JP3600694B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3600694B2
JP3600694B2 JP18026996A JP18026996A JP3600694B2 JP 3600694 B2 JP3600694 B2 JP 3600694B2 JP 18026996 A JP18026996 A JP 18026996A JP 18026996 A JP18026996 A JP 18026996A JP 3600694 B2 JP3600694 B2 JP 3600694B2
Authority
JP
Japan
Prior art keywords
roller
oil
groove
rotary compressor
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18026996A
Other languages
Japanese (ja)
Other versions
JPH1026091A (en
Inventor
光博 生駒
照丸 原田
文俊 西脇
秀信 新宅
寛 長谷川
悦郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18026996A priority Critical patent/JP3600694B2/en
Priority to SG1997002415A priority patent/SG53012A1/en
Priority to CN97114554A priority patent/CN1105830C/en
Priority to US08/891,155 priority patent/US6132195A/en
Publication of JPH1026091A publication Critical patent/JPH1026091A/en
Priority to US09/664,311 priority patent/US6409488B1/en
Application granted granted Critical
Publication of JP3600694B2 publication Critical patent/JP3600694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は冷凍冷蔵庫や空調機等に用いられるロータリ圧縮機に関する。
【0002】
【従来の技術】
ロータリ圧縮機はそのコンパクト性や構造が簡単なことから、冷凍冷蔵庫や空調機などに多く使用されている。圧縮機の主要構成部品であるベーンやローラなどの圧縮機構部は、例えば、川平著、密閉形冷凍機(平成5年)第14頁、図6.1に記載されている。
【0003】
以下に、図6を用いて、従来のロータリ圧縮機の構成及び動作について説明する。密閉容器内にある圧縮機構部は、偏心部9を有するクランク軸1、クランク軸1を支える軸受、シリンダ2、ベーン3、及び前記シリンダ2内で偏心回転するローラ4を有し、先端が円筒状のベーン3はシリンダ2のベーン溝5内を往復動し、かつその先端部は、スプリング6によるばね力及びシリンダ2の内外の圧力差による力によって、ローラ4の外周面に押し付けられて、ローラ4の外周部と接触摺動し、シリンダ2内を吸入室7と吐出室8に分割している。Oはシリンダ2とクランク軸1の中心であり、クランク軸1は中心Oからeだけ偏心したPを中心とする偏心部9を有する。クランク軸1はOを中心として回転し、それに伴いクランク軸と一体となっている偏心部9は偏心回転をする。偏心部9にはローラ4が嵌合されており、電動機によりクランク軸1が回転してローラ4がシリンダ2内を公転することにより、冷媒ガスを吸込口10から吸い込み、吐出口11に圧縮しながら送る。吐出口11の冷媒ガスは吐出弁12を通り冷凍サイクル側に送られ、凝縮器、膨張弁、蒸発器を経て、再度圧縮機の吸込口10に戻ってくる。
【0004】
前記構成においては、ローラ4とベーン3先端部との当接部では、おもに吸入冷媒中に含まれるオイルと、ベーン3とシリンダ2に設けられたベーン溝5の隙間、あるいはローラ4の端面部の隙間を圧力差により通過するオイルにより油膜が形成されていた。
【0005】
尚、前記密閉容器、クランク軸1を支える軸受け、及び電動機は図示していない。
【0006】
しかしながら、上記の従来の構成では、ベーン3の先端部は円筒状曲面であり、ローラ4の外周面も円筒面であるので、ベーン3とローラ4の接触状態は等価的には小円筒と大円筒の接触となる。したがって、接触状態は線接触状態で、接触面積が小さくなり、単位面積当たりの荷重すなわち接触応力が大きくなり、ベーン3とローラ4の接触摺動条件は過酷なものとなる。
【0007】
又、ローラ4の自転数もローラ4の内周面と偏心部9との摺動抵抗と、ローラ4の外周面とベーン3の先端との摺動抵抗の差などで決まるものであり、ローラ4の自転数は非常に不安定であり、一般にクランク軸1の回転数を3500rpmで運転した時、ローラの自転数は数十〜数百rpm程度である。このため、ベーン3の先端とローラ4の摺動面は、すべり速度が条件により変わり、不安定なすべり摺動となる。
【0008】
さらに、塩素を含まない代替冷媒、例えばR134aなどを用いた場合、摺動部の油膜が切れた場合に著しく潤滑性が低下する問題があり、特にロータリ圧縮機の場合油膜のできにくいローラ4外周とベーン3先端との間で摩耗が生じやすいという問題があった。
【0009】
この問題点を解決するため、例えば特開平7−259767号公報には、図7に示すようにクランク軸13及びその偏心部14の内部を、給油通路15から偏心部14の外径まで貫通した横孔16と、前記偏心部14外径に前記横孔16と連通して設けた油溝17と、ローラ18の外周に設けた外周溝19と、その外周溝19にローラ内径から貫通する孔20と、前記外周溝19最深部に当該外周溝19と平行に設けた油溝21とを設けたものが開示されている。
【0010】
【発明が解決しようとする課題】
しかしながら、この構成ではローラ18とベーン22の接触は面接触となると共に、ローラ18の自転も規制されるため安定な摺動条件を実現できるが、ローラ18とベーン22の接触部への給油は、ローラ内径から貫通する孔20が給油通路15から偏心部外径に通じるように設けた横孔16とは1回転に1度だけ連通するだけのため、間欠給油となり十分なオイルが供給されず、さらに偏心部14とローラ18の内周との摺動部へ給油されるオイルが減少するなどの欠点を有していた。
【0011】
本発明は、上記従来の課題を考慮し、ベーンとローラの摺動部負荷が低減されると共に、ベーンとローラの摺動部へ十分なオイルが供給されることにより、信頼性が高く長寿命化したロータリ圧縮機を提供することを目的とする。
【0012】
【課題を解決するための手段】
この課題を解決するために本発明は、軸受部と偏心部を有するクランク軸、シリンダ、R形状の先端を有するベーン、及び前記シリンダ内で公転する管状のローラを有する圧縮機構部と、その圧縮機構部を駆動する電動機部とを密閉容器内に備え、前記ローラ外周には前記ベーン先端が当接配置される凹溝部が設けられ、前記ローラの端面には第1の油溝が設けられ、前記ローラにはその第1の油溝と前記ローラの前記凹溝部を連通する油孔が設けられた構成としたものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図1から図5を用いて説明する。
【0014】
(実施の形態1)
図1は本発明の一実施例のロータリ圧縮機の圧縮機構部の断面図であり、図2はその要部斜視図である。図1及び図2において圧縮機構部はクランクピン32を有するクランク軸31、シリンダ33、先端がR形状のベーン34、及びシリンダ33内で公転するローラ35を有し、前記ローラ35の外周には凹溝36が形成され、ベーン34の先端が当接配置されている。さらに、ローラ35の端面には油溝37及び、横溝40が設けられている。給油孔39は、クランク軸31及びクランクピン32の内部を、給油通路38からクランクピン32の外周まで貫通しており、給油通路38からクランクピン32の外周に導かれたオイルは、ローラ35端面とその上下のシリンダ側壁(図示せず)との隙間及び、横溝40により、油溝37に導かれるように構成されている。また、油溝37と前記ローラ35の凹溝36とを連通するよう、縦油孔41及び横油孔42が設けられている。
【0015】
次に、本実施の形態における給油機構の動作について説明する。オイルは給油通路38より給油孔39を介してクランクピン32の摺動部に導かれた後、ローラ35端面とその上下のシリンダ側壁(図示せず)との隙間及び、ローラ35の端面に設けられた横溝40を介して油溝37に導かれ、さらに縦油孔41、横油孔42を介してローラ35の凹溝36にほぼ連続的に導かれる。
【0016】
このように(実施の形態1)では、摺動条件が厳しく摩耗が生じやすいベーンとローラの摺動部に十分なオイルをほぼ連続的に供給することができ、油膜形成も十分で、摺動負荷を低減できると共に、信頼性が高く長寿命化したロータリ圧縮機を提供できるものである。
【0017】
(実施の形態2)
図3は本発明の一実施例のロータリ圧縮機の要部斜視図である。図3において油溝43はローラ35の凹溝36内に、凹溝36とは平行しない方向に沿って設けられている。また、その他の部品構成は図1および図2と同一である。
【0018】
次に、本実施の形態における給油機構の動作について説明する。本実施の形態のように構成されたロータリ圧縮機では、オイルは給油通路38より給油孔39を介してクランクピン32の摺動部に導かれた後、ローラ35端面とその上下のシリンダ側壁(図示せず)との隙間及び、ローラ35の端面に設けられた横溝40を介して油溝37に導かれ、さらに縦油孔41、横油孔42を介してローラ35の凹溝36内に設けた油溝43にほぼ連続的に導かれる。
【0019】
このように(実施の形態2)では、ベーン34とローラ35の摺動部のほぼ全域に渡って十分なオイルを供給することができ、油膜形成も十分で、摺動負荷を低減できると共に、信頼性が高く長寿命化したロータリ圧縮機を提供できるものである。
【0020】
(実施の形態3)
図4は本発明の一実施例のロータリ圧縮機の要部斜視図である。図4においてベーン34の先端R形状の頂部には平坦面44が形成されている。また、その他の部品構成は図1および図2と同一である。
【0021】
次に、本実施の形態における給油機構の動作について説明する。本実施の形態のように構成されたロータリ圧縮機では、オイルは給油通路38より給油孔39を介してクランクピン32の摺動部に導かれた後、ローラ35端面とその上下のシリンダ側壁(図示せず)との隙間及び、ローラ35の端面に設けられた横溝40を介して油溝37に導かれ、さらに縦油孔41、横油孔42を介してローラ35の凹溝36とベーン34の先端R形状の頂部に設けられた平坦面44の隙間にほぼ連続的に導かれる。
【0022】
このように(実施の形態3)では、ベーン34とローラ35の摺動部のほぼ全域に渡って十分なオイルを供給することができ、油膜形成も十分で、摺動負荷を低減できると共に、信頼性が高く長寿命化したロータリ圧縮機を提供できるものである。
【0023】
(実施の形態4)
図5は本発明の一実施例のロータリ圧縮機の要部斜視図である。図5においてベーン34の先端R形状部には油溝45が設けられている。また、その他の部品構成は図1および図2と同一である。
【0024】
次に、本実施の形態における給油機構の動作について説明する。本実施の形態のように構成されたロータリ圧縮機では、オイルは給油通路38より給油孔39を介してクランクピン32の摺動部に導かれた後、ローラ35端面とその上下のシリンダ側壁(図示せず)との隙間及び、ローラ35の端面に設けられた横溝40を介して油溝37に導かれ、さらに縦油孔41、横油孔42を介してローラ35の凹溝36とベーン34の先端R形状部に設けられた油溝45にほぼ連続的に導かれる。
【0025】
このように(実施の形態4)では、ベーン34とローラ35の摺動部のほぼ全域に渡って十分なオイルを供給することができ、油膜形成も十分で、摺動負荷を低減できると共に、信頼性が高く長寿命化したロータリ圧縮機を提供できるものである。
【0026】
尚、油溝37はローラ35の片側の端面に限らず、上下両側の端面に設けてもよい。
【0027】
又、横溝40は一つに限らず、複数個設けてもよい。
【0028】
又、縦油孔41及び横油孔42は一つに限らず、複数個設けてもよい。
【0029】
又、塩素を含まない冷媒、例えばHFC134aを用いて運転してもよい。
【0030】
又、油溝37は、本発明の第1の油溝、油溝43は本発明の第2の油溝、さらに油溝45は本発明の第3の油溝の一例である。
【0031】
又、クランクピン32は本発明の偏心部の一例である。
【0032】
【発明の効果】
以上のように本発明によれば、信頼性の高い長寿命化したロータリ圧縮機を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1、実施の形態2、実施の形態3、実施の形態4によるロータリ圧縮機の圧縮機構部の断面図
【図2】本発明の実施の形態1、実施の形態2、実施の形態3、実施の形態4によるロータリ圧縮機の要部斜視図
【図3】本発明の実施の形態2によるロータリ圧縮機の要部斜視図
【図4】本発明の実施の形態3によるロータリ圧縮機の要部斜視図
【図5】本発明の実施の形態4によるロータリ圧縮機の要部斜視図
【図6】従来のロータリ圧縮機の圧縮機構部の断面図
【図7】従来のロータリ圧縮機の圧縮機構部の断面図
【符号の説明】
31 クランク軸
32 クランクピン
33 シリンダ
34 ベーン
35 ローラ
36 凹溝
37 第1の油溝
41 縦油孔
42 横油孔
40 横溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotary compressor used for a refrigerator or an air conditioner.
[0002]
[Prior art]
Rotary compressors are often used in refrigerators and refrigerators because of their compactness and simple structure. The compression mechanism such as vanes and rollers, which are the main components of the compressor, are described in, for example, Kawahira, Hermetic Refrigerator (1993), page 14, FIG. 6.1.
[0003]
Hereinafter, the configuration and operation of the conventional rotary compressor will be described with reference to FIG. The compression mechanism in the closed container includes a crankshaft 1 having an eccentric portion 9, a bearing supporting the crankshaft 1, a cylinder 2, a vane 3, and a roller 4 that rotates eccentrically in the cylinder 2, and has a cylindrical end. The vane 3 reciprocates in the vane groove 5 of the cylinder 2, and its tip is pressed against the outer peripheral surface of the roller 4 by the spring force of the spring 6 and the force due to the pressure difference between the inside and outside of the cylinder 2. It slides in contact with the outer peripheral portion of the roller 4 and divides the inside of the cylinder 2 into a suction chamber 7 and a discharge chamber 8. O is the center of the cylinder 2 and the crankshaft 1, and the crankshaft 1 has an eccentric portion 9 centered on P eccentric from the center O by e. The crankshaft 1 rotates about O, and the eccentric part 9 integrated with the crankshaft rotates eccentrically. A roller 4 is fitted to the eccentric portion 9, and the crankshaft 1 is rotated by an electric motor so that the roller 4 revolves in the cylinder 2, thereby sucking the refrigerant gas from the suction port 10 and compressing the refrigerant gas into the discharge port 11. Send while. The refrigerant gas at the discharge port 11 is sent to the refrigeration cycle side through the discharge valve 12, and returns to the suction port 10 of the compressor again through the condenser, the expansion valve, and the evaporator.
[0004]
In the above configuration, at the contact portion between the roller 4 and the tip of the vane 3, the oil mainly contained in the suction refrigerant, the gap between the vane 3 and the vane groove 5 provided in the cylinder 2, or the end face of the roller 4 Oil film was formed by the oil passing through the gap due to the pressure difference.
[0005]
In addition, the said sealed container, the bearing which supports the crankshaft 1, and the electric motor are not illustrated.
[0006]
However, in the above-described conventional configuration, the tip of the vane 3 is a cylindrical curved surface, and the outer peripheral surface of the roller 4 is also a cylindrical surface, so that the contact state between the vane 3 and the roller 4 is equivalently equivalent to a small cylinder and a large cylinder. It comes into contact with the cylinder. Therefore, the contact state is a line contact state, the contact area is small, the load per unit area, that is, the contact stress is large, and the contact sliding condition between the vane 3 and the roller 4 is severe.
[0007]
The number of rotations of the roller 4 is also determined by the difference between the sliding resistance between the inner peripheral surface of the roller 4 and the eccentric portion 9 and the sliding resistance between the outer peripheral surface of the roller 4 and the tip of the vane 3. The number of rotations of the roller 4 is very unstable. Generally, when the rotation speed of the crankshaft 1 is operated at 3500 rpm, the number of rotations of the roller is about several tens to several hundreds rpm. For this reason, the sliding speed of the leading end of the vane 3 and the sliding surface of the roller 4 varies depending on the conditions, resulting in unstable sliding.
[0008]
Further, when an alternative refrigerant containing no chlorine, for example, R134a, is used, there is a problem that the lubricating property is remarkably reduced when the oil film of the sliding portion is broken. There is a problem that abrasion tends to occur between the vane 3 and the tip of the vane 3.
[0009]
In order to solve this problem, for example, Japanese Unexamined Patent Publication No. 7-259767 discloses that the inside of the crankshaft 13 and its eccentric portion 14 is penetrated from the oil supply passage 15 to the outer diameter of the eccentric portion 14 as shown in FIG. A lateral hole 16, an oil groove 17 provided on the outer diameter of the eccentric portion 14 in communication with the lateral hole 16, an outer peripheral groove 19 provided on the outer periphery of the roller 18, and a hole penetrating the outer peripheral groove 19 from the roller inner diameter. 20 and an oil groove 21 provided at the deepest portion of the outer peripheral groove 19 in parallel with the outer peripheral groove 19 are disclosed.
[0010]
[Problems to be solved by the invention]
However, in this configuration, the contact between the roller 18 and the vane 22 is a surface contact, and the rotation of the roller 18 is also regulated, so that stable sliding conditions can be realized. Since the hole 20 penetrating from the inner diameter of the roller communicates with the lateral hole 16 provided so as to communicate from the oil supply passage 15 to the outer diameter of the eccentric portion only once per rotation, the oil is intermittently supplied and sufficient oil is not supplied. Further, there is a disadvantage that the amount of oil supplied to the sliding portion between the eccentric portion 14 and the inner periphery of the roller 18 decreases.
[0011]
In consideration of the above conventional problems, the present invention reduces the load on the sliding portion between the vane and the roller, and supplies a sufficient amount of oil to the sliding portion between the vane and the roller, thereby achieving high reliability and long life. It is an object of the present invention to provide a simplified rotary compressor.
[0012]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a compression mechanism including a crankshaft having a bearing portion and an eccentric portion, a cylinder, a vane having an R-shaped tip, and a tubular roller revolving in the cylinder. A motor section for driving a mechanism section is provided in a closed container, a concave groove section is provided on the outer periphery of the roller, where the vane tip is disposed in contact with the roller section, and a first oil groove is provided on an end face of the roller, The roller is provided with an oil hole communicating the first oil groove and the concave groove portion of the roller.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.
[0014]
(Embodiment 1)
FIG. 1 is a sectional view of a compression mechanism section of a rotary compressor according to one embodiment of the present invention, and FIG. 2 is a perspective view of a main part thereof. 1 and 2, the compression mechanism includes a crankshaft 31 having a crankpin 32, a cylinder 33, a vane 34 having an R-shaped tip, and a roller 35 revolving in the cylinder 33. A concave groove 36 is formed, and the tip of the vane 34 is disposed in contact with the groove. Further, an oil groove 37 and a lateral groove 40 are provided on an end surface of the roller 35. The oil supply hole 39 penetrates through the inside of the crankshaft 31 and the crankpin 32 from the oil supply passage 38 to the outer periphery of the crankpin 32, and the oil guided from the oil supply passage 38 to the outer periphery of the crankpin 32 is applied to the end face of the roller 35. It is configured to be guided to the oil groove 37 by a gap between the upper and lower cylinder side walls (not shown) and the lateral groove 40. Further, a vertical oil hole 41 and a horizontal oil hole 42 are provided so as to communicate the oil groove 37 with the concave groove 36 of the roller 35.
[0015]
Next, the operation of the refueling mechanism in the present embodiment will be described. After the oil is guided from the oil supply passage 38 to the sliding portion of the crank pin 32 through the oil supply hole 39, the oil is provided in the gap between the end surface of the roller 35 and the upper and lower cylinder side walls (not shown) and the end surface of the roller 35. The oil is guided to the oil groove 37 via the horizontal groove 40 and further to the concave groove 36 of the roller 35 via the vertical oil hole 41 and the horizontal oil hole 42.
[0016]
As described above, in the first embodiment, a sufficient amount of oil can be supplied almost continuously to the sliding portion of the vane and the roller where the sliding conditions are severe and wear is likely to occur, the oil film is sufficiently formed, and the sliding is performed. An object of the present invention is to provide a rotary compressor that can reduce a load and has a long life and high reliability.
[0017]
(Embodiment 2)
FIG. 3 is a perspective view of a main part of the rotary compressor according to one embodiment of the present invention. In FIG. 3, the oil groove 43 is provided in the groove 36 of the roller 35 along a direction not parallel to the groove 36. Other components are the same as those shown in FIGS.
[0018]
Next, the operation of the refueling mechanism in the present embodiment will be described. In the rotary compressor configured as in the present embodiment, after the oil is guided from the oil supply passage 38 to the sliding portion of the crank pin 32 through the oil supply hole 39, the end face of the roller 35 and the upper and lower cylinder side walls ( (Not shown) and the oil groove 37 through a horizontal groove 40 provided on the end face of the roller 35, and further into a concave groove 36 of the roller 35 through a vertical oil hole 41 and a horizontal oil hole 42. It is guided almost continuously to the provided oil groove 43.
[0019]
As described above, in the second embodiment, a sufficient amount of oil can be supplied to almost the entire sliding portion between the vane 34 and the roller 35, the oil film can be sufficiently formed, and the sliding load can be reduced. It is possible to provide a rotary compressor having high reliability and a long life.
[0020]
(Embodiment 3)
FIG. 4 is a perspective view of a main part of a rotary compressor according to one embodiment of the present invention. In FIG. 4, a flat surface 44 is formed on the top of the tip R of the vane 34. Other components are the same as those shown in FIGS.
[0021]
Next, the operation of the refueling mechanism in the present embodiment will be described. In the rotary compressor configured as in the present embodiment, after the oil is guided from the oil supply passage 38 to the sliding portion of the crank pin 32 through the oil supply hole 39, the end face of the roller 35 and the upper and lower cylinder side walls ( (Not shown), and the oil groove 37 is guided to the oil groove 37 via a horizontal groove 40 provided on the end face of the roller 35, and is further connected to the concave groove 36 of the roller 35 and the vane via a vertical oil hole 41 and a horizontal oil hole 42. It is guided almost continuously to the gap between the flat surfaces 44 provided at the top of the R-shape of the tip 34.
[0022]
As described above, in the third embodiment, it is possible to supply a sufficient amount of oil over substantially the entire sliding portion between the vane 34 and the roller 35, to form an oil film sufficiently, to reduce a sliding load, It is possible to provide a rotary compressor having high reliability and a long life.
[0023]
(Embodiment 4)
FIG. 5 is a perspective view of a main part of a rotary compressor according to one embodiment of the present invention. In FIG. 5, an oil groove 45 is provided in the end R-shaped portion of the vane 34. Other components are the same as those shown in FIGS.
[0024]
Next, the operation of the refueling mechanism in the present embodiment will be described. In the rotary compressor configured as in the present embodiment, after the oil is guided from the oil supply passage 38 to the sliding portion of the crank pin 32 through the oil supply hole 39, the end face of the roller 35 and the upper and lower cylinder side walls ( (Not shown), and the oil groove 37 is guided to the oil groove 37 via a horizontal groove 40 provided on the end face of the roller 35, and is further connected to the concave groove 36 of the roller 35 and the vane via a vertical oil hole 41 and a horizontal oil hole 42. It is guided almost continuously to an oil groove 45 provided in the R-shaped portion of the tip 34.
[0025]
As described above, in the fourth embodiment, a sufficient amount of oil can be supplied over substantially the entire sliding portion between the vane 34 and the roller 35, the oil film can be sufficiently formed, and the sliding load can be reduced. It is possible to provide a rotary compressor having high reliability and a long life.
[0026]
The oil groove 37 is not limited to one end face of the roller 35 but may be provided on both upper and lower end faces.
[0027]
The number of the lateral grooves 40 is not limited to one, and a plurality of lateral grooves may be provided.
[0028]
The number of vertical oil holes 41 and the number of horizontal oil holes 42 are not limited to one, and a plurality of oil holes may be provided.
[0029]
Further, the operation may be performed using a refrigerant containing no chlorine, for example, HFC134a.
[0030]
The oil groove 37 is an example of the first oil groove of the present invention, the oil groove 43 is an example of the second oil groove of the present invention, and the oil groove 45 is an example of the third oil groove of the present invention.
[0031]
The crank pin 32 is an example of the eccentric part of the present invention.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a rotary compressor having a long life and high reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiments 1, 2, 3, and 4 of the present invention. FIG. 2 is Embodiment 1 of the present invention; FIG. 3 is a main part perspective view of a rotary compressor according to Embodiments 2, 3, and 4. FIG. 3 is a main part perspective view of a rotary compressor according to Embodiment 2 of the present invention. FIG. 5 is a perspective view of a main part of a rotary compressor according to a third embodiment. FIG. 5 is a perspective view of a main part of a rotary compressor according to a fourth embodiment of the present invention. 7 is a sectional view of a compression mechanism of a conventional rotary compressor.
31 crankshaft 32 crankpin 33 cylinder 34 vane 35 roller 36 concave groove 37 first oil groove 41 vertical oil hole 42 horizontal oil hole 40 horizontal groove

Claims (10)

軸受部と偏心部を有するクランク軸、シリンダ、R形状の先端を有するベーン、及び前記シリンダ内で公転する管状のローラを有する圧縮機構部と、その圧縮機構部を駆動する電動機部とを密閉容器内に備え、前記ローラ外周には前記ベーン先端が当接配置される凹溝部が設けられ、前記ローラの端面には第1の油溝が設けられ、前記ローラにはその第1の油溝と前記ローラの前記凹溝部を連通する油孔が設けられたことを特徴とするロータリ圧縮機。A hermetically sealed container including a crankshaft having a bearing portion and an eccentric portion, a cylinder, a vane having an R-shaped tip, a compression mechanism portion having a tubular roller revolving in the cylinder, and an electric motor portion driving the compression mechanism portion. Provided therein, a concave groove portion on which the tip of the vane abuts is provided on the outer periphery of the roller, a first oil groove is provided on an end surface of the roller, and the first oil groove is provided on the roller. An oil hole communicating with the concave groove portion of the roller is provided. ローラの前記凹溝部内に第2の油溝を有し、前記油孔は、前記第1の油溝と前記第2の油溝とを連通する油孔であることを特徴とする請求項1記載のロータリ圧縮機。2. The roller having a second oil groove in the concave groove portion of the roller, wherein the oil hole is an oil hole that communicates the first oil groove and the second oil groove. 3. The rotary compressor according to any one of the preceding claims. ベーンの先端のR形状部分に平坦面を有し、前記油孔は、前記第1の油溝と、前記ベーン先端が前記ローラの前記凹溝部に当接配置された場合に構成される、前記ローラの前記凹溝部と前記ベーンの先端のR形状部分の平坦面との隙間とを連通する油孔であることを特徴とする請求項1記載のロータリ圧縮機。The vane tip has a flat surface in an R-shaped portion, and the oil hole is configured when the first oil groove and the vane tip are disposed in contact with the concave groove portion of the roller. 2. The rotary compressor according to claim 1, wherein the rotary compressor is an oil hole that communicates a gap between the concave groove portion of the roller and a flat surface of an R-shaped portion at the tip of the vane. 3. ベーンの先端のR形状部分に第3の油溝を有し、前記油孔は、前記第1の油溝と、前記第3の油溝とを連通する油孔であることを特徴とする請求項1記載のロータリ圧縮機。A third oil groove is provided at an R-shaped portion at the tip of the vane, and the oil hole is an oil hole that communicates the first oil groove and the third oil groove. Item 4. The rotary compressor according to Item 1. 第2の油溝が、前記凹溝部と平行しない方向に沿って設けられた油溝であることを特徴とする請求項2記載のロータリ圧縮機。The rotary compressor according to claim 2, wherein the second oil groove is an oil groove provided along a direction that is not parallel to the concave groove portion. 第1の油溝は前記ローラの上下両側の端面に設置されていることを特徴とする請求項1ないし4記載いずれかのロータリ圧縮機。The rotary compressor according to any one of claims 1 to 4, wherein the first oil groove is provided on both upper and lower end surfaces of the roller. 油孔は複数個であることを特徴とする請求項1ないし4記載いずれかのロータリ圧縮機。5. The rotary compressor according to claim 1, wherein a plurality of oil holes are provided. ローラの端面には前記第1の油溝から前記ローラ内周までの横溝が設けられたことを特徴とする請求項1ないし4記載いずれかのロータリ圧縮機。The rotary compressor according to any one of claims 1 to 4, wherein a lateral groove from the first oil groove to an inner periphery of the roller is provided on an end surface of the roller. 前記横溝は複数個であることを特徴とする請求項記載ロータリ圧縮機。 The rotary compressor according to claim 8 , wherein the lateral groove is plural. 塩素を含まない冷媒を用いて運転することを特徴とする請求項1ないし4記載いずれかのロータリ圧縮機。5. The rotary compressor according to claim 1, wherein the rotary compressor is operated using a refrigerant containing no chlorine.
JP18026996A 1996-07-10 1996-07-10 Rotary compressor Expired - Fee Related JP3600694B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18026996A JP3600694B2 (en) 1996-07-10 1996-07-10 Rotary compressor
SG1997002415A SG53012A1 (en) 1996-07-10 1997-07-09 Rotary compressor
CN97114554A CN1105830C (en) 1996-07-10 1997-07-10 Rotary compressor
US08/891,155 US6132195A (en) 1996-07-10 1997-07-10 Rotary compressor
US09/664,311 US6409488B1 (en) 1996-07-10 2000-09-18 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18026996A JP3600694B2 (en) 1996-07-10 1996-07-10 Rotary compressor

Publications (2)

Publication Number Publication Date
JPH1026091A JPH1026091A (en) 1998-01-27
JP3600694B2 true JP3600694B2 (en) 2004-12-15

Family

ID=16080287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18026996A Expired - Fee Related JP3600694B2 (en) 1996-07-10 1996-07-10 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3600694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611336A1 (en) * 2018-08-17 2020-02-19 LG Electronics Inc. -1- Rotary compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168976A (en) * 2009-01-22 2010-08-05 Panasonic Corp Rotary compressor
JP5510515B2 (en) * 2012-09-06 2014-06-04 パナソニック株式会社 Rotary compressor
CN110319018B (en) * 2019-04-28 2023-11-17 珠海格力节能环保制冷技术研究中心有限公司 Compressor pump body, compressor and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611336A1 (en) * 2018-08-17 2020-02-19 LG Electronics Inc. -1- Rotary compressor
CN110836184A (en) * 2018-08-17 2020-02-25 Lg电子株式会社 Rotary compressor
US11060521B2 (en) * 2018-08-17 2021-07-13 Lg Electronics Inc. Rotary compressor having a rolling piston with coupling groove
CN110836184B (en) * 2018-08-17 2022-03-04 Lg电子株式会社 Rotary compressor

Also Published As

Publication number Publication date
JPH1026091A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP3851971B2 (en) CO2 compressor
CA2080577C (en) Rotary vane compressor with reduced pressure on the inner vane tips
JP3600694B2 (en) Rotary compressor
KR20040092381A (en) Horizontal Rotary Compressor
JPH06346878A (en) Rotary compressor
JPH10148193A (en) Rotary compressor
JP2000097185A (en) Rotary compressor
JP3801332B2 (en) Compressor
JPH0712073A (en) Compressor
EP0444221A1 (en) Vertical rotary compressor
JP2510079Y2 (en) Rolling piston type compressor
JP3100523B2 (en) Scroll compressor
JP3455640B2 (en) Fluid compressor
JPH06307364A (en) Two cylinder rotary compressor
JPH05256283A (en) Rolling piston type compressor
JPH056034B2 (en)
JP2783371B2 (en) Rotary compressor
JPH09137785A (en) Rotary compressor
JP3630769B2 (en) Scroll compressor
JP2000009069A (en) Rotary fluid machine
KR101142767B1 (en) Piston for compressor
JPH08247070A (en) Low pressure type rotary refrigerant compressor
JPH1089255A (en) Hermetic motor-driven compressor
JPH0742684A (en) Compressor
JPH08277792A (en) Low pressure type rotary refrigerant compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees