JP3601037B2 - Leukocyte removal filter - Google Patents

Leukocyte removal filter Download PDF

Info

Publication number
JP3601037B2
JP3601037B2 JP31784094A JP31784094A JP3601037B2 JP 3601037 B2 JP3601037 B2 JP 3601037B2 JP 31784094 A JP31784094 A JP 31784094A JP 31784094 A JP31784094 A JP 31784094A JP 3601037 B2 JP3601037 B2 JP 3601037B2
Authority
JP
Japan
Prior art keywords
blood
leukocyte removal
diffusion sheet
removal filter
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31784094A
Other languages
Japanese (ja)
Other versions
JPH08175999A (en
Inventor
真二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Original Assignee
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp filed Critical Nipro Corp
Priority to JP31784094A priority Critical patent/JP3601037B2/en
Publication of JPH08175999A publication Critical patent/JPH08175999A/en
Application granted granted Critical
Publication of JP3601037B2 publication Critical patent/JP3601037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は血液及び体液中の白血球を除去するフィルターに関する。
【0002】
【従来の技術】
頻回輸血患者の治療において、発熱・悪寒・掻瘍等の症状を示す非溶血性発熱反応を予防するために白血球除去血液製剤を輸血して症状の改善することは広く知られている。
【0003】
通常、血液400cc中には10個レベルの白血球が存在し、その血液を輸血された患者は抗HLA抗体を産生して非溶血性発熱反応を呈する。血液中の白血球の99.9%を除去すると、白血球数は上記単位量において10個レベルに低下し、非溶血性発熱反応は予防される。
【0004】
また、輸血後の副作用は血液製剤中の白血球に起因する同種免疫反応によることが解明されるにつれ、同種免疫の誘導を予防するために血液中の白血球を99.9%以上除去することが要望されている。
【0005】
白血球を除去する方法には、血液成分の比重差を利用した遠心分離による方法と白血球除去フィルターを使用する方法があり、簡便な操作で高い白血球除去率が得られることから白血球除去フィルターの使用が普及している。
【0006】
白血球除去フィルターはポリエステル等の疎水性極細繊維からなる不織布や多孔質体をハウジングに充填したもので、白血球は繊維表面に捕捉吸着して除去される。
【0007】
白血球を高率で除去するためには繊維集合体中の繊維表面積を大きくすることが好ましく、不織布の体積が同じであれば、不織布中の繊維径の小さい不織布の方が繊維表面積は大きくなり、同じ繊維径の不織布では嵩密度を高くして繊維間隔を小さくするほど繊維表面積は大きくなる。
【0008】
血液製剤中には赤血球・白血球・血小板のような血球成分や血漿、凝集物が存在し、凝集物による極細繊維不織布の閉塞を少なくするために、まず、径の大きい凝集物をプレフィルター層で除去し、次いで、白血球をメインフィルター層で除去する2層構造のフィルターが提案されている。これは、繊維径の大きい繊維集合体を繊維径の小さい繊維集合体の上層に配置し、メインフィルターの目詰まりを少なくすることを目的としているが、白血球と同サイズの10〜20μmの凝集物を除去するには十分ではなく、ヘマトクリット(Ht)値の高い血液では瀘過時間の長くなる欠点を有する。
【0009】
また、プレフィルター層を補強して3〜4層構造にすればメインフィルター層の閉塞を防げることが提案されている(特開平1−236064号)。これは各層の繊維径と繊維間隔の範囲を限定して、凝集物の大きい径のものから捕捉されるものであり、2層構造と比較するとメインフィルター層を閉塞する頻度は少なくなる。しかし一定方向から流れてくる血液はフィルター面の同じ場所を通過するため、凝集物を数多く除去するにつれて第1層から徐々に目詰まりして遂には層全体の流量を低下させてしまっていた。
そこで本発明者は第1層で目詰まりする箇所が生じても層全体の流量を低下させない方法を検討した結果、第1層と第2層の間に支持体を配置することにより、目詰まりが少なく流量低下が少ないという特願平5−243668の発明に至った。しかし第1層と第2層の間に設けた支持体は、第1層と第2層の間に空間を形成し、流れを良くするが血液の流れ方向が一定なため流れは拡散されず、フィルターの目詰まり対策としては決して十分なものではなかった。
【0010】
【発明が解決しようとする課題】
本発明は上記問題点を改良して、血液中の白血球を効率的に除去し赤血球回収率および濾過時間の良好な白血球除去フィルターを提供することを目的とする。
【0011】
【課題を解決するための手段及び作用】
本発明は、血液流入口と血液流出口を有するハウジング内に繊維状物質を充填した白血球除去フィルターであって、該ハウジング内を血液流入側と血液流出側とに隔てる拡散シート及び中間体を繊維状物質層間に配置させてあり、該拡散シート及び中間体の濾過面積に対して占める割合が濾過面中央部の40〜80%である白血球除去フィルターを要旨とする。
【0012】
本発明において、繊維状物質とは繊維と繊維が互いに絡み合い連続した共有空間を多数保持している繊維の集合体であり、多孔質体・不織布・織布・メツシユ等の形態が挙げられる。
【0013】
繊維状物質にはポリエステル・ポリプロピレン・ポリエチレン・ポリテトラフルオロエチレン等の疎水性繊維を使用することが好ましい。
【0014】
繊維状物質の繊維径は1〜40μの範囲であることが好ましい。繊維径が1μ未満であると、繊維状物質の単位面積当たりの繊維間隔が小さくなるため濾過抵抗が大きくなることから好ましくない。また、繊維径が40μを越えると、繊維体積が大きくなるため繊維状物質への血液吸着量が大きくなることから好ましくない。
【0015】
繊維状物質は、白血球より大きな凝集物を除去するプレフィルター層と白血球を除去するメインフィルター層を有することが好ましい。プレフィルター層には繊維径10〜40μの繊維状物質を使用する。繊維径40μを越えると血液凝集物は除去されず、繊維径10未満では血液凝集物が目詰まりを起こすことから好ましくない。メインフィルター層には繊維径10μ未満の繊維状物質を使用する。これは白血球が繊維径10μ未満でないと除去されないためである。一般に白血球は繊維径が小さくなるほど除去率が高くなる。よって、プレフィルター層は血液流入口側に、メインフィルター層は血液流出口側に配置することが好ましい。
【0016】
本発明において、繊維状物質のプレフィルターとメインフィルター層の間に拡散シートを挟み込む。該拡散シートはハウジング内を血液流入側と血液流出側に隔て、前記フィルター層が各々の層で血液凝集物や白血球などの目的の物質を精度良く採取するためのものである。
【0017】
本発明において、拡散シートにはポリエステル・ポリプロピレン・ポリエチレン・ポリテトラフルオロエチレン等の疎水性のシートである。拡散シートの特性は液体を通過させないものであればよい。拡散シートの厚さは100〜1000μの範囲であることが好ましい。
【0018】
拡散シートは濾過面積中央部にとかく集中する血流をフィルター端部に拡散する役割を持つことから、濾過面の中央部を40〜80%覆い且つ血液流入口と血液流出口を上下と見たとき、濾過面に対し、左右の方向に縮小されるように配置することが好ましい。これが40%未満であると血流を拡散することが困難であり、80%を越えると濾過速度を低下させることから好ましくない。尚、濾過面積とはハウジング内に拡がったフィルター層の面積のことを言う。
【0019】
本発明において、拡散シートの上下に中間体を配置することで繊維状物質と拡散シートの間に空間を形成し、繊維状物質の拡散シート表面への密着を防ぐ作用を得る。
【0020】
本発明において、布帛からなる中間体はポリエステル・ポリプロピレン・ポリエチレン・ポリテトラフルオロエチレン等の疎水性繊維を用いることが好ましい。中間体は血流を妨げないものであればよく、血液成分の通過可能な孔径をもつ織布、メッシュ、スポンジ等を使用することができる。中間体の厚さは200〜1500μの範囲であることが好ましい。200μ未満では繊維状物質と拡散シートの間に空間を形成することが困難になり、1500μを超えると布帛に滞留する血液量が増すことから好ましくない。
【0021】
【効果】
従来法では血液流れ方向を一定にして凝集物を段階的に捕捉除去するものであるため血液流れ方向が拡散されず目詰まりする箇所が発生するという欠点があるのに対し、本発明は拡散シートおよび中間体を適切な大きさで繊維状物質の間に配置することにより、血液流入口から流入してきた血液は、拡散シートで拡散されながら、血液中の比較的大きな凝集物をプレフィルターで除去したあと、拡散シートの両サイドから残りの白血球およびそれと同程度の凝集物が移動してメインフィルターで除去されるため、フィルター全面が有効に利用され、目詰まりがおこりにくく血流量の損失も最低限におさえ、なおかつ血液中の白血球および凝集物の除去率は高いものである。
【0022】
【実施例】
本発明の一実施例を図面に基づき説明する。
図1は本発明に係る白血球除去フィルターの一例を示した断面図である。図2は図1のA−A断面図である。図3は図1のB−B断面図である。
尚、以下の実施例及び比較例で、評価項目となる白血球除去率・赤血球回収率は次式により算定した。
白血球除去率={1−(瀘過後白血球数)/(瀘過前白血球数)}×100
赤血球回収率=(瀘過後Ht値)/(瀘過前Ht値)×100
【0023】
図1および図3において繊維状物質を充填するためのハウジング1として濾過面積45平方センチ、容量40ccのポリカーボネート製の偏平な容器を用意した。
繊維状物質のプレフィルター6としては、平均繊維径10μm、充填量1.3g、嵩密度0.14g/立方センチのポリエステル不織布を、メインフィルター7としては、繊維径1.6μm、充填量2.4g、嵩密度0.12g/立方センチのポリエステル不織布を使用した。
【0024】
拡散シート4として厚さ500μのポリエチレンフィルムを、中間体5として縦密度10本/cm、横密度8本/cmの平織でできた厚さ800μのポリエステルメッシュを使用した。
【0025】
〔実施例〕前記プレフィルター6、メインフィルター7、拡散シート4および中間体5をハウジング1の血液流入口2から血液流出口3に向かって6−5−4−5−7の順に配置したものを用いて実験を行った。この時、拡散シート4および中間体5は図2に示すように濾過面積の中央部を70%覆うように配置した。
採血後3日以内の全血400由来の濃厚赤血球1単位をノンプライミングでハウジング1内に充填し、ヘツド差1mで濾過した。
濾過前後の白血球数及びHt値を測定し、白血球除去率及び赤血球回収率を上式より算定した。また、血液充填直後から血液バッグが空になるまでの時間を濾過時間として測定した。結果を表1に示す。
【0026】
【表1】

Figure 0003601037
【0027】
〔比較例1〕拡散シート4および中間体5を使用しないことの他は実施例と同じ構成で、プレフィルター6およびメインフィルター7をハウジング1の血液流入口2から血液流出口3に向かって6−7の順に配置した2層構造のフィルターを用いて実験した。
採血後3日以内の全血400由来の濃厚赤血球1単位をノンプライミングでハウジング1内に充填し、ヘツド差1mで濾過し、実施例と同様にして濾過時間と白血球除去率、赤血球除去率を測定および算出した。結果を表2に示す。
【0028】
【表2】
Figure 0003601037
【0029】
〔比較例2〕実施例と同じ拡散シート4と中間体5を用い、図2における拡散シート4の配置面積を30%とした。プレフィルター6、メインフィルター7、拡散シート4および中間体5をハウジング1の血液流入口2から血液流出口3に向かって6−5−4−5−7の順に配置したものを用いて実験した。
採血後3日以内の全血400由来の濃厚赤血球1単位をノンプライミングでハウジング1内に充填し、ヘツド差1mで濾過し、実施例と同様にして濾過時間と白血球除去率、赤血球除去率を測定および算出した。結果を表3に示す。
【0030】
【表3】
Figure 0003601037
【0031】
〔比較例3〕実施例と同じ拡散シート4と中間体5を用い、図2における拡散シート4の配置面積を85%とした。プレフィルター6、メインフィルター7、拡散シート4および中間体5をハウジング1の血液流入口2から血液流出口3向かって6−5−4−5−7の順に配置したものを用いて実験した。
採血後3日以内の全血400由来の濃厚赤血球1単位をノンプライミングでハウジング1内に充填し、ヘツド差1mで濾過し、実施例と同様にして濾過時間と白血球除去率、赤血球除去率を測定および算出した。結果を表4に示す。
【0032】
【表4】
Figure 0003601037
【0033】
実施例1と比較例1の各表に記した結果より、拡散シート4および中間体5を用いることで赤血球回収率は上がり濾過時間も短縮されたことがわかる
また、実施例1と比較例2、3の各表に記した結果より拡散シート4の面積が40%以下になると赤血球回収率はさがり、80%以上になると濾過時間が長くなることから、拡散シートの濾過面積に対して占める割合が赤血球回収率および濾過時間に影響与えていることがわかる。
以上から本発明の白血球除去フィルターが最も短い濾過時間で且つ白血球除去率、赤血球回収率の優れた結果を得ていることがわかる。
【図面の簡単な説明】
【図1】本発明に係る白血球除去フィルターの一例を示した断面図である。
【図2】図1のA−A線左側断面図である。
【図】図1のB−B線断面図である。
【符号の説明】
1 ハウジング
2 血液流入口
3 血液流出口
4 拡散シート
5 中間体
6 プレフィルター
7 メインフィルター[0001]
[Industrial application fields]
The present invention relates to a filter for removing leukocytes in blood and body fluids.
[0002]
[Prior art]
In the treatment of patients with frequent blood transfusions, it is widely known to improve the symptoms by transfusion of a leukocyte-removed blood product in order to prevent non-hemolytic fever reactions that exhibit symptoms such as fever, chills, and bruising.
[0003]
Normally, 10 9 levels of white blood cells are present in 400 cc of blood, and a patient who has been transfused with the blood produces an anti-HLA antibody and exhibits a non-hemolytic fever reaction. The removal of 99.9% of the leukocytes in the blood, white blood cell count dropped to 106 levels in the amount of the unit, a non-hemolytic exothermic reaction is prevented.
[0004]
In addition, as side effects after blood transfusion are clarified to be due to allogeneic immune reactions caused by leukocytes in blood products, it is desired to remove 99.9% or more of leukocytes in blood in order to prevent induction of allogeneic immunity. Has been.
[0005]
There are two methods for removing leukocytes: a method using centrifugation utilizing the difference in specific gravity of blood components and a method using a leukocyte removal filter. Since a high leukocyte removal rate can be obtained with a simple operation, the use of a leukocyte removal filter is not recommended. It is popular.
[0006]
The leukocyte removal filter is a non-woven fabric or porous body made of hydrophobic fine fibers such as polyester filled in a housing, and leukocytes are captured and adsorbed on the fiber surface to be removed.
[0007]
In order to remove leukocytes at a high rate, it is preferable to increase the fiber surface area in the fiber assembly. If the volume of the nonwoven fabric is the same, the nonwoven fabric with a smaller fiber diameter in the nonwoven fabric has a larger fiber surface area, In a non-woven fabric having the same fiber diameter, the fiber surface area increases as the bulk density increases and the fiber spacing decreases.
[0008]
Blood products contain blood cell components such as red blood cells, white blood cells, and platelets, plasma, and aggregates. In order to reduce the blockage of ultrafine fiber nonwoven fabrics by aggregates, first, aggregates with large diameters are pre-filtered. A filter having a two-layer structure in which the white blood cells are removed by a main filter layer is proposed. This is intended to reduce the clogging of the main filter by placing a fiber aggregate with a large fiber diameter in the upper layer of a fiber aggregate with a small fiber diameter. Is not sufficient for removing blood, and blood having a high hematocrit (Ht) value has a drawback that the filtration time becomes long.
[0009]
Further, it has been proposed that the main filter layer can be blocked by reinforcing the prefilter layer to have a 3-4 layer structure (Japanese Patent Laid-Open No. 1-236064). This limits the fiber diameter and fiber spacing range of each layer and is captured from a large aggregate of diameters, and the frequency of blocking the main filter layer is reduced compared to a two-layer structure. However, since blood flowing from a certain direction passes through the same place on the filter surface, it gradually clogged from the first layer as a lot of aggregates were removed, and finally the flow rate of the entire layer was reduced.
Therefore, the present inventor has studied a method that does not decrease the flow rate of the entire layer even if a clogged portion occurs in the first layer. As a result, the clogging is achieved by arranging a support between the first layer and the second layer. The invention of Japanese Patent Application No. 5-243668, which has a small flow rate and a low flow rate reduction, has been achieved. However, the support provided between the first layer and the second layer forms a space between the first layer and the second layer to improve the flow, but the flow is not diffused because the blood flow direction is constant. As a countermeasure against filter clogging, it was never enough.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to improve the above problems and to provide a leukocyte removal filter that efficiently removes leukocytes in blood and has a good erythrocyte recovery rate and filtration time.
[0011]
[Means and Actions for Solving the Problems]
The present invention relates to a leukocyte removal filter in which a fibrous substance is filled in a housing having a blood inlet and a blood outlet, the diffusion sheet separating the inside of the housing into a blood inflow side and a blood outflow side, and an intermediate fiber. The gist of the present invention is a leukocyte removal filter that is disposed between the layers of particulate matter, and the ratio of the diffusion sheet and intermediate to the filtration area is 40 to 80% of the central portion of the filtration surface.
[0012]
In the present invention, the fibrous substance is an aggregate of fibers holding a large number of shared spaces in which the fibers are intertwined with each other, and examples thereof include porous bodies, nonwoven fabrics, woven fabrics, and meshes.
[0013]
It is preferable to use hydrophobic fibers such as polyester, polypropylene, polyethylene, and polytetrafluoroethylene as the fibrous material.
[0014]
The fiber diameter of the fibrous material is preferably in the range of 1 to 40 μm. When the fiber diameter is less than 1 μm, the fiber spacing per unit area of the fibrous material is reduced, and thus the filtration resistance is increased, which is not preferable. On the other hand, when the fiber diameter exceeds 40 μm, the fiber volume increases, and therefore the amount of blood adsorbed on the fibrous substance increases, which is not preferable.
[0015]
The fibrous material preferably has a prefilter layer for removing aggregates larger than leukocytes and a main filter layer for removing leukocytes. A fibrous material having a fiber diameter of 10 to 40 μm is used for the prefilter layer. If the fiber diameter exceeds 40 μm, the blood aggregate is not removed, and if the fiber diameter is less than 10, the blood aggregate is clogged, which is not preferable. A fibrous material having a fiber diameter of less than 10 μm is used for the main filter layer. This is because leukocytes are not removed unless the fiber diameter is less than 10 μm. In general, the removal rate of leukocytes increases as the fiber diameter decreases. Therefore, it is preferable to arrange the prefilter layer on the blood inlet side and the main filter layer on the blood outlet side.
[0016]
In the present invention, a diffusion sheet is sandwiched between the fibrous prefilter and the main filter layer. The diffusion sheet separates the inside of the housing into a blood inflow side and a blood outflow side, and the filter layer collects a target substance such as blood aggregate and leukocytes with high accuracy in each layer.
[0017]
In the present invention, the diffusion sheet is a hydrophobic sheet such as polyester, polypropylene, polyethylene, and polytetrafluoroethylene. The characteristic of the diffusion sheet should just be what does not allow a liquid to pass through. The thickness of the diffusion sheet is preferably in the range of 100 to 1000 μm.
[0018]
Since the diffusion sheet has a role of diffusing blood flow concentrated in the central portion of the filtration area to the filter end portion, the central portion of the filtration surface is covered by 40 to 80%, and the blood inlet and the blood outlet are viewed from above and below. In some cases, it is preferable to arrange the filter so as to be reduced in the left-right direction with respect to the filtration surface. If this is less than 40%, it is difficult to diffuse the blood flow, and if it exceeds 80%, the filtration rate is lowered, which is not preferable. The filtration area refers to the area of the filter layer that extends into the housing.
[0019]
In the present invention, by arranging intermediates above and below the diffusion sheet, a space is formed between the fibrous material and the diffusion sheet, and the effect of preventing the adhesion of the fibrous material to the surface of the diffusion sheet is obtained.
[0020]
In the present invention, it is preferable to use hydrophobic fibers such as polyester, polypropylene, polyethylene, and polytetrafluoroethylene as the intermediate made of the fabric. The intermediate is not particularly limited as long as it does not impede blood flow, and a woven fabric, mesh, sponge, or the like having a pore diameter through which blood components can pass can be used. The thickness of the intermediate is preferably in the range of 200 to 1500 μm. If it is less than 200 μm, it is difficult to form a space between the fibrous substance and the diffusion sheet, and if it exceeds 1500 μm, the amount of blood staying on the fabric increases, which is not preferable.
[0021]
【effect】
In the conventional method, since the blood flow direction is constant and the aggregates are captured and removed step by step, the blood flow direction is not diffused and there is a defect that clogging occurs. And by placing the intermediate body between the fibrous material with the appropriate size, the blood flowing in from the blood inlet is diffused by the diffusion sheet, and the relatively large aggregates in the blood are removed by the prefilter. After that, the remaining leukocytes and the same amount of aggregates move from both sides of the diffusion sheet and are removed by the main filter, so the entire filter surface is used effectively, clogging is less likely to occur, and blood flow loss is minimal. To the limit, the removal rate of leukocytes and aggregates in the blood is high.
[0022]
【Example】
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a leukocyte removal filter according to the present invention. 2 is a cross-sectional view taken along the line AA in FIG. 3 is a cross-sectional view taken along the line BB of FIG.
In the following examples and comparative examples, the leukocyte removal rate and erythrocyte recovery rate, which are evaluation items, were calculated by the following equations.
Leukocyte removal rate = {1− (number of leukocytes after filtration) / (number of leukocytes before filtration)} × 100
Red blood cell recovery rate = (Ht value after filtration) / (Ht value before filtration) × 100
[0023]
1 and 3, a flat container made of polycarbonate having a filtration area of 45 square centimeters and a capacity of 40 cc was prepared as the housing 1 for filling the fibrous material.
As the prefilter 6 of the fibrous substance, a polyester nonwoven fabric having an average fiber diameter of 10 μm, a filling amount of 1.3 g and a bulk density of 0.14 g / cubic centimeter is used, and the main filter 7 has a fiber diameter of 1.6 μm and a filling amount of 2. A polyester nonwoven fabric having 4 g and a bulk density of 0.12 g / cubic centimeter was used.
[0024]
A polyethylene film having a thickness of 500 μm was used as the diffusion sheet 4 and a polyester mesh having a thickness of 800 μm made of a plain weave having a longitudinal density of 10 / cm and a lateral density of 8 / cm was used as the intermediate 5.
[0025]
[Example] The prefilter 6, the main filter 7, the diffusion sheet 4 and the intermediate body 5 are arranged in the order of 6-5-4-5-7 from the blood inlet 2 to the blood outlet 3 of the housing 1. The experiment was conducted using. At this time, the diffusion sheet 4 and the intermediate body 5 were arranged so as to cover 70% of the central portion of the filtration area as shown in FIG.
One unit of concentrated red blood cells derived from whole blood 400 within 3 days after blood collection was filled into the housing 1 in a non-priming manner and filtered with a head difference of 1 m.
The leukocyte count and Ht value before and after filtration were measured, and the leukocyte removal rate and erythrocyte recovery rate were calculated from the above equations. Further, the time from immediately after filling the blood until the blood bag was emptied was measured as the filtration time. The results are shown in Table 1.
[0026]
[Table 1]
Figure 0003601037
[0027]
[Comparative Example 1] The same configuration as in the example except that the diffusion sheet 4 and the intermediate body 5 are not used, and the prefilter 6 and the main filter 7 are moved from the blood inlet 2 of the housing 1 toward the blood outlet 3. Experiments were conducted using a two-layer filter arranged in the order of -7.
One unit of concentrated red blood cells derived from whole blood 400 within 3 days after blood collection is filled into the housing 1 in a non-priming manner and filtered with a head difference of 1 m, and the filtration time, leukocyte removal rate, and red blood cell removal rate are set in the same manner as in the examples. Measured and calculated. The results are shown in Table 2.
[0028]
[Table 2]
Figure 0003601037
[0029]
[Comparative Example 2] The same diffusion sheet 4 and intermediate body 5 as in the example were used, and the arrangement area of the diffusion sheet 4 in FIG. The experiment was performed using the prefilter 6, the main filter 7, the diffusion sheet 4, and the intermediate body 5 arranged in the order of 6-5-4-5-7 from the blood inlet 2 to the blood outlet 3 of the housing 1. .
One unit of concentrated red blood cells derived from whole blood 400 within 3 days after blood collection is filled into the housing 1 in a non-priming manner and filtered with a head difference of 1 m, and the filtration time, leukocyte removal rate, and red blood cell removal rate are set in the same manner as in the examples. Measured and calculated. The results are shown in Table 3.
[0030]
[Table 3]
Figure 0003601037
[0031]
[Comparative Example 3] Using the same diffusion sheet 4 and intermediate body 5 as in the example, the arrangement area of the diffusion sheet 4 in FIG. The experiment was performed using the prefilter 6, the main filter 7, the diffusion sheet 4, and the intermediate body 5 arranged in the order of 6-5-4-5-7 from the blood inlet 2 to the blood outlet 3 of the housing 1.
One unit of concentrated red blood cells derived from whole blood 400 within 3 days after blood collection is filled into the housing 1 in a non-priming manner and filtered with a head difference of 1 m, and the filtration time, leukocyte removal rate, and red blood cell removal rate are set in the same manner as in the examples. Measured and calculated. The results are shown in Table 4.
[0032]
[Table 4]
Figure 0003601037
[0033]
From the results described in the tables of Example 1 and Comparative Example 1, it can be seen that the use of the diffusion sheet 4 and the intermediate 5 increased the red blood cell recovery rate and shortened the filtration time. In addition, Example 1 and Comparative Example 2 From the results shown in Tables 3 and 3, the erythrocyte recovery rate decreases when the area of the diffusion sheet 4 is 40% or less, and the filtration time becomes longer when the area is 80% or more. Can be seen to affect red blood cell recovery and filtration time.
From the above, it can be seen that the leukocyte removal filter of the present invention has an excellent result of the leukocyte removal rate and erythrocyte collection rate in the shortest filtration time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a leukocyte removal filter according to the present invention.
2 is a left side cross-sectional view taken along line AA in FIG.
3 is a cross-sectional view taken along line BB in FIG.
[Explanation of symbols]
1 Housing 2 Blood Inlet 3 Blood Outlet 4 Diffusion Sheet 5 Intermediate 6 Prefilter 7 Main Filter

Claims (2)

血液流入口と血液流出口を有するハウジング内に繊維状物質を充填した白血球除去フィルターであって、該ハウジング内を血液流入側と血液流出側とに隔てる液体を通過させない拡散シート及び布帛からなる中間体を繊維状物質層間に配置させたことを特徴とする白血球除去フィルター。A leukocyte removal filter in which a fibrous substance is filled in a housing having a blood inlet and a blood outlet, and is an intermediate formed of a diffusion sheet and a fabric that does not allow liquid to pass through the housing to separate the blood inflow side and the blood outflow side. A leukocyte removal filter characterized in that the body is disposed between fibrous material layers. 血液流入側と血液流出側とに隔てる液体を通過させない拡散シートおよび中間体の濾過面積に占める割合が濾過面積の40〜80%であり、且つ血液流入口と血液流出口を上下と見たとき、濾過面に対し、左右の方向に縮小されるように配置することを特徴とする請求項1記載の白血球除去フィルター。 And 40 to 80% of the proportion filtration area occupied in filtration area of the diffusion sheets and intermediates do not pass liquid separating in the blood inlet side and a blood outlet side, and when viewed blood inlet and a blood outlet port and the vertical The leukocyte removal filter according to claim 1, wherein the leukocyte removal filter is disposed so as to be reduced in the left-right direction with respect to the filtration surface .
JP31784094A 1994-12-21 1994-12-21 Leukocyte removal filter Expired - Fee Related JP3601037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784094A JP3601037B2 (en) 1994-12-21 1994-12-21 Leukocyte removal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31784094A JP3601037B2 (en) 1994-12-21 1994-12-21 Leukocyte removal filter

Publications (2)

Publication Number Publication Date
JPH08175999A JPH08175999A (en) 1996-07-09
JP3601037B2 true JP3601037B2 (en) 2004-12-15

Family

ID=18092647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784094A Expired - Fee Related JP3601037B2 (en) 1994-12-21 1994-12-21 Leukocyte removal filter

Country Status (1)

Country Link
JP (1) JP3601037B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776245B1 (en) 2014-11-20 2017-09-11 울산과학기술원 Particle filtration device and method of particle filtration

Also Published As

Publication number Publication date
JPH08175999A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP5048340B2 (en) Leukocyte removal method
US8900462B2 (en) Method for removing leukocyte and filter for use therein
EP1582228B1 (en) Method of removing leukocytes, leukocyte-removing filter and utilization thereof
US5298165A (en) Method for removing leukocytes and a filter system for removing the same
JP2523938B2 (en) Platelet purification filter
US7597806B2 (en) Body fluid treating filter device
JPH07124255A (en) Leukocyte separation filter and leukocyte remover
JPS605309B2 (en) blood filtration media
JP4524400B2 (en) Filter for reducing white blood cells from blood products
JP5164241B2 (en) Blood treatment filter device
JP3601037B2 (en) Leukocyte removal filter
JP2003180822A (en) Blood component separator
JP2538751B2 (en) Leukocyte capture and separation device
JP2918595B2 (en) White blood cell separator
JP2011255043A (en) Blood processing filter
JP3242993B2 (en) Liquid filter
JPH0720872B2 (en) Leukocyte removal filter and leukocyte removal method
JPH0782160A (en) Leukocyte-removing filter
JP5473730B2 (en) Biological fluid filtration method
JP3758012B2 (en) Blood component collection method and collection device
JPH0769904A (en) Leukocyte-removing filter
JPH0767958A (en) Removing filter for aggregate in blood and blood processing filter device
JP2003290337A (en) Blood component separation apparatus
JP2006043297A (en) Blood treatment filter, and blood treatment filter system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees