JP3600477B2 - Pressure distribution analyzer and recording medium recording pressure distribution analysis program - Google Patents

Pressure distribution analyzer and recording medium recording pressure distribution analysis program Download PDF

Info

Publication number
JP3600477B2
JP3600477B2 JP21352899A JP21352899A JP3600477B2 JP 3600477 B2 JP3600477 B2 JP 3600477B2 JP 21352899 A JP21352899 A JP 21352899A JP 21352899 A JP21352899 A JP 21352899A JP 3600477 B2 JP3600477 B2 JP 3600477B2
Authority
JP
Japan
Prior art keywords
sole
area
region
template
pressure distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21352899A
Other languages
Japanese (ja)
Other versions
JP2001041835A (en
Inventor
聡 嶌田
圭介 杉山
恭子 数藤
作一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21352899A priority Critical patent/JP3600477B2/en
Publication of JP2001041835A publication Critical patent/JP2001041835A/en
Application granted granted Critical
Publication of JP3600477B2 publication Critical patent/JP3600477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動物体の圧力分布を計測し、その計測結果から動物体の動作を解析し、その特徴をパラメータとして出力する圧力分布分析装置に関するものである。
【0002】
【従来の技術】
動物体として人間を対象とし、人の動作時の足の接地状況を計測することで動作分析を行う方法がある。従来技術として、目視で分析できるように運動時に足が接地することによる圧力分布を表示する装置や、圧力分布の代表点として圧力中心を求め、圧力中心を目視で判定できるよう表示する装置、または、圧力中心の軌跡を解析する装置がある。
【0003】
【発明が解決しようとする課題】
運動時の圧力分布を表示する装置は人間にとっては分かりやすいが、目視による分析では手間と時間がかかる問題があった。また、足圧中心軌跡を表示する装置は、足圧分布を1点で表しているため、足圧分布が本来持っている重要な情報が消去されてしまう問題があった。目視による圧力分布の分析では、足底のどの部位にどのタイミングでどのような力がかかっているかを読み取っており、このような情報を反映した特徴量を抽出することが自動分析の課題となっている。
【0004】
本発明の目的は、動物体が接地したときの圧力の空間的、時間的分布を自動的に分析する圧力分布分析装置および圧力分布分析プログラムを記録した記録媒体を提供することにある。
【0005】
【課題を解決するための手段】
本発明の圧力分布分析装置は、
動物体の足が接地したときの圧力分布を計測する圧力センシング手段と、
計測した圧力分布から足底領域を検出する足底領域検出手段と、
該足底領域から,親指、人差し指、中指、薬指、小指、前足部内側、前足部中央、前足部外側、中足部、踵部の各部位を認識する部位認識手段と、
該部位認識手段で認識された部位領域内の圧力の総和を算出し、部位別荷重の時間を動物体の足底の接地期間で正規化し、荷重値を同一の動物体足底の接地期間中の最大荷重値で正規化する部位別荷重検出手段とを有する。
本発明の他の圧力分布分析装置は、
動物体が所定の面を通過するとき、該面に接地したときの圧力分布を計測する圧力センシング手段と、
計測した圧力分布から前記動物体の足底領域を検出する足底領域検出手段と、
該足底領域から予め登録しておいた部位を認識する部位認識手段と、
該部位認識手段で認識された部位領域内の圧力の総和を算出する部位別荷重検出手段とを有し、
前記部位認識手段が、動物体の足底の前記部位への分割方法を表したテンプレートを記憶するテンプレート記憶手段と、前記足底領域検出手段より動物体の足底領域を受け取ると、該足底領域を構成する圧力分布の計測点が隣接しているものを連結領域として検出する連結領域検出手段と、前記足底領域検出手段より動物体の足底領域を受け取り、該足底領域に前記テンプレート記憶手段に記憶されているテンプレートの向きと大きさを合わせることにより前記足底領域を小領域に分割し、分割された各小領域を出力し、また足底方向を受け取ると、前記テンプレート記憶手段からテンプレートを読み取り、該テンプレートの向きを前記足底方向に合わせることにより前記足底領域を小領域に分割し、分割した各小領域を出力するテンプレート照合手段と、前記テンプレート照合手段より分割された小領域を最初に受け取ったときには該小領域と前記連結領域検出手段より受け取った連結領域から動物体の足底の各部位を識別し、識別した各部位領域を足底方向検出手段に出力し、前記テンプレート照合手段より小領域を2回目に受け取ったときは該小領域と前記連結領域検出手段より受け取った連結領域から動物体の足底の各部位を識別し、識別した各部位を前記部位別荷重検出手段に出力する部位識別手段と、前記部位識別手段より最初に出力された部位領域から足底方向を検出し、前記テンプレート照合手段に出力する足底方向検出手段を含む。
【0006】
物体面の部位別の荷重の時間変化を抽出することで、動物体が接地するときの圧力の空間的、時間的分布を自動的に分析できる。
【0007】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0008】
図1を参照すると、本発明の一実施形態の圧力分布分析装置は圧力センサ101と底面領域検出部102と部位認識部103と部位面荷重検出部104で構成されている。
【0009】
圧力センサ101は、物体が接地することによる生じる圧力分布を計測し、計測した圧力分布を底面領域検出部102と部位荷重検出部104に出力する。連続して計測することにより時系列データとして圧力分布が得られる。底面領域検出部102は圧力分布から物体の底面領域を検出し、検出した領域を部位認識部103に出力する。計測期間中の圧力分布において、各計測点で圧力値の有する点を選択することにより底面を検出できる。部位認識部103は底面領域検出部102より受けた物体底面から予め登録しておいた部位を認識し、認識した部位を部位別荷重検出部104に出力する。部位別荷重検出部104は圧力センサ101より受け取った圧力分布と部位認識部103より受け取った部位領域から、各時刻における部位領域内の圧力の総和を部位荷重として算出し、算出した各部位毎の荷重値を時系列データとして出力する。
【0010】
図2を参照すると、部位認識部103は、底面領域検出部102より物体の底面領域を受け取ると、底面領域を構成する圧力分布の計測点が隣接しているものを連結領域として検出する連結領域検出部201と、連結領域の位置と大きさから連結領域が物体底面のどの部位に相当するかを判定し、部位領域を部位別荷重検出部104に出力する部位判定部202で構成されている。
【0011】
次に、本実施形態の動作を、人の歩行時の足による接地圧を例に示す。圧力センサ101で計測された圧力分布を図3(a)に示す。これは踵から指先で蹴り出すまでの圧力分布である。濃度は圧力値を表している。底面領域検出部102は、この圧力分布から足底を検出する。図3(a)で圧力値の有する計測点を選択すると、同図(b)の足底領域が求められる。底面領域検出部102は検出した足底領域を連結領域検出部201に出力する。連結領域検出部201は足底領域を複数の連結領域に分割し、それらを部位判定部202に出力する。分離された領域の例を図4に示す。部位判定部202はK1からK6までの6個の連結領域の部位を認識する。足底の部位として、5本の指と指以外の足領域の6つの部位を登録しておいた場合には、K1からK6がそれらのどの部位かを識別する。識別方法は次のルールにより行う。
(1)連結領域の面積がS1以上であれば指以外の足領域とする
(2)連結領域の位置が指以外の足領域よりも上にあり、面積がS2以下であれば指とする
(3)指と認識された複数の連結領域のなかで両端に位置する連結領域の面積を比較し、大きいものを親指、小さい方を小指とする。その間の連結領域は位置する順に、人差し指、中指、薬指と認識する。
【0012】
図4では、K1が親指、K2が人差し指、K3が中指、K4が薬指、K5が小指、K6が指以外の足領域と認識される。部位判定部202は各部位毎の領域を部位別荷重検出部104に出力する。部位別荷重検出部104は圧力センサ101より受けた各時刻の圧力分布から、部位判定部202より取得した各部位領域内の圧力の総和を算出する。
【0013】
図5を参照すると、部位認識部103は、テンプレートの読み取り命令を受けると、記憶していたテンプレートを出力するテンプレート記憶部302と、底面領域検出部102より物体の底面領域を受け取ると、テンプレート記憶部302にテンプレートの読み取り命令を出し、テンプレート記憶部302からテンプレートを受け取り、テンプレートの向きと大きさを物体底面領域に合わせることにより、底面領域を各部位に分割し、各部位領域を部位荷重検出部104に出力するテンプレート照合部301で構成されている。
【0014】
次に、圧力センサ101で計測された圧力分布、および底面領域検出部102で検出された底面領域が図3に示す足圧分布および足底である場合を例にとってテンプレート照合部301の動作を説明する。テンプレート記憶部302で記憶するテンプレートの例を図6に示す。同図のテンプレートでM1は前足部内側、M2は前足部中央、M3は前足部外側、M4は中足部、M5は踵部を表す。まず、図6の中央に示すように、足底領域の最大長方向を検出し、最大長方向がテンプレートの外枠の長軸と一致するようにテンプレートを回転させる。次に、外枠が足底領域に内接するようにテンプレートの縦と横の大きさを変える。このように足底領域とテンプレートの外枠を合わせたあとに、テンプレートの各部位領域に従って足底領域を分割する。
【0015】
図7を参照すると、部位認識部103は、連結領域検出部201とテンプレート照合部301とテンプレート記憶部302と部位識別部401で構成されている。底面領域検出部102は圧力センサ101より受け取った圧力分布から物体の底面領域を検出し、底面領域を連結領域検出部201とテンプレート照合部301に出力する。連結領域検出部201は、底面領域検出部102より物体の底面領域を受け取ると、底面領域の連結領域を検出し、連結領域を部位識別部401に出力する。テンプレート照合部301は、底面領域検出部102より受け取った物体の底面領域にテンプレートの向きと大きさを合わせることにより底面領域を小領域に分割し、部位識別部401に出力する。部位識別部401は連結領域検出部201より受け取った連結領域とテンプレート照合部301より受け取った小領域から物体底面の各部位を識別し、識別した各部位領域を部分荷重検出部104に出力する。
【0016】
底面領域検出部102より出力される物体底面領域とテンプレート記憶部302で記憶するテンプレートが図6に示す足底領域とテンプレートである場合を例に部位識別部401の動作を説明する。まず、連結領域検出部201より出力される連結領域(図4参照)を部位として確定する。次に、テンプレート照合部301より出力される小領域(図6参照)のなかで確定した部位を除いた領域を部位とする。以上の処理により、図8に示すように、L1からL10の部位が検出される。各部位の識別は図2および図3の実施形態と同様に行い、図8では、L1が親指、L2が人差し指、L3が中指、L4が薬指、L5が小指、L6は前足部内側、L7は前足部中央、L8は前足部外側、L9が中足部、L10は踵部として識別される。このように、足底を10個の部位に分割し、部位別の荷重変化を求めた例を図9に示す。同図から部位別荷重により足の接地状況を時間的、空間的に分析できることがわかる。
【0017】
図10を参照すると、部位認識部103は連結領域検出部201とテンプレート記憶部302とテンプレート照合部501と部位識別部502と底面方向検出部503で構成されている。テンプレート照合部501は底面領域検出部102より物体の底面領域を受け取ると、テンプレート記憶部302にテンプレートの読み取り命令を出す。テンプレート記憶部302よりテンプレートを受け取ると、テンプレートの向きと大きさを物体底面領域に合わせることにより底面領域を小領域に分割し、各小領域を部位識別部502に出力する。また、底面方向検出部503より底面方向を受け取ったときには、テンプレート記憶部302にアクセスしてテンプレートを読み取り、テンプレートの向きを底面方向検出部503より受け取った方向に合わせ、その後、大きさを物体底面領域に合わせることにより底面領域を小領域に分割し、分割した各小領域を部位識別部502に出力する。
【0018】
部位識別部502はテンプレート照合部501より小領域を最初に受け取ったときには、連結領域検出部201より受け取った連結領域とテンプレート照合部501より受け取った小領域から物体底面の各部位を識別し、識別した各部位領域を底面方向検出部503に出力する。テンプレート照合部501より受け取った小領域が2回目のときには、連結領域検出部201より受け取った連結領域とテンプレート照合部501より受け取った小領域から物体底面の各部位を識別し、識別した各部位領域を部分荷重検出部104に出力する。
【0019】
底面方向検出部503は部位識別部502より受け取った部位領域から底面方向を検出し、検出した方向をテンプレート照合部501に出力する。部位領域から底面方向を求める方法は予め設定したルールに基づいて行う。例えば、図8の例において、L2とL10の部位領域の中心を結ぶ方向を底面方向とするルールを設定しておく。
【0020】
このような構成にすることで、図7においてテンプレート照合部301で底面方向を正確に検出できなくても正しく部位の認識が行えるようになる。
【0021】
さらに、各実施形態の部位別荷重検出部104から出力される部位別の荷重の時間的変化を物体面の接地期間で正規化し、正規化後の部位別荷重変化を出力する実施形態も有効である。正規化処理により、部位毎の接地期間を比較したり、接地期間の異なる他の歩行との比較を行うことができるようになる。図9の横軸の時刻を、1歩の接地期間に対する割合とすると、図11が得られる。同図より、L10は、1歩の接地期間の前半の50%について常時接地していることが容易に読み取れる。
【0022】
また、各実施形態の部位別荷重検出部104から出力される部位別の荷重の時間的変化において、最大荷重値、および、そのときの時刻を個人の歩行特徴として出力する実施形態も有効である。被験者A、Bの2名に歩行してもらい20歩のデータを収集し、各歩から図8に示すL1からL10の部位別荷重変化を計測して得られた20サンプルについて部位別荷重の最大値の平均とばらつきを求めた結果を図12に示す。なお、部位別の荷重値は各時刻の全荷重の最大値で正規化している。T検定を行った結果、L8とL10を除く部位の最大荷重値は被験者により有意差がある(p<0.05)。また、被験者Aに指の荷重値が大きいのが特徴である。このように、部位別荷重の最大値は有効な個人特徴であることがわかる。
【0023】
次に、20サンプルについて部位別荷重が最大となるときの時刻の平均とばらつきを求めた結果を図13に示す。なお、時刻は1歩の接地時間で正規化している。被験者A、Bとも最大荷重となるタイミングのばらつきが小さく、歩行時に各部位をもっとも強く接地するタイミングは接地期間に対して一定であるといえる。また、T検定の結果、L9以外の部位の最大荷重時の位相は被験者により有意差がある(p<0.05)。
【0024】
このように、部位別荷重が最代となる時刻は有効な個人特徴出有ることがわかる。
【0025】
図14は本発明の第6の実施形態の圧力分布分析装置の構成図である。本実施形態の圧力分布分析装置は図2の圧力分布分析装置をパソコン等のコンピュータ上で実施するもので、圧力センサ601(圧力センサ101と同じ)と、ハードディスクである記憶装置602と、算出された圧力の総和が出力される、プリンタ、ディスプレイ等の出力装置603と、図2中の底面領域検出部102、部位認識部103、部位別荷重検出部104の各処理からなる圧力分布分析プログラムが記録されている、FD(フロッピイ・ディスク)、CD−ROM、MO(光磁気ディスク)等の記録媒体604と、記録媒体604から圧力分布分析プログラムを読み込んで、これを実行するCPU605で構成される。
【0026】
図2、図5、図7の実施形態も同様にしてパソコン等のコンピュータ上で実施することができる。
【0027】
以上、人間の歩行時の圧力分布を例にとって本発明を説明したが、本発明は動物の歩行時の圧力分布の分析にも適用できることは言うまでもない。
【0028】
【発明の効果】
以上説明したように、本発明によれば、物体面の部位別の荷重時間変化を抽出し、動物体が接地するときの圧力の空間的、時間的分布を自動的に分析することにより、手間と時間がかからない。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の圧力分布分析装置の構成図である。
【図2】本発明の第2の実施形態の圧力分布分析装置の構成図である。
【図3】足圧分布と足底の検出の例を示す図である。
【図4】部位を認識した例を示す図である。
【図5】本発明の第3の実施形態の圧力分布分析装置の構成図である。
【図6】テンプレート変形処理の手順を示す図である。
【図7】本発明の第4の実施形態の圧力分布装置の構成図である。
【図8】部位を認識した例を示す図である。
【図9】部位別荷重の例を示す図である。
【図10】本発明の第5の実施形態の圧力分布分析装置の構成図である。
【図11】部位別荷重の時間的変化を物体の接地期間で正規化した例のグラフである。
【図12】部位別荷重の最大値の平均とばらつきの例を示すグラフである。
【図13】部位別荷重が最大となるときの時刻の平均とばらつきの例を示すグラフである。
【図14】本発明の第6の実施形態の圧力分布分析装置の構成図である。
【符号の説明】
101 圧力センサ
102 底面領域検出部
103 部位認識部
104 部位別荷重検出部
201 連結領域検出部
202 部位判定部
301 テンプレート照合部
302 テンプレート記憶部
401 部位識別部
501 テンプレート記憶部
502 部位識別部
503 底面方向検出部
601 圧力センサ
602 記憶装置
603 出力装置
604 記録媒体
605 データ処理装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure distribution analyzer that measures the pressure distribution of a moving object, analyzes the motion of the moving object from the measurement result, and outputs the characteristics as parameters.
[0002]
[Prior art]
There is a method in which a human being is targeted as a moving object, and a motion analysis is performed by measuring a ground contact state of a foot during a human motion. As a conventional technology, a device that displays a pressure distribution due to foot contact during exercise so that it can be visually analyzed, a device that determines a pressure center as a representative point of the pressure distribution, and a device that displays so that the pressure center can be visually determined, or There is a device for analyzing the locus of the center of pressure.
[0003]
[Problems to be solved by the invention]
Although a device that displays the pressure distribution during exercise is easy for humans to understand, there is a problem that it takes time and effort in visual analysis. Further, since the device for displaying the foot pressure center locus represents the foot pressure distribution at one point, there is a problem that important information inherent in the foot pressure distribution is deleted. In the visual pressure distribution analysis, what force is applied to which part of the sole and at what timing is read, and extracting feature values that reflect such information is an issue for automatic analysis. ing.
[0004]
An object of the present invention is to provide a pressure distribution analyzer that automatically analyzes the spatial and temporal distribution of pressure when a moving object touches the ground, and a recording medium that records a pressure distribution analysis program.
[0005]
[Means for Solving the Problems]
The pressure distribution analyzer of the present invention,
Pressure sensing means for measuring the pressure distribution when the foot of the moving object touches the ground,
Sole area detecting means for detecting a sole area from the measured pressure distribution,
Part recognition means for recognizing, from the sole area, each part of the thumb, the index finger, the middle finger, the ring finger, the little finger, the inside of the forefoot, the center of the forefoot, the outside of the forefoot, the middle foot, and the heel;
The sum of the pressures in the region of the part recognized by the part recognition means is calculated, the time of the load for each part is normalized by the contact period of the sole of the moving object, and the load value is calculated during the contact period of the sole of the same moving object. And a unit-based load detecting means for normalizing with the maximum load value .
Another pressure distribution analyzer of the present invention,
When the moving object passes through a predetermined surface, a pressure sensing means for measuring a pressure distribution when the object comes into contact with the ground,
A sole region detecting means for detecting a sole region of the moving object from the measured pressure distribution,
Part recognition means for recognizing a part registered in advance from the sole area;
Having a part-by-part load detecting means for calculating the sum of the pressures in the part area recognized by the part recognizing means,
When the part recognizing means receives a sole area of the moving object from the sole area detecting means and a template storing means for storing a template representing a method of dividing the sole of the moving object into the part, A connected region detecting means for detecting, as a connected region, a measurement point of a pressure distribution constituting a region as a connected region, and receiving a sole region of a moving object from the sole region detecting unit; The sole area is divided into small areas by matching the orientation and the size of the template stored in the storage means, each divided small area is output, and when the sole direction is received, the template storage means A template that reads the template from the template, aligns the orientation of the template with the sole direction, divides the sole area into small areas, and outputs each divided small area. When first receiving the small area divided by the matching means and the template matching means, the respective parts of the sole of the moving object are identified from the small area and the connected area received from the connected area detecting means, The part area is output to the sole direction detecting means, and when the small area is received for the second time from the template matching means, each part of the sole of the moving object is obtained from the small area and the connected area received from the connected area detecting means. And a part identification means for outputting the identified parts to the part-specific load detection means, and a sole direction detected from the part area output first by the part identification means, and output to the template matching means. A sole direction detecting means is included.
[0006]
By extracting the time change of the load for each part of the object plane, the spatial and temporal distribution of the pressure when the moving object touches the ground can be automatically analyzed.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0008]
Referring to FIG. 1, the pressure distribution analyzer according to one embodiment of the present invention includes a pressure sensor 101, a bottom surface region detection unit 102, a region recognition unit 103, and a region surface load detection unit 104.
[0009]
The pressure sensor 101 measures a pressure distribution generated when the object contacts the ground, and outputs the measured pressure distribution to the bottom surface area detection unit 102 and the part load detection unit 104. The pressure distribution is obtained as time-series data by performing continuous measurement. The bottom surface area detection unit 102 detects the bottom surface area of the object from the pressure distribution, and outputs the detected area to the part recognition unit 103. In the pressure distribution during the measurement period, the bottom surface can be detected by selecting a point having a pressure value at each measurement point. The part recognition unit 103 recognizes a part registered in advance from the bottom surface of the object received from the bottom surface area detection unit 102, and outputs the recognized part to the part-specific load detection unit 104. The part-specific load detection unit 104 calculates the sum of the pressures in the part area at each time as the part load from the pressure distribution received from the pressure sensor 101 and the part area received from the part recognition unit 103, and calculates the calculated load for each part. Output the load value as time series data.
[0010]
Referring to FIG. 2, when receiving the bottom surface region of the object from the bottom surface region detection unit 102, the part recognition unit 103 detects, as a connection region, a connection region where pressure distribution measurement points constituting the bottom surface region are adjacent to each other. A detection unit 201 and a site determination unit 202 that determines which site on the object bottom surface the connection region corresponds to based on the position and size of the connection region, and outputs the site region to the site-specific load detection unit 104. .
[0011]
Next, the operation of the present embodiment will be described with reference to an example of a contact pressure by a foot when a person walks. FIG. 3A shows the pressure distribution measured by the pressure sensor 101. This is the pressure distribution from the heel to the kick with your fingertips. The concentration represents a pressure value. The bottom surface area detecting unit 102 detects the sole from the pressure distribution. When a measurement point having a pressure value is selected in FIG. 3A, a sole area shown in FIG. 3B is obtained. The bottom area detection unit 102 outputs the detected sole area to the connected area detection unit 201. The connected region detection unit 201 divides the sole region into a plurality of connected regions and outputs the divided regions to the region determination unit 202. FIG. 4 shows an example of the separated area. The site determination unit 202 recognizes the sites of the six connection regions from K1 to K6. When five parts and six parts of the foot area other than the fingers are registered as the sole parts, which of K1 to K6 is identified. The identification method is performed according to the following rules.
(1) If the area of the connected area is S1 or more, it is a foot area other than the finger. (2) If the position of the connected area is above the foot area other than the finger, and if the area is S2 or less, it is a finger ( 3) The areas of the connection areas located at both ends among the plurality of connection areas recognized as fingers are compared, and the larger one is the thumb and the smaller one is the little finger. The connecting areas between them are recognized as the index finger, the middle finger, and the ring finger in the order in which they are located.
[0012]
In FIG. 4, K1 is recognized as a thumb, K2 is an index finger, K3 is a middle finger, K4 is a ring finger, K5 is a little finger, and K6 is a foot area other than a finger. The region determination unit 202 outputs the region for each region to the region-specific load detection unit 104. The part-specific load detection unit 104 calculates the sum of the pressures in each part region acquired by the part determination unit 202 from the pressure distribution at each time received from the pressure sensor 101.
[0013]
Referring to FIG. 5, upon receiving a template reading instruction, region recognition unit 103 outputs a stored template, and receives a bottom surface area of the object from bottom surface detection unit 102. A template reading command is issued to the unit 302, the template is received from the template storage unit 302, and the orientation and size of the template are adjusted to the bottom surface region of the object, thereby dividing the bottom surface region into each part and detecting each part region as a part load. It comprises a template matching unit 301 that outputs to the unit 104.
[0014]
Next, the operation of the template matching unit 301 will be described by taking as an example a case where the pressure distribution measured by the pressure sensor 101 and the bottom surface area detected by the bottom surface area detection unit 102 are the foot pressure distribution and the sole shown in FIG. I do. FIG. 6 shows an example of a template stored in the template storage unit 302. In the template shown in the figure, M1 indicates the inside of the forefoot, M2 indicates the center of the forefoot, M3 indicates the outside of the forefoot, M4 indicates the middle foot, and M5 indicates the heel. First, as shown in the center of FIG. 6, the maximum length direction of the sole area is detected, and the template is rotated such that the maximum length direction coincides with the long axis of the outer frame of the template. Next, the vertical and horizontal sizes of the template are changed so that the outer frame is inscribed in the sole area. After matching the sole region with the outer frame of the template, the sole region is divided according to each region of the template.
[0015]
Referring to FIG. 7, the part recognition unit 103 includes a connected area detection unit 201, a template collation unit 301, a template storage unit 302, and a part identification unit 401. The bottom area detection unit 102 detects the bottom area of the object from the pressure distribution received from the pressure sensor 101 and outputs the bottom area to the connected area detection unit 201 and the template matching unit 301. Upon receiving the bottom surface region of the object from the bottom surface region detection unit 102, the connected region detection unit 201 detects the connection region of the bottom surface region and outputs the connected region to the part identification unit 401. The template matching unit 301 divides the bottom surface region into small regions by matching the orientation and size of the template with the bottom surface region of the object received from the bottom surface region detection unit 102, and outputs the small region to the region identification unit 401. The part identification unit 401 identifies each part of the object bottom surface from the connected area received from the connected area detection unit 201 and the small area received from the template matching unit 301, and outputs each identified part area to the partial load detection unit 104.
[0016]
The operation of the region identification unit 401 will be described by taking as an example a case where the object bottom surface region output from the bottom surface region detection unit 102 and the template stored in the template storage unit 302 are the sole region and the template shown in FIG. First, the connection region (see FIG. 4) output from the connection region detection unit 201 is determined as a site. Next, a region excluding the determined region in the small region (see FIG. 6) output from the template matching unit 301 is defined as a region. Through the above processing, as shown in FIG. 8, the portions from L1 to L10 are detected. Each part is identified in the same manner as in the embodiment of FIGS. 2 and 3. In FIG. 8, L1 is the thumb, L2 is the index finger, L3 is the middle finger, L4 is the ring finger, L5 is the little finger, L6 is the inside of the forefoot, and L7 is The center of the forefoot, L8 is identified as the outside of the forefoot, L9 is identified as the midfoot, and L10 is identified as the heel. FIG. 9 shows an example in which the sole is divided into ten parts and the load change for each part is obtained. It can be seen from the figure that the ground contact status of the foot can be analyzed temporally and spatially by the load for each part.
[0017]
Referring to FIG. 10, site recognition unit 103 includes a connected region detection unit 201, a template storage unit 302, a template comparison unit 501, a site identification unit 502, and a bottom direction detection unit 503. Upon receiving the bottom area of the object from the bottom area detection unit 102, the template matching unit 501 issues a template reading command to the template storage unit 302. When the template is received from the template storage unit 302, the bottom area is divided into small areas by adjusting the orientation and size of the template to the object bottom area, and each small area is output to the part identification unit 502. When the bottom direction is received from the bottom direction detection unit 503, the template storage unit 302 is accessed to read the template, the orientation of the template is adjusted to the direction received from the bottom direction detection unit 503, and then the size is set to the object bottom. The bottom area is divided into small areas by matching the area, and each divided small area is output to the part identification unit 502.
[0018]
When a small area is first received from the template matching unit 501, the part identifying unit 502 identifies each part of the bottom surface of the object from the connected area received from the connected area detecting unit 201 and the small area received from the template matching unit 501. The respective region regions thus obtained are output to the bottom surface direction detection unit 503. When the small area received from the template matching unit 501 is the second time, each part of the object bottom is identified from the connected area received from the connected area detection unit 201 and the small area received from the template matching unit 501, and each identified part area is identified. Is output to the partial load detection unit 104.
[0019]
The bottom direction detection unit 503 detects the bottom direction from the region of the region received from the region identification unit 502, and outputs the detected direction to the template matching unit 501. The method of obtaining the bottom direction from the region of the part is performed based on a preset rule. For example, in the example of FIG. 8, a rule is set in which the direction connecting the centers of the region regions L2 and L10 is the bottom surface direction.
[0020]
With such a configuration, even if the template matching unit 301 in FIG. 7 cannot accurately detect the bottom surface direction, it is possible to correctly recognize a part.
[0021]
Further, an embodiment in which the temporal change of the load for each part output from the load detecting unit 104 for each part in each embodiment is normalized by the grounding period of the object surface, and the normalized load change for each part is output is also effective. is there. By the normalization processing, it is possible to compare the contact period for each part or to perform comparison with another walk having a different contact period. Assuming that the time on the horizontal axis in FIG. 9 is the ratio to the one-step contact period, FIG. 11 is obtained. From the figure, it can be easily read that L10 is always in contact with the ground for the first half of the grounding period of one step.
[0022]
Further, in the temporal change of the load for each part output from the load detection part 104 for each part in each embodiment, the embodiment in which the maximum load value and the time at that time are output as individual walking characteristics is also effective. . The data of 20 steps were collected by the two subjects A and B, and the maximum load of each part was obtained for 20 samples obtained by measuring the change in each part load from L1 to L10 shown in FIG. 8 from each step. FIG. 12 shows the result of calculating the average and the variation of the values. The load value for each part is normalized by the maximum value of all loads at each time. As a result of performing a T test, the maximum load value of the site except for L8 and L10 is significantly different among subjects (p <0.05). Also, the feature is that the load value of the finger on the subject A is large. Thus, it can be seen that the maximum value of the site-specific load is an effective individual feature.
[0023]
Next, FIG. 13 shows the result of calculating the average and the variation of the time when the load per part becomes maximum for the 20 samples. The time is normalized by one step of the contact time. The variation in the timing at which the maximum load is applied to both the subjects A and B is small, and it can be said that the timing at which each part is grounded most strongly during walking is constant with respect to the grounding period. In addition, as a result of the T test, the phase of the portion other than L9 at the maximum load has a significant difference among subjects (p <0.05).
[0024]
Thus, it can be seen that there is an effective personal feature at the time when the load by site is the first.
[0025]
FIG. 14 is a configuration diagram of a pressure distribution analyzer according to the sixth embodiment of the present invention. The pressure distribution analyzer of the present embodiment implements the pressure distribution analyzer of FIG. 2 on a computer such as a personal computer, and calculates a pressure sensor 601 (same as the pressure sensor 101) and a storage device 602 as a hard disk. An output device 603 such as a printer or a display that outputs the sum of the detected pressures, and a pressure distribution analysis program composed of processes of a bottom area detection unit 102, a part recognition unit 103, and a part-specific load detection unit 104 in FIG. A recording medium 604 such as an FD (floppy disk), CD-ROM, MO (magneto-optical disk) or the like is recorded, and a CPU 605 reads a pressure distribution analysis program from the recording medium 604 and executes the program. .
[0026]
2, 5, and 7 can be similarly implemented on a computer such as a personal computer.
[0027]
As described above, the present invention has been described with reference to the example of the pressure distribution at the time of human walking, but it is needless to say that the present invention can be applied to the analysis of the pressure distribution at the time of animal walking.
[0028]
【The invention's effect】
As described above, according to the present invention, a time-dependent change in load for each part of the object surface is extracted, and the spatial and temporal distribution of the pressure when the moving object comes into contact with the ground is automatically analyzed. And take no time.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pressure distribution analyzer according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a pressure distribution analyzer according to a second embodiment of the present invention.
FIG. 3 is a diagram showing an example of foot pressure distribution and sole detection.
FIG. 4 is a diagram showing an example in which a part is recognized.
FIG. 5 is a configuration diagram of a pressure distribution analyzer according to a third embodiment of the present invention.
FIG. 6 is a diagram illustrating a procedure of a template transformation process.
FIG. 7 is a configuration diagram of a pressure distribution device according to a fourth embodiment of the present invention.
FIG. 8 is a diagram illustrating an example in which a part is recognized.
FIG. 9 is a diagram showing an example of a load for each part.
FIG. 10 is a configuration diagram of a pressure distribution analyzer according to a fifth embodiment of the present invention.
FIG. 11 is a graph of an example in which a temporal change of a load for each part is normalized by a ground contact period of an object.
FIG. 12 is a graph showing an example of the average and the variation of the maximum value of the load for each part.
FIG. 13 is a graph showing an example of time averages and variations when the load for each part is maximized.
FIG. 14 is a configuration diagram of a pressure distribution analyzer according to a sixth embodiment of the present invention.
[Explanation of symbols]
101 Pressure sensor 102 Bottom area detection unit 103 Part recognition unit 104 Part-specific load detection unit 201 Connection area detection unit 202 Part determination unit 301 Template collation unit 302 Template storage unit 401 Part identification unit 501 Template storage unit 502 Part identification unit 503 Bottom direction Detector 601 Pressure sensor 602 Storage device 603 Output device 604 Recording medium 605 Data processing device

Claims (12)

動物体の足が接地したときの圧力分布を計測する圧力センシング手段と、
計測した圧力分布から足底領域を検出する足底領域検出手段と、
該足底領域から,親指、人差し指、中指、薬指、小指、前足部内側、前足部中央、前足部外側、中足部、踵部の各部位を認識する部位認識手段と、
該部位認識手段で認識された部位領域内の圧力の総和を算出し、部位別荷重の時間を動物体の足底の接地期間で正規化し、荷重値を同一の動物体足底の接地期間中の最大荷重値で正規化する部位別荷重検出手段と
を有する圧力分布分析装置。
Pressure sensing means for measuring the pressure distribution when the foot of the moving object touches the ground,
Sole area detecting means for detecting a sole area from the measured pressure distribution,
Part recognition means for recognizing, from the sole area, each part of the thumb, the index finger, the middle finger, the ring finger, the little finger, the inside of the forefoot, the center of the forefoot, the outside of the forefoot, the middle foot, and the heel;
The sum of the pressures in the region of the part recognized by the part recognition means is calculated, the time of the load for each part is normalized by the contact period of the sole of the moving object, and the load value is calculated during the contact period of the sole of the same moving object. And a load detecting means for each part which normalizes with a maximum load value of the pressure distribution analyzer.
前記部位認識手段が、前記動物体の足底の前記各部位への分割方法を表したテンプレートを記憶しているテンプレート記憶手段と、
記憶されていたテンプレートの向きと大きさを前記足底領域に合わせることにより前記足底領域を前記各部位に分割するテンプレート照合手段とを含む、請求項1記載の圧力分布分析装置。
A template storage unit that stores a template representing a method of dividing the sole of the moving object into the respective parts,
The pressure distribution analyzer according to claim 1, further comprising: a template matching unit configured to divide the sole region into the respective parts by adjusting the orientation and the size of the stored template to the sole region.
前記部位認識手段が、前記動物体の足底の前記各部位への分割方法を表したテンプレートを記憶しているテンプレート記憶手段と、
前記足底領域検出手段より足底領域を受け取ると、該足底領域を構成する圧力分布の計測点が隣接しているものを連結領域として検出する連結領域検出手段と、
前記足底領域検出手段より受け取った足底領域に前記テンプレート記憶手段に記憶されていたテンプレートの向きと大きさを合わせることにより前記足底領域を小領域に分割するテンプレート照合手段と、
前記連結領域検出手段で検出された連結領域と前記テンプレート照合手段で分割された小領域から動物体の足底の各部位を識別し、識別した各部位を前記部位別荷重検出手段に出力する部位識別手段を含む、請求項1記載の圧力分布分析装置。
A template storage unit that stores a template representing a method of dividing the sole of the moving object into the respective parts,
Receiving the sole area from the sole area detecting means, a connected area detecting means for detecting the adjacent one of the pressure distribution measurement points constituting the sole area as a connected area,
Template matching means for dividing the sole area into small areas by matching the orientation and size of the template stored in the template storage means to the sole area received from the sole area detection means,
A part for identifying each part of the sole of the moving object from the connected area detected by the connected area detecting means and the small area divided by the template matching means, and outputting each identified part to the part-specific load detecting means. The pressure distribution analyzer according to claim 1, further comprising identification means.
動物体が所定の面を通過するとき、該面に接地したときの圧力分布を計測する圧力センシング手段と、
計測した圧力分布から前記動物体の足底領域を検出する足底領域検出手段と、
該足底領域から予め登録しておいた部位を認識する部位認識手段と、
該部位認識手段で認識された部位領域内の圧力の総和を算出する部位別荷重検出手段とを有し、
前記部位認識手段が、前記動物体の足底の前記部位への分割方法を表したテンプレートを記憶しているテンプレート記憶手段と、前記足底領域検出手段より動物体の足底領域を受け取ると、該足底領域を構成する圧力分布の計測点が隣接しているものを連結領域として検出する連結領域検出手段と、前記足底領域検出手段より前記動物体の足底領域を受け取り、該足底領域に前記テンプレート記憶手段に記憶されているテンプレートの向きと大きさを合わせることにより前記足底領域を小領域に分割し、分割された各小領域を出力し、また足底方向を受け取ると、前記テンプレート記憶手段からテンプレートを読み取り、該テンプレートの向きを前記足底方向に合わせることにより前記足底領域を小領域に分割し、分割された各小領域を出力するテンプレート照合手段と、前記テンプレート照合手段より分割された小領域を最初に受け取ったときには該小領域と前記連結領域検出手段より受け取った連結領域から動物体の足底の各部位を識別し、識別した各部位領域を足底方向検出手段に出力し、前記テンプレート照合手段より小領域を2回目に受け取ったときは該小領域と前記連結領域検出手段より受け取った連結領域から動物体の足底の各部位を識別し、識別した各部位を前記部位別荷重検出手段に出力する部位識別手段と、前記部位識別手段より最初に出力された部位領域から足底方向を検出し、前記テンプレート照合手段に出力する足底方向検出手段を含む、
圧力分布分析装置。
When the moving object passes through a predetermined surface, a pressure sensing means for measuring a pressure distribution when the object comes into contact with the ground,
A sole region detecting means for detecting a sole region of the moving object from the measured pressure distribution,
Part recognition means for recognizing a part registered in advance from the sole area;
Having a part-by-part load detecting means for calculating the sum of the pressures in the part area recognized by the part recognizing means,
The part recognition means, a template storage means storing a template representing a method of dividing the sole of the moving object into the part, and receiving the sole area of the moving object from the sole area detecting means, A connection region detecting means for detecting, as a connection region, an adjacent measurement point of the pressure distribution forming the sole region, and a sole region of the moving object from the sole region detecting means; Dividing the sole region into small regions by matching the orientation and size of the template stored in the template storage means to the region, outputting each divided small region, and receiving the sole direction, A template is read from the template storage unit, and the orientation of the template is adjusted to the sole direction to divide the sole area into small areas and output the divided small areas. When a small area divided by the template matching means is first received, the respective parts of the sole of the moving object are identified from the small area and the connected area received from the connected area detecting means. The respective region regions are output to the sole direction detecting means, and when the small area is received a second time from the template matching means, the sole area of the moving object is obtained from the small area and the connected area received from the connected area detecting means. A part identification means for identifying each part and outputting each identified part to the part-specific load detection means, and a sole direction detected from a part area first output from the part identification means, and the template matching means Including a sole direction detecting means for outputting
Pressure distribution analyzer.
前記部位別荷重検出手段は部位別荷重の時間を動物体の足底の接地期間で正規化し、荷重値を同一の動物体足底の接地期間中の最大荷重値で正規化する請求項 に記載の圧力分布分析装置。The load according to claim 4 , wherein the load detecting means normalizes the time of the load according to the part in the ground contact period of the sole of the moving object, and normalizes the load value with the maximum load value during the contact period of the sole of the moving object. A pressure distribution analyzer according to any one of the preceding claims. 前記部位別荷重検出手段は、同一の動物体足底の接地期間のなかで、各部位の荷重値が最大となるときの値、および、そのときの正規化後の時刻を部位別荷重特徴として出力する請求項1または請求項5に記載の圧力分布分析装置。The load detection means for each part, during the ground contact period of the same animal sole, the value when the load value of each part is maximum, and the time after normalization at that time as a part-specific load feature The pressure distribution analyzer according to claim 1 or 5, which outputs the pressure distribution. 動物体の足が接地したときの計測された圧力分布から足底領域を検出する足底領域検出処理と、
該足底領域から,親指、人差し指、中指、薬指、小指、前足部内側、前足部中央、前足部外側、中足部、踵部の各部位を認識する部位認識処理と、
該部位認識処理で認識された部位領域内の圧力の総和を算出し、部位別荷重の時間を動物体の足底の接地期間で正規化し、荷重値を同一の動物体足底の接地期間中の最大荷重値で正規化する部位別荷重検出処理と
をコンピュータで実行させるための圧力分布分析プログラムを記録した記録媒体。
Sole area detection processing for detecting the sole area from the measured pressure distribution when the moving object's feet touch the ground,
A part recognition process for recognizing each part of the thumb, the index finger, the middle finger, the ring finger, the little finger, the inside of the forefoot, the center of the forefoot, the outside of the forefoot, the middle foot, and the heel from the sole area;
The sum of the pressures in the region of the part recognized by the part recognition processing is calculated, the time of the load for each part is normalized by the contact period of the sole of the moving object, and the load value is calculated during the contact period of the sole of the same moving object. A recording medium storing a pressure distribution analysis program for causing a computer to execute a load detection process for each part normalized by the maximum load value of the above .
前記部位認識処理が、テンプレート記憶手段に記憶されていたテンプレートの向きと大きさを前記足底領域に合わせることにより前記足底領域を前記各部位に分割するテンプレート照合処理とを含む、請求項7記載の記録媒体。8. The part recognition process includes a template matching process that divides the sole region into the respective parts by matching the orientation and size of the template stored in the template storage unit with the sole region. The recording medium according to the above. 前記部位認識処理が、前記足底領域検出処理より動物体の足底領域を受け取ると、該足底領域を構成する圧力分布の計測点が隣接しているものを連結領域として検出する連結領域検出処理と、
前記足底領域検出処理より受け取った足底領域にテンプレート記憶手段に記憶されていたテンプレートの向きと大きさを合わせることにより前記足底領域を小領域に分割するテンプレート照合処理と、
前記連結領域検出処理で検出された連結領域と前記テンプレート照合処理で分割された小領域から動物体の足底の各部位を識別し、識別した各部位を前記部位別荷重検出処理に出力する部位識別処理を含む、請求項7記載の記録媒体。
When the part recognition processing receives the sole area of the moving object from the sole area detection processing, a connected area detection that detects, as a connected area, a measurement point of the pressure distribution constituting the sole area as an adjacent area. Processing,
Template matching processing for dividing the sole area into small areas by matching the orientation and the size of the template stored in the template storage means with the sole area received from the sole area detection processing;
A part that identifies each part of the sole of the moving object from the connected area detected in the connected area detection processing and the small area divided in the template matching processing, and outputs the identified part to the part-specific load detection processing. 8. The recording medium according to claim 7, including an identification process.
動物体が所定の面を通過するとき、該面に接地したときの計測された圧力分布から足底領域を検出する足底領域検出処理と、
該足底領域から予め登録しておいた部位を認識する部位認識処理であって、前記足底領域検出処理より前記足底領域を受け取ると、該足底領域を構成する圧力分布の計測点が隣接しているものを連結領域として検出する連結領域検出処理と、前記足底領域検出処理より前記動物体の足底領域を受け取り、該足底領域にテンプレート記憶手段に記憶されているテンプレートの向きと大きさを合わせることにより前記足底領域を小領域に分割し、分割された各小領域を出力し、また足底方向を受け取ると、前記テンプレート記憶手段からテンプレートを読み取り、該テンプレートの向きを前記足底方向に合わせることにより前記足底領域を小領域に分割し、分割された各小領域を出力するテンプレート照合処理と、前記テンプレート照合処理より分割された小領域を最初に受け取ったときには該小領域と前記連結領域検出処理より受け取った連結領域から前記足底領域の各部位を識別し、識別した各部位領域を足底方向検出処理に出力し、前記テンプレート照合処理より小領域を2回目に受け取ったときは該小領域と前記連結領域検出処理より受け取った連結領域から動物体の足底の各部位を識別し、識別した各部位を部位別荷重検出処理に出力する部位識別処理と、前記部位識別処理より最初に出力された部位領域から足底方向を検出し、前記テンプレート照合処理に出力する足底方向検出処理を含む部位認識処理と、
該部位認識処理で認識された部位領域内の圧力の総和を算出する前記部位別荷重検出処理と
をコンピュータに実行させるための圧力分布分析プログラムを記録した記録媒体。
When the moving object passes through a predetermined surface, a sole region detection process of detecting a sole region from a measured pressure distribution when the surface touches the ground,
In the part recognition processing for recognizing a part registered in advance from the sole area, when the sole area is received from the sole area detection processing, the measurement points of the pressure distribution forming the sole area are determined. A connected region detecting process of detecting an adjacent object as a connected region, and receiving a sole region of the moving object from the sole region detecting process, and the orientation of the template stored in the template storage means in the sole region By dividing the sole area into small areas by adjusting the size of the sole area, outputting each divided small area, and receiving the sole direction, the template is read from the template storage means, and the orientation of the template is determined. A template matching process that divides the sole region into small regions by matching the plantar direction and outputs each divided small region; The split is small regions when the received first identifies each part of the plantar region from the connecting region received from the connected area detecting process and the small region, outputs the part region which is identified plantar direction detection processing Then, when the small area is received for the second time by the template matching processing, each part of the sole of the moving object is identified from the small area and the connected area received by the connected area detection processing, and each identified part is identified as a part. A part identification process to be output to another load detection process; a part recognition process including a sole direction detection process to detect a sole direction from the part region output first from the part identification process and to output to the template matching process. ,
A recording medium recording a pressure distribution analysis program for causing a computer to execute the load detection processing for each part, which calculates the sum of the pressures in the part regions recognized in the part recognition processing.
前記部位別荷重検出処理は部位別荷重の時間を動物体の足底の接地期間で正規化し、荷重値を同一の動物体足底の接地期間中の最大荷重で正規化する請求項10に記載の記録媒体。According to claim 10, said site-specific load detection process of site-specific loading time normalized to ground period plantar animal body, to normalize the load value at maximum load during the ground period of the same animal body plantar Recording medium. 前記部位別荷重検出処理は、同一の動物体足底の接地期間のなかで、各部位の荷重値が最大となるときの値、および、そのときの正規化後の時刻を部位別荷重特徴として出力する請求項7または請求項11に記載の記録媒体。The site-specific load detection process, during the ground contact period of the same animal sole, the value when the load value of each site is maximum, and the time after normalization at that time as the site-specific load feature The recording medium according to claim 7 , wherein the recording medium is output.
JP21352899A 1999-07-28 1999-07-28 Pressure distribution analyzer and recording medium recording pressure distribution analysis program Expired - Fee Related JP3600477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21352899A JP3600477B2 (en) 1999-07-28 1999-07-28 Pressure distribution analyzer and recording medium recording pressure distribution analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21352899A JP3600477B2 (en) 1999-07-28 1999-07-28 Pressure distribution analyzer and recording medium recording pressure distribution analysis program

Publications (2)

Publication Number Publication Date
JP2001041835A JP2001041835A (en) 2001-02-16
JP3600477B2 true JP3600477B2 (en) 2004-12-15

Family

ID=16640693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21352899A Expired - Fee Related JP3600477B2 (en) 1999-07-28 1999-07-28 Pressure distribution analyzer and recording medium recording pressure distribution analysis program

Country Status (1)

Country Link
JP (1) JP3600477B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146222B2 (en) * 2001-12-25 2008-09-10 農工大ティー・エル・オー株式会社 Foot motion analysis system
JP2009106375A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Gait discrimination system
JP5022178B2 (en) * 2007-10-26 2012-09-12 パナソニック株式会社 Gait analysis system
JP2011002907A (en) * 2009-06-16 2011-01-06 Kansai Electric Power Co Inc:The Personal authentication system
JP6215521B2 (en) * 2012-08-30 2017-10-18 リーフ株式会社 Foot pressure measuring device and foot pressure measuring method using the same
JP6767009B2 (en) * 2016-08-31 2020-10-14 株式会社テック技販 Motion analysis system

Also Published As

Publication number Publication date
JP2001041835A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
EP3468450B1 (en) Method and system for analyzing human gait
Ertuğrul et al. Detection of Parkinson's disease by shifted one dimensional local binary patterns from gait
Iyatomi et al. Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin
CN108830251A (en) Information correlation method, device and system
US10791939B2 (en) Biometric scale
Motiian et al. Automated extraction and validation of children’s gait parameters with the Kinect
WO2012119126A2 (en) Apparatus, system, and method for automatic identification of sensor placement
US20140081182A1 (en) Method and apparatus for determining at least one predetermined movement of at least one part of a body of a living being
Verlekar et al. Estimation and validation of temporal gait features using a markerless 2D video system
Selzler et al. Neurodegenerative disease prediction based on gait analysis signals acquired with force-sensitive resistors
JP3600477B2 (en) Pressure distribution analyzer and recording medium recording pressure distribution analysis program
Carvajal-Castaño et al. Effective detection of abnormal gait patterns in Parkinson's disease patients using kinematics, nonlinear, and stability gait features
CN114881079A (en) Human body movement intention abnormity detection method and system for wearable sensor
CN113456060B (en) Extraction device for motion function characteristic parameters
Xie et al. Wearable multisource quantitative gait analysis of Parkinson's diseases
JP2020513203A (en) Locogram software: a tool for analyzing walking movements
JPH11113884A (en) Walking analysis method, device thereof, and recording medium recording the method
Chen et al. Systematic evaluation of features from pressure sensors and step number in gait for age and gender recognition
Eun et al. Development of personalized urination recognition technology using smart bands
Djamaa et al. BoostSole: Design and realization of a smart insole for automatic human gait classification
KR101483218B1 (en) Activity diagnosis apparatus
US20180365478A1 (en) Multi-modal type wearable user authentication apparatus using bio signal
Gallagher et al. Smartphone Sensor Data Mining for Gait Abnormality Detection
Dong et al. An “optical flow” method based on pressure sensors data for quantification of Parkinson's disease characteristics
KR102302234B1 (en) Apparatus and method for identifying individuals by performing discriminant analysis for various detection information

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees