JP3600539B2 - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition Download PDF

Info

Publication number
JP3600539B2
JP3600539B2 JP2001080527A JP2001080527A JP3600539B2 JP 3600539 B2 JP3600539 B2 JP 3600539B2 JP 2001080527 A JP2001080527 A JP 2001080527A JP 2001080527 A JP2001080527 A JP 2001080527A JP 3600539 B2 JP3600539 B2 JP 3600539B2
Authority
JP
Japan
Prior art keywords
dielectric
dielectric constant
quality factor
sintered
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001080527A
Other languages
Japanese (ja)
Other versions
JP2002274939A (en
Inventor
チャン・ハク・チョイ
ジュン・ファン・ジョン
ビュン・キュ・キム
ミン・ハン・キム
サン・ナム
ファック・ジョー・リー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amotech Co Ltd
Original Assignee
Amotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amotech Co Ltd filed Critical Amotech Co Ltd
Priority to JP2001080527A priority Critical patent/JP3600539B2/en
Publication of JP2002274939A publication Critical patent/JP2002274939A/en
Application granted granted Critical
Publication of JP3600539B2 publication Critical patent/JP3600539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は誘電体セラミックス組成物に係り、より詳しくは誘電率が45以上、品質係数値が43,000以上、そして安定した共振周波数温度係数を有し、衛星や移動通信用電子部品に適用することができる高周波誘電体セラミックス組成物に関する。
【0002】
【従来の技術】
高周波誘電体を移動・衛星通信部品に用いるためには高い品質係数(Q)、安定した共振周波数温度係数(τ)および高い誘電率(ε)を有していなければならない。一般的に高周波誘電体は誘電率が60以上の高誘電率材料、40〜60程の中間誘電率材料、および30以下の低損失材料に分けられる。
【0003】
高誘電率誘電体としてはBaO−Re−TiO(Re=希土類元素)系と(Pb、Ca)ZrO誘電体が代表的な材料である。低損失誘電体にはBa(Zn1/3Ta2/3)OおよびBa(Mg1/3Ta2/3)Oのような誘電体がある。
【0004】
中間誘電率(ε≧45)と、高いQ×f(>43,000)を有する誘電体はまだ開発されておらず、その必要性が依然として要求されている。
【0005】
一方、既知の代表的な中間誘電率を有する誘電体には(Zr、Sn)TiO、(1−x)LaAlO−xCa(またはSr)TiO、(1−x)La(Zn1/2Ti1/2)O−xCa(またはSr)TiO、および(1−x)NdAlO−xCaTiO誘電体などがある。
【0006】
(Zr、Sn)TiOの場合、Q×f=45,000、ε=38であり、温度係数が0に近い。しかし、この材料は、品質係数は高いが誘電率が低い欠点を有する。
【0007】
(1−x)LaAlO−xCa(またはSr)TiO系の場合、組成により様々な誘電特性を示す。特に0.35LaAlO−0.65CaTiO組成においてQ×f=47,000、ε=38、τ=5ppm/℃のマイクロ波誘電特性を示すことが発表されている[US5356844]。しかし、このセラミックスも、Q値は比較的に高いが誘電率が低いため、実用素子として応用するには問題がある。
【0008】
また、(1−x)La(Zn1/2Ti1/2)O−xCa(またはSr)TiOセラミックスも組成により様々な誘電特性を示し、特に0.5La(Zn1/2Ti1/2)O−0.5CaTiO組成においてQ×f=50,000、ε=38、τ=5ppm/℃の良好な誘電特性を示しているが誘電率が低い欠点があり実用素子製作に前記の組成物を応用するには難点がある。
【0009】
一方、1994年に誘電率43、Q×f=47,000、およびτ=−1ppm/℃の優れた誘電特性を示す(1−x)NdAlO−xCaTiO誘電体組成物が開発された。しかし、この誘電体は1450℃以上で焼結しなければならない難焼結性物質だという欠点がある[US5456844]。
【0010】
従って、中間誘電率(ε≧45)と、高い品質係数値(Q×fが43,000以上)および優れた共振周波数温度係数を有すると共に焼結特性が優れた誘電体に対する開発の必要性は依然と要求されている。
【0011】
【発明が解決しようとする課題】
本発明は前記従来の(1−x)NdAlO−xCaTiO誘電体組成物の改良に関し、本発明者らは前記(1−x)NdAlO−xCaTiO誘電体組成物の誘電特性を少なくともそのまま維持しながら焼結温度を低下させるために研究を繰り返した結果本発明を完成した。
【0012】
従って、本発明は誘電率が45以上、品質係数が45,000以上、そして共振周波数温度係数が0に近い優れた誘電特性と共に良好な焼結特性を示す新たな高周波誘電体セラミックス組成物を提供することにその目的がある。
【0013】
【課題を解決するための手段】
前記の目的を達成するために、本発明によると、一般式
(1−x)Nd(Ga1−yAl)O−xCaTiO
(ここで組成物全体に対するCaTiOのモル分率xは0.5≦x≦0.8、Gaに対するAlのモル分率yは0≦y≦0.9の範囲の値を有する)
で表されることを特徴とする誘電体セラミックス組成物が提供される。
【0014】
本発明において重要な構成元素としてGaを選択した理由は、GaがAlを置換する場合、同等な程度の品質係数を有しながらも焼結温度が約100℃低下し、誘電体共振器の量産性を増加させることができるためである。また、三つの相が共存することにより共振周波数温度係数をさらに容易に調節することが可能となる。
【0015】
一方、本発明においてCaTiOのモル分率xを0.5≦x≦0.8に限定した理由は、xが0.5未満になると誘電率が過度に低くなるだけでなく共振周波数温度係数が過度に大きな負(−)の値を有することになり、xが0.8を超過すると品質係数値が過度に低下するだけでなく共振周波数温度係数が過度に大きな正(+)の値を有することになるため望ましくない。
【0016】
尚、本発明においては、モル分率yは0≦y≦0.9、望ましくは0≦y≦0.5の範囲が適当だが、yが0.9を超過するとAlの添加量が過度に多くなるため焼結温度の低下を実質的に期待し難い。
【0017】
【発明の実施の形態】
以下、本発明に関しより具体的に説明する。
【0018】
本発明の誘電体組成物は、Nd、Ga、Al、CaCO、TiOを用いて一般的な固相法で製造した。各材料をモル分率により精密に重さを計ったあと、ナイロンジャー(nylon jar)でジルコニアボールと共に24時間湿式混合した。混合粉砕した粉末を乾燥した後、1200℃で10時間仮焼した。仮焼した粉末を2次粉砕した後に乾燥させディスク状に成形し1350〜1500℃で6時間焼結した。
【0019】
焼結された試片は研磨紙で研磨した後、再び乾燥した後、金属空胴内で品質係数と共振周波数温度係数を測定し、誘電率は平行金属導体板法を用いて測定した。この時、共振周波数の温度係数は25〜85℃の温度範囲と5GHzとで測定された。以上の結果を図1〜図6に図示した。
【0020】
図1は1450℃および1350℃で焼結された(1−x)NdGaO−xCaTiO(y=0)誘電体のCaTiO量の変化による品質係数値の変化を示している。図1に示されるとおり、NdGaOの品質係数値は約90,000程であり、CaTiO量が増加するに連れて品質係数の値は減少する。しかし、0.35NdGaO−0.65CaTiOの場合、品質係数値が約46,000として高い値を有する。1350℃で焼結した時、NdGaOモル分率が0.5以上の場合は1450℃で焼結した時より低い品質係数を有するが、NdGaOのモル分率が0.5未満の場合には1450℃で焼結した試料と同等な程度の品質係数値を示している。
【0021】
走査電子顕微鏡(SEM)分析の結果によると、NdGaOモル分率が0.5以上の場合、1350℃で焼結した時には気孔の多い微細構造を有し相対密度も低く、品質係数値が1450℃で焼結した試料より小さい。しかし、CaTiO量が増加するとCa−Ga液相が形成されて試料の焼結が促進され緻密な微細構造を有するようになり相対密度も増加するため、1350℃で焼結した試料も高い品質係数を有するようになる。
【0022】
図2は1450℃および1350℃で焼結された(1−x)NdGaO−xCaTiO(y=0)誘電体のCaTiO量の変化による誘電率値の変化を示している。CaTiO量が増加するに連れて誘電率は増加することが分かる。更に、NdGaOモル分率が0.5以上の試料の場合、1450℃で焼結された試料が少し高い誘電率値を有するが、NdGaOモル分率が0.5以下に減少すると誘電率は焼結温度に影響を受けないということが分かる。このような結果も品質係数と同様にCa−Ga液相による焼結性の向上と、それによる密度増加および微細構造の緻密化によって説明することができる。図2に示されるとおり1450℃および1350℃で焼結された0.35NdGaO−0.65CaTiO組成の場合、誘電率は共に約45を示している。
【0023】
図3は1450℃および1350℃で焼結された(1−x)NdGaO−xCaTiO(y=0)誘電体のCaTiO量の変化による共振周波数温度係数値の変化を示している。焼結温度に関わらずNdGaO誘電体の共振周波数温度係数は約−70でCaTiO量が増加するに連れて共振周波数温度係数も増加することが分かる。そして、0.35NdGaO−0.65CaTiO組成で共振周波数温度係数は−2ppm/℃の値を有することが分かる。
【0024】
前記の結果から分かるように高い品質係数を有するが誘電率が低く負の共振周波数温度係数を有するNdGaOと、低い品質係数を有するが誘電率が高く正の共振周波数温度係数を有するCaTiOを用いて固溶体を形成すれば優れた特性を有する組成物を得ることができ、特に1350℃の低温で焼結された0.35NdGaO−0.65CaTiO組成物は誘電率が45、品質係数46,000、および共振周波数温度係数が−2ppm/℃の優れた高周波誘電特性を示していることが分かる。
【0025】
図4は1450℃および1350℃で焼結された0.35Nd(Ga1−yAl)O−0.65CaTiO誘電体のAl添加量による品質係数値の変化を示す。少量のAlを添加すると、1450℃で焼結した場合、品質係数値が少し増加する。特にyが0.1の場合、品質係数値は約48,000になった。yが0.1以上に増加すると、品質係数値は再び減少することが分かる。1350℃で焼結した場合、品質係数値はAl添加量の増加によって少し減少する。しかし、図4に示されるとおり、品質係数の変化の幅はあまり大きくなく、1350℃で焼結した試料も優れた品質係数を有することが分かる。
【0026】
図5は1450℃および1350℃で焼結された0.35Nd(Ga1−yAl)O−0.65CaTiO誘電体のAl量による誘電率の変化を示している。誘電率はAl添加量が増加するに連れて増加することが分かる。1450℃で焼結した場合、yが0.315の時には誘電率が約48であり、yが0.035の時には約45であった。
【0027】
図6は1450℃および1350℃で焼結された0.35Nd(Ga1−yAl)O−0.65CaTiO誘電体のAl添加量による共振周波数温度係数の変化を示している。共振周波数温度係数は焼結温度によって大きく変化せず、Al添加により−0.8〜22の範囲で変化した。従って、Al添加によって様々な共振周波数温度係数を有する材料を得ることができる。特に、yが0.035の場合、共振周波数温度係数が−0.8、誘電率が45以上、および品質係数が46,000以上で中間誘電率材料として通信用部品に用いることができる。
【0028】
【発明の効果】
本発明の(1−x)Nd(Ga1−yAl)O−xCaTiO組成物の場合、1350℃の低温焼結が可能であり、また誘電特性も優れている。特に、本発明によると、従来の(1−x)NdGaO−xCaTiO誘電体組成物より誘電率が2〜3程度さらに高い誘電体を得ることができる。
【0029】
従って、本発明にて提案する組成物は、(1−x)NdAlO−xCaTiO誘電体と比べて、誘電特性は少なくともそのまま維持しながら低温焼結が可能で製造が容易な利点がある。
【図面の簡単な説明】
【図1】本発明により1450℃および1350℃で6時間焼結された(1−x)NdGaO−xCaTiO(y=0)誘電体組成物のCaTiO量による品質係数の変化を示すグラフである。
【図2】本発明により1450℃および1350℃で6時間焼結された(1−x)NdGaO−xCaTiO(y=0)誘電体組成物のCaTiO量による誘電率の変化を示すグラフである。
【図3】本発明により1450℃および1350℃で6時間焼結された(1−x)NdGaO−xCaTiO(y=0)誘電体組成物のCaTiO量による共振周波数温度係数変化を示すグラフである。
【図4】本発明により1450℃および1350℃で6時間焼結された0.35Nd(Ga1−yAl)O−0.65CaTiO誘電体組成物の品質係数の変化を示すグラフである。
【図5】本発明により1450℃および1350℃で6時間焼結された0.35Nd(Ga1−yAl)O−0.65CaTiO誘電体組成物の誘電率の変化を示すグラフである。
【図6】本発明により1450℃および1350℃で6時間焼結された0.35Nd(Ga1−yAl)O−0.65CaTiO誘電体組成物の共振周波数温度係数の変化を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric ceramic composition, and more particularly, has a dielectric constant of 45 or more, a quality factor of 43,000 or more, and has a stable resonance frequency temperature coefficient, and is applied to satellites and mobile communication electronic components. The present invention relates to a high-frequency dielectric ceramic composition that can be used.
[0002]
[Prior art]
In order to use a high-frequency dielectric for mobile / satellite communication components, it must have a high quality factor (Q), a stable temperature coefficient of resonance frequency (τ f ), and a high dielectric constant (ε r ). In general, high-frequency dielectrics are classified into high dielectric constant materials having a dielectric constant of 60 or more, intermediate dielectric constant materials having a dielectric constant of about 40 to 60, and low loss materials having a dielectric constant of 30 or less.
[0003]
As high dielectric constant dielectrics, BaO—Re 2 O 3 —TiO 2 (Re = rare earth element) and (Pb, Ca) ZrO 3 dielectrics are typical materials. Low-loss dielectrics include dielectrics such as Ba (Zn 1/3 Ta 2/3 ) O 3 and Ba (Mg 1/3 Ta 2/3 ) O 3 .
[0004]
Dielectrics with intermediate dielectric constants (ε r ≧ 45) and high Q × f (> 43,000) have not yet been developed and the need is still required.
[0005]
On the other hand, the dielectric having a known typical intermediate dielectric constant (Zr, Sn) TiO 4, (1-x) LaAlO 3 -xCa ( or Sr) TiO 3, (1- x) La (Zn 1 / 2 Ti 1/2) O 3 -xCa (or Sr) TiO 3, and (the like 1-x) NdAlO 3 -xCaTiO 3 dielectric.
[0006]
In the case of (Zr, Sn) TiO 4 , Q × f = 45,000 and ε r = 38, and the temperature coefficient is close to zero. However, this material has the disadvantage that the quality factor is high but the dielectric constant is low.
[0007]
(1-x) LaAlO 3 -xCa ( or Sr) For TiO 3 system, illustrating the various dielectric properties depending on the composition. Particularly 0.35LaAlO 3 -0.65CaTiO 3 Q in the composition × f = 47,000, ε r = 38, have been published to show microwave dielectric properties of τ f = 5ppm / ℃ [US5356844 ]. However, this ceramic also has a problem in applying it as a practical element because the Q value is relatively high but the dielectric constant is low.
[0008]
Moreover, (1-x) La ( Zn 1/2 Ti 1/2) O 3 -xCa ( or Sr) TiO 3 ceramics also shows various dielectric properties depending on the composition, particularly 0.5La (Zn 1/2 Ti 1 / 2 ) O 3 -0.5CaTiO 3 composition shows good dielectric properties of Q × f = 50,000, ε r = 38, τ f = 5 ppm / ° C., but has a drawback of low dielectric constant, but is a practical element. There are difficulties in applying the above compositions to fabrication.
[0009]
On the other hand, the dielectric constant 43, Q × shows excellent dielectric characteristics of f = 47,000, and τ f = -1ppm / ℃ (1 -x) NdAlO 3 -xCaTiO 3 dielectric composition was developed in 1994 . However, this dielectric has the disadvantage that it is a difficult-to-sinter material that must be sintered at 1450 ° C. or higher [US Pat. No. 5,456,844].
[0010]
Therefore, there is a need for development of a dielectric material having an intermediate dielectric constant (ε r ≧ 45), a high quality factor value (Q × f is 43,000 or more), an excellent temperature coefficient of resonance frequency, and excellent sintering characteristics. Is still required.
[0011]
[Problems to be solved by the invention]
The present invention relates to an improvement of the conventional (1-x) NdAlO 3 -xCaTiO 3 dielectric composition, the dielectric properties of the present invention have found that the (1-x) NdAlO 3 -xCaTiO 3 dielectric composition at least as The present invention was completed as a result of repeated studies for lowering the sintering temperature while maintaining.
[0012]
Accordingly, the present invention provides a new high-frequency dielectric ceramic composition having a dielectric constant of 45 or more, a quality factor of 45,000 or more, and excellent sintering characteristics together with excellent dielectric characteristics having a resonance frequency temperature coefficient close to 0. To do so has its purpose.
[0013]
[Means for Solving the Problems]
To achieve the above object, according to the present invention, the general formula (1-x) Nd (Ga 1-y Al y) O 3 -xCaTiO 3
(Here, the molar fraction x of CaTiO 3 with respect to the whole composition has a value in the range of 0.5 ≦ x ≦ 0.8, and the molar fraction y of Al with respect to Ga has a value in the range of 0 ≦ y ≦ 0.9)
The dielectric ceramic composition represented by these is provided.
[0014]
The reason why Ga is selected as an important constituent element in the present invention is that when Ga substitutes for Al, the sintering temperature is reduced by about 100 ° C. while having a similar quality factor, and mass production of dielectric resonators is performed. This is because the property can be increased. In addition, the coexistence of the three phases makes it possible to more easily adjust the temperature coefficient of the resonance frequency.
[0015]
On the other hand, the reason why the molar fraction x of CaTiO 3 is limited to 0.5 ≦ x ≦ 0.8 in the present invention is that when x is less than 0.5, not only the dielectric constant becomes excessively low but also the resonance frequency temperature coefficient Has an excessively large negative (-) value. When x exceeds 0.8, not only does the quality factor value excessively decrease, but also the resonance frequency temperature coefficient changes an excessively large positive (+) value. It is not desirable because it will have.
[0016]
In the present invention, the molar fraction y is suitably in the range of 0 ≦ y ≦ 0.9, preferably 0 ≦ y ≦ 0.5, but if y exceeds 0.9, the addition amount of Al becomes excessively large. Therefore, it is difficult to substantially lower the sintering temperature.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically.
[0018]
The dielectric composition of the present invention was manufactured by a general solid-phase method using Nd 2 O 3 , Ga 2 O 3 , Al 2 O 3 , CaCO 3 and TiO 2 . Each material was precisely weighed by mole fraction and then wet mixed with zirconia balls in a nylon jar for 24 hours. After the mixed and ground powder was dried, it was calcined at 1200 ° C. for 10 hours. The calcined powder was secondarily pulverized, dried, formed into a disk shape, and sintered at 1350 to 1500 ° C. for 6 hours.
[0019]
The sintered specimen was polished with abrasive paper and dried again. Then, the quality coefficient and the resonance frequency temperature coefficient were measured in the metal cavity, and the dielectric constant was measured using a parallel metal conductor plate method. At this time, the temperature coefficient of the resonance frequency was measured in a temperature range of 25 to 85 ° C. and 5 GHz. The above results are shown in FIGS.
[0020]
Figure 1 shows the change in the quality factor value in accordance with the changes in the 1450 ° C. and 1350 were sintered at ℃ (1-x) NdGaO 3 -xCaTiO 3 (y = 0) dielectric CaTiO 3 content. As shown in FIG. 1, the quality factor value of NdGaO 3 is about 90,000, and the value of the quality factor decreases as the amount of CaTiO 3 increases. However, if the 0.35NdGaO 3 -0.65CaTiO 3, quality factor value has a high value as about 46,000. When sintering at 1350 ° C., the NdGaO 3 mole fraction has a lower quality factor than when sintering at 1450 ° C. when the mole fraction is 0.5 or more, but when the mole fraction of NdGaO 3 is less than 0.5 Indicates a quality factor value equivalent to that of the sample sintered at 1450 ° C.
[0021]
According to a scanning electron microscope (SEM) analysis of the results, when NdGaO 3 molar fraction of more than 0.5, the relative density is low, the quality factor value has more microstructure of pores when sintering at 1350 ° C. 1450 Smaller than the sample sintered at ℃. However, when the amount of CaTiO 3 increases, a Ca—Ga liquid phase is formed, and the sintering of the sample is promoted to have a dense microstructure and the relative density increases. Therefore, the sample sintered at 1350 ° C. also has high quality. It has a coefficient.
[0022]
Figure 2 shows the change in dielectric constant value in accordance with the changes in the 1450 ° C. and 1350 were sintered at ℃ (1-x) NdGaO 3 -xCaTiO 3 (y = 0) dielectric CaTiO 3 content. It can be seen that the dielectric constant increases as the amount of CaTiO 3 increases. Further, in the case of a sample having a NdGaO 3 mole fraction of 0.5 or more, the sample sintered at 1450 ° C. has a slightly higher dielectric constant value, but when the NdGaO 3 mole fraction decreases to 0.5 or less, the dielectric constant increases. Is not affected by the sintering temperature. Such a result can be explained by the improvement of the sinterability due to the Ca-Ga liquid phase and the increase of the density and the densification of the fine structure due to the improvement of the sinterability similarly to the quality factor. As shown in FIG. 2, in the case of the 0.35 NdGaO 3 -0.65 CaTiO 3 composition sintered at 1450 ° C. and 1350 ° C., both the dielectric constants are about 45.
[0023]
FIG. 3 shows the change in the resonance frequency temperature coefficient value due to the change in the amount of CaTiO 3 in the (1-x) NdGaO 3 -xCaTiO 3 (y = 0) dielectric sintered at 1450 ° C. and 1350 ° C. Resonant frequency temperature coefficient As the CaTiO 3 content of about -70 resonant frequency temperature coefficient of NdGaO 3 dielectric regardless sintering temperature increases also can be seen to increase. Then, the resonance frequency temperature coefficient 0.35NdGaO 3 -0.65CaTiO 3 composition is found to have a value of -2 ppm / ° C..
[0024]
As can be seen from the above results, NdGaO 3 having a high quality factor but a low dielectric constant and a negative resonance frequency temperature coefficient, and CaTiO 3 having a low quality factor but a high dielectric constant and a positive resonance frequency temperature coefficient were used. used can be obtained a composition having excellent characteristics by forming a solid solution, 0.35NdGaO 3 -0.65CaTiO 3 composition has a dielectric constant 45, which is particularly sintered at a low temperature of 1350 ° C., the quality factor 46 000, and a high frequency dielectric characteristic having a resonance frequency temperature coefficient of −2 ppm / ° C.
[0025]
Figure 4 shows the change in the quality factor value by Al addition amount of 1450 ° C. and 0.35Nd sintered at 1350 ℃ (Ga 1-y Al y) O 3 -0.65CaTiO 3 dielectric. The addition of a small amount of Al slightly increases the quality factor value when sintered at 1450 ° C. In particular, when y was 0.1, the quality factor value was about 48,000. It can be seen that when y increases to 0.1 or more, the quality factor value decreases again. In the case of sintering at 1350 ° C., the quality factor value decreases slightly with an increase in the amount of Al added. However, as shown in FIG. 4, the range of change of the quality factor is not so large, and it can be seen that the sample sintered at 1350 ° C. also has an excellent quality factor.
[0026]
Figure 5 shows the change in the dielectric constant of Al amount of 1450 ° C. and 0.35Nd sintered at 1350 ℃ (Ga 1-y Al y) O 3 -0.65CaTiO 3 dielectric. It can be seen that the dielectric constant increases as the amount of Al added increases. When sintered at 1450 ° C., the dielectric constant was about 48 when y was 0.315 and about 45 when y was 0.035.
[0027]
Figure 6 shows the variation of the resonance frequency temperature coefficient of Al addition amount of 1450 ° C. and 0.35Nd sintered at 1350 ℃ (Ga 1-y Al y) O 3 -0.65CaTiO 3 dielectric. The resonance frequency temperature coefficient did not change significantly with the sintering temperature, but changed in the range of -0.8 to 22 with the addition of Al. Therefore, materials having various resonance frequency temperature coefficients can be obtained by adding Al. In particular, when y is 0.035, the resonance frequency temperature coefficient is -0.8, the dielectric constant is 45 or more, and the quality coefficient is 46,000 or more, and it can be used as an intermediate dielectric material for communication components.
[0028]
【The invention's effect】
For (1-x) Nd (Ga 1-y Al y) O 3 -xCaTiO 3 composition of the present invention, it is capable of low-temperature sintering of 1350 ° C., also has excellent dielectric characteristics. In particular, according to the present invention can be conventional (1-x) NdGaO 3 -xCaTiO 3 dielectric composition than the dielectric constant to obtain a 2-3 degree higher dielectric.
[0029]
Thus, the composition proposed by the present invention, (1-x) NdAlO 3 -xCaTiO 3 compared with the dielectric, dielectric properties produced at a low temperature sintering while maintaining at least as it is easy advantages.
[Brief description of the drawings]
FIG. 1 is a graph showing the change in quality factor of (1-x) NdGaO 3 -xCaTiO 3 (y = 0) dielectric composition according to the present invention with the amount of CaTiO 3 sintered at 1450 ° C. and 1350 ° C. for 6 hours. It is.
FIG. 2 is a graph showing the change in the dielectric constant of a (1-x) NdGaO 3 -xCaTiO 3 (y = 0) dielectric composition sintered at 1450 ° C. and 1350 ° C. for 6 hours according to the present invention with the amount of CaTiO 3. It is.
FIG. 3 is a graph showing a change in resonance frequency temperature coefficient depending on the amount of CaTiO 3 of a (1-x) NdGaO 3 -xCaTiO 3 (y = 0) dielectric composition sintered at 1450 ° C. and 1350 ° C. for 6 hours according to the present invention; It is a graph.
[Figure 4] a graph showing a change in the quality factor of 1450 ° C. and 1350 ° C. for 6 hours-sintered 0.35Nd (Ga 1-y Al y ) O 3 -0.65CaTiO 3 dielectric composition according to the invention is there.
[5] a graph showing a change in the dielectric constant of 1450 ° C. and 1350 ° C. for 6 hours-sintered 0.35Nd (Ga 1-y Al y ) O 3 -0.65CaTiO 3 dielectric composition according to the invention is there.
Shows the change in the resonant frequency temperature coefficient of the present invention; FIG 0.35Nd which is 6 hours sintered at 1450 ° C. and 1350 ° C. The (Ga 1-y Al y) O 3 -0.65CaTiO 3 dielectric composition It is a graph.

Claims (2)

一般式
(1−x)Nd(Ga1−yAl)O−xCaTiO
(ここで組成物全体に対するCaTiOのモル分率xは0.5≦x≦0.8、Gaに対するAlのモル分率yは0≦y≦0.9の範囲の値を有する)
で表されることを特徴とする誘電体セラミックス組成物。
Formula (1-x) Nd (Ga 1-y Al y) O 3 -xCaTiO 3
(Here, the molar fraction x of CaTiO 3 with respect to the whole composition has a value in the range of 0.5 ≦ x ≦ 0.8, and the molar fraction y of Al with respect to Ga has a value in the range of 0 ≦ y ≦ 0.9)
A dielectric ceramic composition represented by the formula:
yは0≦y≦0.5の範囲の値を有することを特徴とする請求項1に記載の誘電体セラミックス組成物。2. The dielectric ceramic composition according to claim 1, wherein y has a value in a range of 0 ≦ y ≦ 0.5.
JP2001080527A 2001-03-21 2001-03-21 Dielectric ceramic composition Expired - Fee Related JP3600539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001080527A JP3600539B2 (en) 2001-03-21 2001-03-21 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080527A JP3600539B2 (en) 2001-03-21 2001-03-21 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JP2002274939A JP2002274939A (en) 2002-09-25
JP3600539B2 true JP3600539B2 (en) 2004-12-15

Family

ID=18936793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080527A Expired - Fee Related JP3600539B2 (en) 2001-03-21 2001-03-21 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3600539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905750A4 (en) * 2005-06-24 2011-02-23 Hitachi Metals Ltd Dielectric ceramic composition for electronic device

Also Published As

Publication number Publication date
JP2002274939A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
US6117806A (en) Dielectric material, a method for producing the same and a dielectric resonator device comprising same
US5840642A (en) Dielectric material for microwave of CaTIO3 -La(Mg1/2 Ti1/2) O3 -LaAlO3 group
KR100729998B1 (en) Dielectric porcelain, dielectric porcelain composition, method of manufacturing the same and dielectric resonator using the same
KR20030059261A (en) Microwave dielectric porcelain composition and dielectric resonator
JP5142700B2 (en) Dielectric ceramic composition and dielectric resonator
JPH09118562A (en) Ceramic dielectric for high-frequency wave
JP2001114553A (en) Microwave dielectric substance ceramic composition
JPH11106255A (en) Dielectric ceramic composition and its production
KR100424988B1 (en) Dielectric Ceramic Compositions
JP3600539B2 (en) Dielectric ceramic composition
KR100360974B1 (en) Method for Preparing Dielectric Ceramic Compositions
KR0134555B1 (en) Material of dielectric for high frequency
KR0173185B1 (en) Dielectric ceramic composition for high frequency
KR19980014514A (en) CERAMIC COMPOSITION FOR HIGH-FREQUENCY DIELECTRIC AND PROC
KR100208479B1 (en) Dielectric ceramic composition for microwave of catio3-ca (al1/2nb1/2) o3 system
US5569632A (en) Compositions of high frequency dielectrics
JP2974823B2 (en) Microwave dielectric porcelain composition
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
KR0134532B1 (en) Dielectric ceramic composition for high frequency waves
Li et al. Microwave dielectric materials based on the MgO–SiO2–TiO2 system
JPH10330159A (en) Microwave dielectric ceramic composition
KR100415983B1 (en) Dielectric Ceramic Compositions for High Frequency Applications
KR100399800B1 (en) High quality ceramic dielectric composition
JP3830342B2 (en) Dielectric porcelain and dielectric resonator using the same
KR100332931B1 (en) Composition of Microwave Dielectrics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees