal operation. On the other hand, as described above, in the present embodiment, since the main fuel injection amount is determined by the accelerator opening and the rotation speed, the main fuel injection amount is not significantly reduced even if the intake air amount of the cylinder decreases. Accordingly, in the above equation (1), the intake air amount G decreases and the main fuel injection amount Q does not change, so that the injection amount QA of the additional fuel injection necessary for obtaining the predetermined air-fuel ratio is greatly reduced. You.
[0047]
Further, unlike the intake throttle by the intake throttle valve 27, the reduction of the intake amount due to the delay of the intake valve closing timing does not cause the pumping loss due to the intake throttle. For this reason, the injection amount in the additional fuel injection is reduced by the reduced amount of the intake air, and the increase in the engine fuel consumption when the additional fuel injection is performed is suppressed.
Next, the additional fuel injection operation of the present embodiment will be described. As described above, in the present embodiment, since the intake air amount at the time of additional fuel injection is significantly reduced by delaying the closing timing of the intake valve, the injection amount per cylinder per one engine revolution of the additional fuel injection QAiIs also greatly reduced. For this reason, the possibility of occurrence of bore flushing is significantly reduced as compared with the case where additional fuel injection is performed without reducing the intake air amount.
[0048]
However, as described above, the additional fuel injection is performed during the expansion stroke and the exhaust stroke in which the temperature in the cylinder decreases. Further, at this time, the piston is at the lowered position, and the fuel injected from the fuel injection valve is in a liquid state and easily reaches the cylinder inner wall. Therefore, in the present embodiment, the fuel amount QA to be supplied to the cylinder by the additional fuel injectioniIs not injected by one fuel injection, and qa is shown in FIG.iAs shown in the above, additional fuel injection is performed a plurality of times during the expansion stroke and the intake stroke. As a result, the amount of fuel injected in one additional fuel injection can be reduced, so that the injected fuel is immediately vaporized, and the occurrence of bore flushing can be more completely prevented. Become.
[0049]
In the present embodiment, the maximum amount of fuel that can be injected in one additional fuel injection without bore flushing is determined in advance by an experiment or the like, and a small value having a margin for the maximum fuel in the additional fuel injection is determined. Maximum fuel injection amount QAiMAXSet as Then, the total QA of the additional fuel injection amount per cylinderiAnd QAiMAXFrom this, the number NI of additional fuel injections is determined. That is, the number NI of additional fuel injections is NI = (QAi/ QAiMAX) +1. Then, the fuel injection amount QAI in each additional fuel injectioniIs QA for the first to NI additional fuel injections.iMAX, NI + 1 in the additional fuel injection (QAi-QAiMAX× NI).
[0050]
The maximum amount of fuel that can be injected without causing bore flushing can be obtained by previously performing additional fuel injection under the condition that bore flushing is most likely to occur, and measuring the maximum fuel injection amount that does not cause bore flushing. For example, at the end of the expansion stroke, the piston is most lowered and the temperature in the cylinder is also reduced, so that bore flushing is most likely to occur. In this embodiment, when fuel is injected at the end of the expansion stroke, the maximum fuel injection amount that can be injected without causing bore flushing is measured, and a value having a sufficient margin for this maximum fuel injection amount is determined by QA.iMAXSet as QAiMAXIs generally smaller than the fuel amount corresponding to 20 CC / injection.
[0051]
Further, additional fuel injection is performed not only in one stroke cycle but also in NO cycle.XNO absorbed from the storage reduction catalyst 70XUntil a supply of the unburned fuel required to release the fuel is performed over a plurality of cycles.
As described above, in the present embodiment, the ECU 30XNO absorbed by the storage reduction catalyst 70XWhen the amount increases, the variable valve timing device 50 is controlled to retard the intake valve opening / closing timing by a predetermined amount. The retard amount is set in accordance with the engine load condition, and when the main fuel injection amount is small and the operating air-fuel ratio is high, such as when the load is light, the retard amount of the intake valve timing is set to be large, and the intake air The amount is greatly reduced.
[0052]
Then, when the intake valve timing reaches the predetermined retard amount, the ECU 30 performs additional fuel injection a plurality of times during the expansion stroke and the exhaust stroke of each cylinder. At this time, the amount of fuel injected by one additional fuel injection is set to a small amount that does not cause bore flushing, and the number of additional fuel injections performed during the stroke cycle of the cylinder is calculated by the above equation (1). It is determined by the fuel amount and the fuel amount injected for one additional fuel injection.
[0053]
This makes it possible to significantly reduce the amount of fuel to be supplied to the cylinder by additional fuel injection without causing pumping loss, thereby preventing an increase in fuel consumption during the execution of additional fuel injection, and The occurrence of bore flushing due to the above is completely prevented.
(2) Second embodiment
Next, a second embodiment of the present invention will be described.
[0054]
In the first embodiment, the closing timing of the intake valve is delayed to reduce the intake air amount of the engine, thereby preventing an increase in fuel consumption and the occurrence of bore flushing when performing additional fuel injection. In this embodiment, in addition to the above, the injection amount of each additional fuel injection is feedback-controlled based on the output of the air-fuel ratio sensor 41 disposed in the engine exhaust passage 3.
[0055]
That is, in the present embodiment, the ECU 30 performs NO based on the output of the air-fuel ratio sensor 41 when performing the additional fuel injection.XThe actual air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst 70 is detected. Then, the total fuel amount (total amount of the main fuel injection amount and the additional fuel injection amount) supplied to the cylinder according to the deviation between the predetermined target air-fuel ratio (for example, the stoichiometric air-fuel ratio) and the detected actual exhaust air-fuel ratio. Is corrected. For example, when the exhaust air-fuel ratio at the time of performing the additional fuel injection is higher than the target air-fuel ratio (when the actual exhaust air-fuel ratio is leaner than the target air-fuel ratio), the total fuel amount is increased and the actual exhaust air-fuel ratio becomes higher than the target air-fuel ratio. If it is lower than the air-fuel ratio, the total fuel amount is reduced. The control of the total fuel amount is performed by a known proportional integral derivative control (PID control) based on a deviation between the target air-fuel ratio and the actual air-fuel ratio.
[0056]
Further, the correction of increase or decrease between the main fuel injection amount and the additional fuel injection amount is determined according to the ratio of each injection amount to the total fuel amount.
As described above, in the present embodiment, the amount of fuel supplied to the cylinder is corrected so that the actual exhaust air-fuel ratio detected by the air-fuel ratio sensor 41 matches the target air-fuel ratio.XThe air-fuel ratio of the exhaust gas supplied to the storage reduction catalyst 70 can be controlled very accurately, and the total amount of the main fuel injection amount and the additional fuel injection amount at the time of performing the additional fuel injection is always set to obtain the target air-fuel ratio. Only the amount needed. For this reason, there is no possibility that the fuel amount will be excessive or insufficient, and NOXNO from the storage reduction catalyst 70XThe release can be performed efficiently, and it is possible to prevent the supply of excessive fuel and prevent an increase in fuel consumption.
(3) Third embodiment
In the present embodiment, in addition to the control of the first embodiment, NOXWhen the temperature of the storage reduction catalyst 70 is low, NOXAn operation of raising the temperature of the storage reduction catalyst to a predetermined temperature is performed. As described above, since the exhaust temperature of a diesel engine is generally lower than that of a gasoline engine, NOXThere is a case where the temperature of the storage reduction catalyst drops to a temperature lower than the activation temperature of the catalyst (for example, about 350 ° C.). In such a case, NOXNO of storage reduction catalystXStorage capacity and NOXThe reduction ability at the time of release is reduced, and exhaust gas cannot be sufficiently purified. NOXEven when the temperature of the storage reduction catalyst is equal to or higher than the activation temperature, it may be necessary to increase the catalyst temperature. For example, SO in exhaustXThe component is NOXNO with the same mechanism as the componentXOxide is stored in the storage reduction catalyst to produce stable sulfate. Decompose this sulfate to NOXFrom storage reduction catalyst to SOXTo release NOXIt is necessary to supply exhaust gas with a rich air-fuel ratio while keeping the storage reduction catalyst at a higher temperature than the activation temperature.
[0057]
In the present embodiment, the ECU 30 determines NO based on the output of the exhaust gas temperature sensor 43 disposed in the exhaust passage 3.XThe temperature of the storage reduction catalyst 70 is detected. And NOXNO from storage reduction catalystXIs to be released or SOXShould be released, additional fuel injection should be performed and NOXFeedback control is performed on the intake valve timing and the additional fuel injection amount based on the output of the exhaust temperature sensor 43 and the output of the air-fuel ratio sensor 41 so that the temperature of the storage reduction catalyst 70 becomes a predetermined target value. The predetermined target temperature is, for example, NOXIs to be released when the catalyst activation temperature is about 350 ° C.XIs set to about 550 ° C. when is to be released.
[0058]
Next, the above NOXThe details of the temperature control of the storage reduction catalyst will be described.
NOXNO from the storage reduction catalyst 70XIs to be released or SOXIs to be released, the ECU 30 returns NOXNO based on the exhaust gas temperature detected by the exhaust gas temperature sensor 43 disposed at the outlet of the storage reduction catalyst 70XThe temperature of the storage reduction catalyst 70 is detected. NOXSince the catalyst bed temperature of the storage reduction catalyst 70 and the exhaust temperature after passing through the catalyst are substantially equal, in this embodiment, the exhaust temperature detected by the exhaust temperature sensor 43 is set to NO.XUsed as the temperature of the storage reduction catalyst 70.
[0059]
Next, the ECU 30 controls the variable valve timing 50 to retard the intake valve closing timing by a predetermined amount and to start additional fuel injection. In this embodiment, the exhaust air-fuel ratio is set so that the exhaust air temperature becomes the highest when the temperature of the catalyst rises (a value near the stoichiometric air-fuel ratio). The feedback control of the additional fuel injection amount is performed so that the air fuel ratio becomes the above-mentioned air-fuel ratio.
[0060]
Further, the ECU 30 determines NO based on the output of the exhaust gas temperature sensor 43.XThe temperature of the storage reduction catalyst 70 is detected, and the detected actual NOXThe above-mentioned NO of the storage reduction catalyst temperatureXA deviation from the storage reduction catalyst target temperature is calculated, and the intake valve timing is corrected based on the deviation. That is, when the actual temperature is lower than the target temperature, the intake valve timing is advanced to increase the amount of air taken into the cylinder. As described above, in the present embodiment, the additional fuel injection amount is controlled so that the exhaust air-fuel ratio becomes the target air-fuel ratio, and the additional fuel injection amount is also increased in accordance with the intake air amount. The exhaust flow rate increases while maintaining the predetermined temperature, and NOXThe temperature of the storage reduction catalyst 70 increases. Also, the actual NOXWhen the temperature of the storage reduction catalyst is lower than the target temperature, the ECU 30 retards the intake valve timing to reduce the amount of air drawn into the cylinder. Also in this case, the additional fuel injection amount is controlled so that the exhaust air-fuel ratio becomes a predetermined air-fuel ratio.XThe temperature of the storage reduction catalyst decreases. NO aboveXThe valve timing of the intake valve during temperature control of the storage reduction catalyst is NOXTarget temperature of storage reduction catalyst and actual NOXThe control may be performed by proportional integral differential control based on a deviation from the storage reduction catalyst temperature.
[0061]
In the present embodiment, as described above, the intake valve timing and the fuel injection amount are determined by the actual NOXSince the temperature of the storage reduction catalyst is controlled to reach a predetermined target temperature, exhaust gas having an appropriate temperature and flow rate is always supplied to the catalyst, so that the NOXIt is possible to control the storage reduction catalyst temperature to the target temperature.
[0062]
(4) Fourth embodiment
Next, a fourth embodiment of the present invention will be described.
In the above-described first embodiment, the occurrence of bore flushing is prevented by dividing the additional fuel injection into the expansion stroke or the exhaust stroke in a plurality of times. On the other hand, this embodiment is different from the first embodiment in that the additional fuel injection is performed in the latter half of the exhaust stroke, and the required amount of fuel is injected by one additional fuel injection.
In the latter half of the exhaust stroke, the piston is in the raised position, so that most of the cylinder inner wall is covered by the piston. Further, since the fuel injected by the additional fuel injection enters the combustion chamber on the upper surface of the piston and is vaporized, the injected fuel does not directly reach the inner wall of the cylinder in a liquid state, so that bore flushing does not occur.
[0063]
However, as described above, in the normal operation, in the latter half of the exhaust stroke, the intake valve starts to open and a valve overlap period occurs, and a part of the fuel injected during this period passes through the opened intake valve through the intake valve. Backflow to port. This backflow fuel flows into the cylinder together with the intake air during the intake stroke, so that unburned fuel remains in the cylinder, and the residual fuel is injected into the main fuel during the compression stroke of the next cycle of the cylinder. If it burns before burning, abnormal combustion will occur. Further, even when abnormal combustion does not occur, both fuel and main fuel by the main fuel injection are burned in the cylinder, so that the generated torque of the cylinder increases and the engine output torque fluctuates. .
In the present embodiment, by delaying the intake valve opening timing at the time of performing the additional fuel injection, the fuel injected by the additional fuel injection is prevented from remaining in the cylinder and burning in the next cycle.
[0064]
3 is a diagram similar to FIG. 2 showing the additional fuel injection timing and the intake valve opening / closing timing in the present embodiment. FIG. 3 (A) shows a normal operation, and FIG. Indicates time.
As shown in FIG. 3, in the present embodiment, at the time of performing the additional fuel injection, the intake valve starts to open after the exhaust stroke top dead center (that is, the intake stroke top dead center ITDC). For this reason, when the additional fuel injection is performed, the intake valve is closed, and a part of the fuel injected by the additional fuel injection is prevented from flowing back to the intake port. This prevents the residual fuel in the cylinder from being generated by the additional fuel injection.
In the present embodiment, the additional fuel injection is performed only once in the latter half of the exhaust stroke (for example, near the top dead center ITDC of the exhaust stroke). Therefore, the fuel injected by the additional fuel injection reaches the inner wall of the cylinder by the piston at the ascending position, so that bore flushing does not occur. The positions of the pistons that can prevent the fuel injected by the additional fuel injection from directly reaching the inner wall of the cylinder are the cylinder inner diameter (cylinder bore diameter), the spray angle of the fuel injection valve, and the projection length of the fuel injection valve into the cylinder. The actual additional fuel injection execution timing is determined for each engine type based on the above conditions.
[0065]
The intake valve opening timing (the delay amount of the valve opening timing) at the time of additional fuel injection can be completely prevented by setting the valve overlap period so that no valve overlap period occurs. Actually, even if some residual fuel is generated, abnormal combustion and engine output torque fluctuation do not occur, so that the intake valve opening timing may be delayed to such an extent that some valve overlap period occurs. In this case, the actual intake valve opening timing may be set to a range in which abnormal combustion or output torque fluctuation does not occur during additional fuel injection by an experiment using an actual engine.
Further, as shown in FIG. 3, if the intake valve closing timing is also delayed at the same time as the intake valve opening timing, the amount of intake air charged into the cylinder is reduced as in the first embodiment. Therefore, it is possible to significantly reduce the additional fuel injection amount and prevent an increase in engine fuel consumption.
Note that also in the present embodiment, the feedback control of the injection amount of the additional fuel injection based on the output of the air-fuel ratio sensor 41 described in the second embodiment and the NO control described in the third embodimentXIt goes without saying that either one or both of the operation of raising the temperature of the storage reduction catalyst can be used in combination.
[0066]
【The invention's effect】
According to the invention described in each claim, when supplying exhaust gas with a stoichiometric air-fuel ratio or a rich air-fuel ratio to an exhaust purification catalyst by additional fuel injection, occurrence of bore flushing is suppressed while suppressing increase in fuel consumption of the engine. The common effect that it can be completely prevented is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an embodiment when the present invention is applied to an automobile diesel engine.
FIG. 2 is a diagram illustrating intake valve timing when additional fuel injection is performed in the embodiment of FIG. 1;
FIG. 3 is a view similar to FIG. 2, illustrating valve overlap when additional fuel injection is performed in an additional fuel injection embodiment different from FIG. 2;
[Explanation of symbols]
1. Diesel engine
23 ... EGR control valve
30 ... Electronic control unit (ECU)
41 ... Air-fuel ratio sensor
43 ... Exhaust gas temperature sensor
50 ... Variable valve timing device
70 ... NOXStorage reduction catalyst
111: In-cylinder fuel injection valve

Claims (5)

気筒内に直接燃料を噴射する筒内燃料噴射弁を有する内燃機関の排気通路に配置された排気浄化触媒と、
必要に応じて前記排気浄化触媒に供給される排気の空燃比を理論空燃比またはリッチ空燃比にする際に、主燃料噴射に加えて前記筒内燃料噴射弁から気筒の膨張または排気行程中に追加燃料噴射を行う制御手段と、を備えた内燃機関の排気浄化装置において、
更に、機関吸気弁と排気弁との少なくとも一方のバルブタイミングを変更可能な可変バルブタイミング手段を備え、
該可変バルブタイミング手段は、前記制御手段が前記追加燃料噴射を行うときには、追加燃料噴射を行わないときに較べて気筒内に吸入される空気量が減少するように吸気弁と排気弁との少なくとも一方のバルブタイミングを変更する、内燃機関の排気浄化装置。
An exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine having an in-cylinder fuel injection valve that injects fuel directly into a cylinder;
When the air-fuel ratio of the exhaust gas supplied to the exhaust purification catalyst is set to the stoichiometric air-fuel ratio or the rich air-fuel ratio as necessary, in addition to the main fuel injection, during the expansion or exhaust stroke of the cylinder from the in-cylinder fuel injection valve. Control means for performing additional fuel injection, and an exhaust gas purification apparatus for an internal combustion engine comprising:
Further, there is provided a variable valve timing means capable of changing at least one valve timing of the engine intake valve and the exhaust valve,
The variable valve timing means, when the control means performs the additional fuel injection, at least one of the intake valve and the exhaust valve so that the amount of air taken into the cylinder is reduced as compared to when the additional fuel injection is not performed. An exhaust purification device for an internal combustion engine that changes one valve timing.
前記制御手段は、気筒の膨張または排気行程中に前記追加燃料噴射を複数回に分けて実施するとともに、1回の追加燃料噴射で噴射される燃料量を気筒でボアフラッシングが生じる燃料噴射量より小さく設定する、請求項1に記載の内燃機関の排気浄化装置。The control means performs the additional fuel injection in a plurality of times during the expansion or exhaust stroke of the cylinder, and determines the amount of fuel injected in one additional fuel injection from the amount of fuel injection in which bore flushing occurs in the cylinder. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, which is set to be small. 更に、前記排気浄化触媒上流側の機関排気通路に排気空燃比を検出する空燃比センサを備え、
前記制御装置は、前記追加燃料噴射実施時に前記空燃比センサで検出した排気空燃比が予め定めたリッチ空燃比になるように追加燃料噴射により気筒に供給される燃料量を制御する、請求項2に記載の内燃機関の排気浄化装置。
Further, an air-fuel ratio sensor for detecting an exhaust air-fuel ratio is provided in an engine exhaust passage upstream of the exhaust purification catalyst,
The control device controls the amount of fuel supplied to the cylinder by the additional fuel injection so that the exhaust air-fuel ratio detected by the air-fuel ratio sensor at the time of performing the additional fuel injection becomes a predetermined rich air-fuel ratio. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
更に、前記触媒温度を検出する手段を備え、前記制御手段と前記可変バルブタイミング手段とは、前記検出した触媒温度が予め定めた温度になるように追加燃料噴射により気筒に供給される燃料と前記バルブタイミングとをそれぞれ制御する請求項1に記載の内燃機関の排気浄化装置。Further, there is provided a means for detecting the catalyst temperature, wherein the control means and the variable valve timing means are configured such that the fuel supplied to the cylinder by the additional fuel injection so that the detected catalyst temperature becomes a predetermined temperature, and 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purifying apparatus controls the valve timing. 気筒内に直接燃料を噴射する筒内燃料噴射弁を有する内燃機関の排気通路に配置された排気浄化触媒と、
必要に応じて前記排気浄化触媒に供給される排気の空燃比を理論空燃比またはリッチ空燃比にする際に、主燃料噴射に加えて前記筒内燃料噴射弁から追加燃料噴射を行う制御手段と、を備えた内燃機関の排気浄化装置において、
更に、機関吸気弁の開弁時期を変更可能な可変バルブタイミング手段を備え、前記制御手段は、気筒が排気工程にあり気筒ピストンが、前記追加燃料噴射により噴射された燃料の気筒内壁への到達を阻止する位置にあるときに前記追加燃料噴射を行い、
前記可変バルブタイミング手段は、前記制御手段が前記追加燃料噴射を行うときには追加燃料噴射を行わないときに較べて、吸気弁と排気弁とが同時に開弁するバルブオーバラップ期間が短くなるように吸気弁開弁時期を遅延させる、内燃機関の排気浄化装置。
An exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine having an in-cylinder fuel injection valve that injects fuel directly into a cylinder;
Control means for performing additional fuel injection from the in-cylinder fuel injection valve in addition to main fuel injection when the air-fuel ratio of exhaust gas supplied to the exhaust purification catalyst is set to a stoichiometric air-fuel ratio or a rich air-fuel ratio as necessary. In an exhaust gas purification device for an internal combustion engine comprising:
The engine further includes variable valve timing means capable of changing the opening timing of the engine intake valve, wherein the control means is arranged such that the cylinder is in the exhaust process and the cylinder piston reaches the inner wall of the cylinder of the fuel injected by the additional fuel injection. Perform the additional fuel injection when in the position to prevent
The variable valve timing means controls the intake valve so that the valve overlap period during which the intake valve and the exhaust valve are simultaneously opened is shorter when the control means performs the additional fuel injection than when the additional fuel injection is not performed. An exhaust gas purification device for an internal combustion engine that delays valve opening timing.
JP2000014119A 1999-09-24 2000-01-19 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3601395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014119A JP3601395B2 (en) 1999-09-24 2000-01-19 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27079699 1999-09-24
JP11-270796 1999-09-24
JP2000014119A JP3601395B2 (en) 1999-09-24 2000-01-19 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001159363A JP2001159363A (en) 2001-06-12
JP3601395B2 true JP3601395B2 (en) 2004-12-15

Family

ID=26549374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014119A Expired - Lifetime JP3601395B2 (en) 1999-09-24 2000-01-19 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3601395B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371900A (en) * 2001-06-19 2002-12-26 Isuzu Motors Ltd Fuel injection control method in internal combustion engine
JP2003097328A (en) * 2001-09-20 2003-04-03 Toyota Motor Corp Fuel injection control device for internal combustion engine
US6722121B2 (en) * 2002-07-22 2004-04-20 International Engine Intellectual Property Company, Llc Control strategy for regenerating a NOx adsorber catalyst in an exhaust system of an engine having a variable valve actuation mechanism
US6981370B2 (en) * 2002-12-03 2006-01-03 Caterpillar Inc Method and apparatus for PM filter regeneration
ITTO20030987A1 (en) * 2003-12-09 2005-06-10 Fiat Ricerche METHOD OF CONTROL OF A SPONTANEOUS IGNITION ENGINE PROVIDED WITH A COMMON COLLECTOR INJECTION SYSTEM DURING THE REGENERATION OF THE PARTICULATE FILTER.
JP2006104989A (en) * 2004-10-04 2006-04-20 Hino Motors Ltd Exhaust emission control device
JP4935426B2 (en) * 2007-03-01 2012-05-23 トヨタ自動車株式会社 Control device for internal combustion engine
JP4780059B2 (en) 2007-08-09 2011-09-28 トヨタ自動車株式会社 Control device for internal combustion engine
JP6567900B2 (en) * 2015-07-02 2019-08-28 株式会社Soken Fuel injection control device for internal combustion engine
SE542390C2 (en) * 2016-10-19 2020-04-21 Scania Cv Ab Method and system for controlling the intake and exhaust valves in an internal combustion engine
WO2021165711A1 (en) * 2020-02-20 2021-08-26 日産自動車株式会社 Internal combustion engine control method and internal combustion engine control device

Also Published As

Publication number Publication date
JP2001159363A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US7111452B2 (en) Control device of hydrogen engine
JP2004068700A (en) Exhaust gas purification method
JPH11107861A (en) Internal combustion engine
KR100517040B1 (en) Exhaust gas purification system for internal combustion engine
JP3092569B2 (en) Compression ignition type internal combustion engine
JP2000027711A (en) Internal combustion
JP5664884B2 (en) Air-fuel ratio control device for internal combustion engine
JP3601395B2 (en) Exhaust gas purification device for internal combustion engine
US20110203260A1 (en) Exhaust purification system of internal combustion engine
JP2009191659A (en) Control device of internal combustion engine
JP3092604B2 (en) Internal combustion engine
JP3680258B2 (en) Exhaust gas purification device for internal combustion engine
EP1079084B1 (en) Internal combustion engine
US11028757B2 (en) Exhaust purification system of internal combustion engine
US20190360447A1 (en) Internal combustion engine
JP3932729B2 (en) Exhaust gas purification device for internal combustion engine
JP3555439B2 (en) Compression ignition type internal combustion engine
JP3331988B2 (en) Multi-cylinder internal combustion engine
JP3580188B2 (en) Exhaust gas purification device for internal combustion engine
JP3551797B2 (en) Internal combustion engine
JP2000130154A (en) Internal combustion engine
JP4211514B2 (en) Exhaust gas purification device for internal combustion engine
JP3092597B2 (en) Internal combustion engine
JP3331987B2 (en) Internal combustion engine
JP3331986B2 (en) Multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3601395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term