JP3599991B2 - Sealing method for resin hollow body - Google Patents

Sealing method for resin hollow body Download PDF

Info

Publication number
JP3599991B2
JP3599991B2 JP35986997A JP35986997A JP3599991B2 JP 3599991 B2 JP3599991 B2 JP 3599991B2 JP 35986997 A JP35986997 A JP 35986997A JP 35986997 A JP35986997 A JP 35986997A JP 3599991 B2 JP3599991 B2 JP 3599991B2
Authority
JP
Japan
Prior art keywords
resin
hole
hollow body
laser beam
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35986997A
Other languages
Japanese (ja)
Other versions
JPH11188783A (en
Inventor
寛治 澄川
一夫 伊崎
晋 小野
甲子男 中江
義人 杉野
俊介 浅野
修也 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoraku Co Ltd
Fuji Electric Co Ltd
Original Assignee
Kyoraku Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoraku Co Ltd, Fuji Electric Holdings Ltd filed Critical Kyoraku Co Ltd
Priority to JP35986997A priority Critical patent/JP3599991B2/en
Publication of JPH11188783A publication Critical patent/JPH11188783A/en
Application granted granted Critical
Publication of JP3599991B2 publication Critical patent/JP3599991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/004Closing perforations or small holes, e.g. using additional moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔等を密閉する樹脂製中空体の密閉方法に関する。
【0002】
【従来の技術】
ブロー成形法は、熱可塑性樹脂を加熱して軟化させて中空の管状体としたパリソンを金型内に保持し、その内部に加圧したガスを導入してパリソンを膨張させて中空の成形体を製造する方法である。したがって、成形体のガス導入部にはブロー孔が残る。また、射出成形法による中空の成形体の場合においても、中空部を形成するために導入したガスの通路が開口部として残る。したがって、密閉された樹脂製中空体を製造するためには、そのブロー孔や開口部を封止することが必要となる。更に、このような樹脂製中空体の内部に他の物質を充填して密閉する場合には、必要に応じて、ガス排出口を設けることもあり、充填口やガス排出口を密閉することが必要となる。
【0003】
ブロー孔や開口部、充填口、ガス排出口等(以下ではブロー孔等と言う)を密閉するのは、製品としての密閉状態を確保するための他に、例えば、食品等の内容物を充填する以前の工程において中空状の空容器の無菌状態を維持するため、異物の混入を防止するため、あるいは輸送時や移動時等において容器の立体形状を維持するため等の必要性から実施される。
【0004】
従来技術におけるブロー孔等の密閉方法は、成形体とは別の部材を使用する方法と成形体の一部を使用する方法とに大別される。
別部材を使用する方法には、例えば特開平6−286741号公報に開示されているように、栓体をブロー孔等に挿入し溶着等の手段で密閉する方法と、別部材をブロー孔等の周辺に置き、加熱軟化させて圧潰してブロー孔等を密閉する方法とがある。この方法は別部材を準備することが必要であり、密閉工程が煩雑となる。
【0005】
一方、成形体の一部を使用する方法は、ブロー孔等の周辺の樹脂を加熱軟化させ、圧潰等の手段によって孔部に移動させてブロー孔等を密閉する。したがって、別部材を準備することは必要なく、密閉工程も簡単になる。
この方法の従来技術による一例としては、特公昭54−37636号公報に開示されている方法がある。図5はこの方法を説明するための図で、(a)はブロー孔122 周辺を示す部分図、(b)はそのBB断面の拡大図である。この方法においては、ブロー成形法によって中空成形体を形成する際に、頭部12のブロー孔122 の周囲に筒状部121 を一体で形成し、成形金型から成形品を取り出した後、その筒状部121 を加熱した押圧部材23で加熱軟化させて圧潰し、ブロー孔122 を密閉する。この方法は、加熱した押圧部材23で筒状部121 を加熱しながら圧潰するので、押圧部材23に筒状部121 の樹脂が付着し、加工面が綺麗に仕上がらないという問題点と、繰り返し使用している内に付着樹脂が炭化して変色し、それが加工面に付着して加工面を汚すという問題点とをもっている。
【0006】
従来技術による他例としては、特公平3−66141 号公報に開示されている方法がある。図6はこの方法を説明するための図で、(a)はブロー成形による膨出部を切断する状態を示す部分断面図、(b)は切断後の状態を示す部分断面図、(c)は封止部の加熱を示す部分断面図、(d)は封止部の整形を示す部分断面図である。この中空成形体1aの頭部12a の上部にはブロー孔をもつ膨出部14が形成されており、頭部12a と膨出部14とは連通部13の連通孔131 によって連通している。ブロー成形された中空成形体1aは、まずその連通部13において加熱された切断用板体21により膨出部14が切り離される。この際に連通孔131 は周辺の軟化した樹脂によって(b)図に封止部15として示されているように埋められる。その後、ガスバーナ22によって封止部15付近が加熱され、押圧部材23a で押圧されて封止部15はより完全に密閉され、同時に所定の形状に整形される。この方法の場合には、押圧部材23a による密閉・整形は所望通り実施できる。しかし、加熱された切断用板体21による切り離し時において、切り離し部が切断用板体21に付着した樹脂の炭化物によって汚損されるのが問題である。
【0007】
加熱した部材を接触させない方法としては、特公平3−33088 号公報に開示されている方法がある。この方法は、ブロー孔の近傍に加熱加圧気体を吹き付けてブロー孔近傍の樹脂を加熱軟化させてブロー孔へ移動させブロー孔を密閉する方法である。この方法においては、加熱された部材が樹脂に接触しないので、その部材に付着した樹脂が炭化し、炭化した樹脂が後の加工で加工部に付着して加工品を汚すことはない。しかし、加熱加圧気体を吹き付けて加工するために加熱領域を狭い領域に限定することが困難であり、加工できる形状の制約も多く、装置の維持管理が面倒であることが問題点である。
【0008】
従来技術における射出成形法によって形成されたガス注入孔を、その孔の周囲の樹脂を移動させることによって密閉する方法としては、特開平7−60858 号公報に開示されている方法がある。この方法は、プリンタの用紙ガイド等の樹脂中空体において、加熱ヘッドを樹脂中空体のガス注入孔の周囲に形成された筒部に押しつけ、熱プレスする方法である。この方法においては、加熱ヘッドに溶融した樹脂が付着し、加工面が綺麗に仕上がらない等、前述した特公昭54−37636号と同様な問題を有している。
【0009】
【発明が解決しようとする課題】
この発明の課題は、上記の従来技術における問題点を解消して、ブロー孔等の密閉部の外観形状に優れ、気密性とその安定性が良く、加工が容易な樹脂製中空体の密閉方法を提供することである。
【0010】
【課題を解決するための手段】
この発明においては、ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔等を、その孔の周囲の樹脂を移動させることによって密閉する樹脂製中空体の密閉方法において、前記孔の周囲に筒状の樹脂壁を樹脂製中空体の形成時に一体に形成し、筒状の樹脂壁の開口部側から樹脂壁にレーザビームを斜めに照射して樹脂壁を選択的に加熱して軟化させ、軟化した樹脂壁を樹脂の軟化点より低い温度の押圧部材によって圧潰して前記孔を密閉する(請求項1の発明)。
【0011】
ブロー孔等の周囲に形成された筒状の樹脂壁にレーザビームを斜めに照射して樹脂壁を選択的に加熱することによって、ブロー孔等に対向する反対側の壁面にレーザビームが直接照射されることがなくなり、その壁面に損傷を与えることがない。しかも、レーザビームはその照射領域とそのエネルギーの制御性に優れるので、加熱領域を樹脂壁及びその近傍に限定でき、かつその領域の温度を正確に制御することができる。このようにして正確に温度制御されて加熱された筒状の樹脂壁を、樹脂の軟化点より低い温度の押圧部材によって圧潰するので、押圧部材に樹脂が付着することがなく、しかも、ブロー孔等は軟化された樹脂壁の樹脂によって確実に密閉され、かつ加工部は押圧部材の形状通りに綺麗に整形される。
【0012】
また、ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔やガス注入孔、ガス排出孔等を、その孔の周囲の樹脂を移動させることによって密閉する樹脂製中空体の密閉方法において、前記孔の周囲に、筒状の樹脂壁を、樹脂製中空体の形成時に一体に形成し、筒状の樹脂壁の開口部側から発散状のレーザビームを樹脂壁に照射して樹脂壁を選択的に加熱して軟化させ、軟化した樹脂壁を樹脂の軟化点より低い温度の押圧部材によって圧潰して前記孔を密閉する(請求項2の発明)。
【0013】
レーザビームを発散状とすることによって、ブロー孔等に対向する反対側の壁面にレザビームが到達してもそのエネルギー密度が小さくなるので、その壁面に損傷を与えることがない。レーザビームや樹脂壁、押圧部材の作用は請求項1の発明と同じである。
請求項2の発明において、発散状のレーザビームが凸レンズによって形成される(請求項3の発明)。
【0014】
レーザ発生装置から照射されたレーザビームを凸レンズによって発散状にすると、凹レンズによって同じ広がり角をもつレーザビームを形成する場合に比べて、レンズと加工物との距離を大きく取ることができる。
請求項1から請求項3のいずれかの発明において、レーザビームが炭酸ガスレーザ装置によるレーザビームである(請求項4の発明)。
【0015】
炭酸ガスレーザ装置によるレーザビームは、筒状の樹脂壁を加熱するのに必要十分なエネルギ密度を有し、筒状の樹脂壁の表面のみならず内部をも加熱でき、かつ透過したビームが中空体の他の部分に損傷を与えるほどのエネルギーを残さないような適当な吸収係数をもつ波長の赤外線である。
【0016】
【発明の実施の形態】
この発明による樹脂製中空体の密閉方法の実施の形態は、樹脂製中空体の形成時に一体にブロー孔等の周囲に筒状の樹脂壁を形成すること、この樹脂壁をレーザビームによって選択的に加熱して軟化させること、及び軟化させた樹脂壁を樹脂の軟化点以下の温度の押圧部材によって圧潰してブロー孔等を密閉・整形することからなることを特徴とする。
【0017】
以下に実施例について説明する。なお、従来技術と同じ機能の部分には同じ部号を付している。
〔第1の実施例〕
図1はこの発明の第1の実施例を説明するためのブロー孔封止装置の概念図であり、図2はそのAA方向の断面図、図3は図1のブロー孔周辺の詳細を示し、(a)はブロー孔周辺の拡大図、(b)はブロー孔の中心を通る断面の拡大図である。
【0018】
ブロー成形法で成形された中空成形体1bは、成形された後、ワーク搬送用バケット42に載せられ、チェーンコンベア41によってブロー孔封止装置に搬送され、第1及び第2のワーククランプ43及び44によって位置決めされる。ブロー孔封止装置には、図2に示すように、ブロー孔の位置に対応して、中空成形体1bのブロー孔に傾斜角θだけ傾けて斜めにレーザビームを照射する炭酸ガスレーザ照射装置(図1及び図2では単にレーザ照射装置)32と、押圧装置34によって上下に移動させられる押圧部材23b とが備えられている。
【0019】
中空成形体1bのブロー孔の周辺の詳細は、図3(a)に示す通りであり、中空成形体1bの頭部12b には凹部123 が形成されており、この凹部123 の中央部にブロー孔122aがあり、その周囲を囲んで筒状の樹脂壁(以下では筒状部という)121aが形成されている。ブロー孔の内径Dと筒状部の深さHとの関係を図3(b)に示したように、
tanθ=D/H
とする。
【0020】
このようなブロー孔封止装置によってブロー孔122aを密閉する方法は以下の通りである。
まず、レーザビームの傾斜角θを、θ≒θに設定し、筒状部121aに所定のエネルギー(所定のエネルギー密度で所定の時間)のレーザビームを照射し、筒状部121aが軟化溶融状態になる温度まで加熱する。次いで、レーザビームを止め、直ちに押圧装置34を駆動して押圧部材23b を降下させ筒状部121aを圧潰してブロー孔122aを埋めると同時に整形してブロー孔122aを密閉する。なお、圧潰時には押圧部材23b の温度が樹脂の軟化点温度より低い温度に制御されている。押圧部材23b の温度が樹脂の軟化点温度より低い温度に制御されていても、樹脂の熱伝導度が余り大きくないことによって、軟化された樹脂は急激に冷却されることはなく、ブロー孔122aに流動してブロー孔122aを埋めて密閉し、同時に整形される。
【0021】
レーザビーム発生装置として炭酸ガスレーザを使用しているのは、対象とする熱可塑性樹脂、例えばポリエチレン、の筒状部121aを加熱するのに必要なエネルギを供給できる出力があり、しかも筒状部121aの表面だけではなく内部までも直接加熱できる吸収係数を備えており、更に筒状部121aを透過して対向壁面124 に到達するレーザビームは問題になるほどのエネルギを残していないという状態を実現できるからである。
【0022】
このように炭酸ガスレーザ装置によるレーザビームを傾けて照射することによって、筒状部121aに選択的にレーザビームが照射されて筒状部121aが選択的に加熱され、一方、厚さの薄い対向壁面124 にはレーザビームは殆ど照射されることがなく、レーザビームの照射による対向壁面124 の損傷が避けられる。なお、参考までに筒状部121aの形状、対向壁面124 の厚さ、及び傾斜角θの一例を示すと、筒状部121aの厚さは1.5 mmで内径Dはφ1.8 mm、深さHは3.5mm であり、対向壁面124 の厚さは0.5 mm、傾斜角θは27度である。
【0023】
また、筒状部121aが凹部123 に形成されているのは、密閉部に残る痕跡が突起状に残った場合には、多数の中空容器の輸送時や移動時において、その痕跡が他の中空容器の外面に擦り傷を生じさせるという問題があるので、この問題を解消するためである。したがって、この発明は、筒状部121aが凹部123 に形成される場合に限定されるものでないことは明らかであろう。
【0024】
〔第2の実施例〕
図4は第2の実施例を説明するためのブロー孔の中心を通る断面の拡大図である。
この実施例においては、レーザ照射装置から照射されたレーザビーム321 を凸レンズ322 によって拡散状のレーザビームとして筒状部121aに照射している。拡散状のレーザビームにすることによって対向壁面124 に到達したレーザビームのエネルギー密度を小さくして、レーザビームが対向壁面124 に到達してもエネルギー密度が小さいためにそこを損傷しないようにしている。
【0025】
拡散状のレーザビームは凹レンズによっても生成できるが、同じ拡散角を得る場合には凸レンズの方がレンズと筒状部121aとの距離を大きくすることができるので、レンズの配置に余裕ができ、装置の設計が容易となる。
以上の2つの実施例はブロー成形法による食品容器等の中空体について説明したが、空気の他に蓄熱体や発泡樹脂等を充填したフロート類や、蓄冷剤を充填した蓄冷パック、射出成形法による樹脂製中空体をベースとする、スポイラやバンパ、サイドモール、リヤーパーセル、ドアポケット、ドアパネル等の自動車部品、椅子の肘掛けやキャビネット等の家具、トイレタリ部品、OA機器用ハウジング等にも適用することができる。
【0026】
【発明の効果】
この発明によれば、ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔等を、その孔の周囲の樹脂を移動させることによって密閉する樹脂製中空体の密閉方法において、前記孔の周囲に筒状の樹脂壁を樹脂製中空体の形成時に一体に形成し、筒状の樹脂壁の開口部側から樹脂壁にレーザビームを斜めに照射して樹脂壁を選択的に加熱して軟化させ、軟化した樹脂壁を樹脂の軟化点より低い温度の押圧部材によって圧潰して前記孔を密閉するので、ブロー孔等に対向する反対側の壁面にレーザビームが直接照射されることがなくなり、その壁面に損傷を与えることがない。しかも、レーザビームはその照射領域とそのエネルギーの制御性に優れるので、加熱領域を樹脂壁及びその近傍に限定でき、かつその領域の温度を正確に制御することができる。このようにして正確に温度制御されて加熱された筒状の樹脂壁を、樹脂の軟化点より低い温度の押圧部材によって圧潰するので、押圧部材に樹脂が付着することがなく、しかも、ブロー孔等は軟化された樹脂壁の樹脂によって確実に密閉され、かつ加工部は押圧部材の形状通りに綺麗に整形される。したがって、ブロー孔等の密閉部の外観形状に優れ、気密性とその安定性が良く、加工が容易な樹脂製中空体の密閉方法を提供することができる(請求項1の発明)。
【0027】
また、ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔やガス注入孔、ガス排出孔等を、その孔の周囲の樹脂を移動させることによって密閉する樹脂製中空体の密閉方法において、前記孔の周囲に、筒状の樹脂壁を、樹脂製中空体の形成時に一体に形成し、筒状の樹脂壁の開口部側から発散状のレーザビームを樹脂壁に照射して樹脂壁を選択的に加熱して軟化させ、軟化した樹脂壁を樹脂の軟化点より低い温度の押圧部材によって圧潰して前記孔を密閉するので、ブロー孔等に対向する反対側の壁面にレザビームが到達してもそのエネルギー密度が小さくなり、請求項1の発明と同様に、その壁面に損傷を与えることがない。したがって、ブロー孔等の密閉部の外観形状に優れ、気密性とその安定性が良く、加工が容易な樹脂製中空体の密閉方法を提供することができる(請求項2の発明)。
【0028】
請求項2の発明において、発散状のレーザビームが凸レンズによって形成されるので、レンズと加工物との距離を凹レンズの場合より大きく取ることができる。したがって、レーザビーム照射部と押圧部材との配置における余裕が増大し、装置の構成が容易になる(請求項3の発明)。
更に、請求項1から請求項3のいずれかの発明において、レーザビームが炭酸ガスレーザ装置によるレーザビームであるので、筒状部を加熱するのに必要十分なエネルギー密度を有し、筒状部の表面のみならず内部をも加熱でき、かつ透過したビームが中空体の他の部分に損傷を与えるほどのエネルギーを残さない。したがって、炭酸ガスレーザ装置によるレーザビームはこの発明に最も適したレーザビームである(請求項4の発明)。
【図面の簡単な説明】
【図1】この発明による樹脂製中空体の密閉方法の第1の実施例を説明するためのブロー孔封止装置の概念図
【図2】図1のAA方向の断面図
【図3】図1のブロー孔周辺の詳細を示し、(a)はブロー孔周辺の拡大図、(b)はブロー孔の中心を通る断面の拡大図
【図4】第2の実施例を説明するためのブロー孔の中心を通る断面の拡大図
【図5】従来技術による樹脂製中空体の密閉方法の一例を示し、(a)はブロー孔周辺を示す部分図、(b)はそのBB断面の拡大図
【図6】他の従来例を示し、(a)はブロー成形による膨出部を切断する状態を示す部分断面図、(b)は切断後の状態を示す部分断面図、(c)は封止部の加熱を示す部分断面図、(d)は封止部の整形を示す部分断面図
【符号の説明】
1a1b 中空成型体
11 口部
12, 12a, 12b 頭部
121, 121a 筒状部 122, 122a ブロー孔
123 凹部 124 対向壁面
13 連通部 131 連通孔
14 膨出部
15 封止部
21 切断用板体 22 ガスバーナ
23, 23a, 23b 押圧部材
32 レーザ照射装置
321 レーザビーム 322 凸レンズ
34 押圧装置
41 チェーンコンベア
42 ワーク搬送用バケット
43 第1のワーククランプ
44 第2 のワーククランプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for sealing a resin hollow body formed by a blow molding method or an injection molding method, which seals a blow hole or the like of the resin hollow body.
[0002]
[Prior art]
In the blow molding method, a parison having a hollow tubular body formed by heating and softening a thermoplastic resin is held in a mold, and a pressurized gas is introduced into the inside to expand the parison and expand the parison. It is a method of manufacturing. Therefore, blow holes remain in the gas introduction portion of the molded body. Further, even in the case of a hollow molded body formed by the injection molding method, the passage of the gas introduced to form the hollow portion remains as an opening. Therefore, in order to manufacture a sealed resin hollow body, it is necessary to seal the blow holes and openings. Furthermore, in the case where the inside of such a resin hollow body is filled with another substance and hermetically sealed, a gas outlet may be provided as necessary, and the filling port and the gas outlet may be sealed. Required.
[0003]
The purpose of sealing the blow holes, openings, filling ports, gas discharge ports, etc. (hereinafter referred to as blow holes, etc.) is to ensure the sealed state of the product, as well as to fill the contents such as food. In order to maintain the sterility of the empty hollow container in the process prior to the process, to prevent the contamination of foreign matter, or to maintain the three-dimensional shape of the container at the time of transportation or movement, etc. .
[0004]
The method of sealing a blow hole or the like in the related art is roughly classified into a method using a member different from the molded body and a method using a part of the molded body.
As a method using a separate member, for example, as disclosed in Japanese Patent Application Laid-Open No. 6-286741, a method in which a plug is inserted into a blow hole or the like and sealed by means such as welding or the like, or a method in which another member is , And then softened by heating and crushing to seal the blow holes and the like. In this method, it is necessary to prepare another member, and the sealing step becomes complicated.
[0005]
On the other hand, in the method of using a part of the molded body, the resin around the blow hole or the like is heated and softened and moved to the hole by means such as crushing to seal the blow hole or the like. Therefore, it is not necessary to prepare a separate member, and the sealing process is simplified.
As an example of this method according to the prior art, there is a method disclosed in Japanese Patent Publication No. 54-37636. 5A and 5B are views for explaining this method, in which FIG. 5A is a partial view showing the periphery of the blow hole 122, and FIG. 5B is an enlarged view of a BB section thereof. In this method, when the hollow molded body 1 is formed by the blow molding method, the cylindrical portion 121 is integrally formed around the blow hole 122 of the head portion 12, and after the molded product is taken out from the molding die, The cylindrical portion 121 is heated and softened by the heated pressing member 23 to be crushed, and the blow hole 122 is sealed. In this method, since the cylindrical portion 121 is crushed while being heated by the heated pressing member 23, the resin of the cylindrical portion 121 adheres to the pressing member 23, and the processed surface is not finished finely, and the method is repeatedly used. During the process, the adhered resin is carbonized and discolored, and adheres to the processed surface to stain the processed surface.
[0006]
As another example of the prior art, there is a method disclosed in Japanese Patent Publication No. 3-66141. 6A and 6B are views for explaining this method, in which FIG. 6A is a partial cross-sectional view showing a state in which a bulging portion formed by blow molding is cut, FIG. 6B is a partial cross-sectional view showing a state after cutting, and FIG. FIG. 4 is a partial cross-sectional view showing heating of the sealing portion, and FIG. 4D is a partial cross-sectional view showing shaping of the sealing portion. A bulged portion 14 having a blow hole is formed at an upper portion of the head portion 12a of the hollow molded body 1a , and the head portion 12a and the bulged portion 14 communicate with each other through a communication hole 131 of the communication portion 13. In the blow-molded hollow molded body 1a , first, the bulging portion 14 is cut off by the cutting plate 21 heated in the communication portion 13 thereof. At this time, the communication hole 131 is filled with the surrounding softened resin as shown in FIG. Thereafter, the vicinity of the sealing portion 15 is heated by the gas burner 22 and pressed by the pressing member 23a, so that the sealing portion 15 is more completely hermetically sealed and simultaneously shaped into a predetermined shape. In the case of this method, sealing and shaping by the pressing member 23a can be performed as desired. However, at the time of separation by the heated cutting plate 21, there is a problem that the cut portion is soiled by the carbide of the resin adhered to the cutting plate 21.
[0007]
As a method for preventing the heated member from being brought into contact, there is a method disclosed in JP-B-3-33088. In this method, a heated and pressurized gas is blown to the vicinity of the blow hole to heat and soften the resin in the vicinity of the blow hole, move the resin to the blow hole, and close the blow hole. In this method, since the heated member does not come into contact with the resin, the resin adhered to the member is not carbonized, and the carbonized resin does not adhere to the processed portion in the subsequent processing and does not stain the processed product. However, it is difficult to limit the heating area to a narrow area because the processing is performed by spraying the heated and pressurized gas, there are many restrictions on the shape that can be processed, and the maintenance of the apparatus is troublesome.
[0008]
As a method of sealing a gas injection hole formed by an injection molding method in the prior art by moving resin around the hole, there is a method disclosed in Japanese Patent Application Laid-Open No. 7-60858. In this method, a heating head is pressed against a cylindrical portion formed around a gas injection hole of a resin hollow body in a resin hollow body such as a paper guide of a printer, and hot pressing is performed. This method has the same problems as the above-mentioned Japanese Patent Publication No. 54-37636, such as the fact that the molten resin adheres to the heating head and the processed surface is not finished finely.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a method for sealing a resin hollow body that is excellent in appearance and shape of a sealing portion such as a blow hole, has good airtightness and its stability, and is easy to process. It is to provide.
[0010]
[Means for Solving the Problems]
According to the present invention, in the method for sealing a resin hollow body formed by a blow molding method or an injection molding method, the blow hole or the like of the resin hollow body is sealed by moving a resin around the hole. A cylindrical resin wall is formed integrally when forming the resin hollow body around the periphery, and the resin wall is selectively heated by obliquely irradiating a laser beam to the resin wall from the opening side of the cylindrical resin wall. The hole is closed by crushing the softened resin wall with a pressing member having a temperature lower than the softening point of the resin (the invention of claim 1).
[0011]
By irradiating the laser beam diagonally to the cylindrical resin wall formed around the blow hole, etc., and selectively heating the resin wall, the laser beam directly irradiates the wall surface opposite to the blow hole, etc. No damage to the wall. Moreover, since the laser beam is excellent in controllability of its irradiation area and its energy, the heating area can be limited to the resin wall and its vicinity, and the temperature of that area can be accurately controlled. In this manner, the cylindrical resin wall heated by accurately controlling the temperature is crushed by the pressing member having a temperature lower than the softening point of the resin, so that the resin does not adhere to the pressing member, and further, the blow hole is formed. And the like are securely sealed by the resin of the softened resin wall, and the processed portion is neatly shaped according to the shape of the pressing member.
[0012]
In addition, a resin hollow body is sealed by moving a resin around the blow hole, a gas injection hole, a gas discharge hole, and the like of the resin hollow body formed by a blow molding method or an injection molding method. In the method, around the hole, a cylindrical resin wall is formed integrally when the resin hollow body is formed, and the resin wall is irradiated with a divergent laser beam from the opening side of the cylindrical resin wall. The resin wall is selectively heated to be softened, and the softened resin wall is crushed by a pressing member having a temperature lower than the softening point of the resin to seal the hole (the invention of claim 2).
[0013]
By making the laser beam divergent, even if the laser beam reaches the wall surface opposite to the blow hole or the like, the energy density is reduced, so that the wall surface is not damaged. The functions of the laser beam, the resin wall, and the pressing member are the same as those of the first aspect.
In the invention of claim 2, the divergent laser beam is formed by a convex lens (the invention of claim 3).
[0014]
When the laser beam emitted from the laser generator is diverged by the convex lens, the distance between the lens and the workpiece can be made longer than when a laser beam having the same divergence angle is formed by the concave lens.
In any one of the first to third aspects of the invention, the laser beam is a laser beam from a carbon dioxide laser device (the invention of the fourth aspect).
[0015]
The laser beam from the carbon dioxide laser device has a sufficient energy density to heat the cylindrical resin wall, can heat not only the surface of the cylindrical resin wall but also the inside, and the transmitted beam is a hollow body. Infrared light having a suitable absorption coefficient that does not leave enough energy to damage other parts.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the method for sealing a resin hollow body according to the present invention is to form a cylindrical resin wall integrally around a blow hole or the like when forming the resin hollow body, and selectively form the resin wall with a laser beam. And the softened resin wall is crushed by a pressing member having a temperature equal to or lower than the softening point of the resin to seal and shape a blow hole or the like.
[0017]
Examples will be described below. The parts having the same functions as those of the conventional technology are denoted by the same reference numerals.
[First embodiment]
FIG. 1 is a conceptual diagram of a blow hole sealing device for explaining a first embodiment of the present invention. FIG. 2 is a cross-sectional view in the AA direction, and FIG. 3 shows details around a blow hole in FIG. (A) is an enlarged view around the blow hole, and (b) is an enlarged view of a cross section passing through the center of the blow hole.
[0018]
After being formed by the blow molding method, the hollow molded body 1b is formed, placed on a work transport bucket 42, transported by a chain conveyor 41 to a blow hole sealing device, and subjected to first and second work clamps 43 and Positioned by 44. As shown in FIG. 2, the blow hole sealing device includes a carbon dioxide gas laser irradiation device that inclines the blow hole of the hollow molded body 1b by an inclination angle θ and irradiates the laser beam obliquely (corresponding to the position of the blow hole). 1 and 2, a laser irradiation device 32) and a pressing member 23b which is moved up and down by a pressing device 34 are provided.
[0019]
The details of the periphery of the blow hole of the hollow molded body 1b are as shown in FIG. 3A, and a concave portion 123 is formed in the head portion 12b of the hollow molded body 1b. There is a hole 122a, and a cylindrical resin wall (hereinafter referred to as a cylindrical portion) 121a is formed around the hole 122a. The relationship between the inner diameter D of the blow hole and the depth H of the cylindrical portion is shown in FIG.
tan θ 0 = D / H
And
[0020]
A method for sealing the blow hole 122a with such a blow hole sealing device is as follows.
First, the inclination angle of the laser beam theta, set theta ≒ theta 0, irradiated with a laser beam of predetermined energy to the tubular portion 121a (predetermined time at a predetermined energy density), the cylindrical portion 121a is softened and melted Heat to a temperature at which it becomes a state. Next, the laser beam is stopped, and the pressing device 34 is immediately driven to lower the pressing member 23b to crush the cylindrical portion 121a to fill the blow hole 122a and at the same time to shape and close the blow hole 122a. At the time of crushing, the temperature of the pressing member 23b is controlled to a temperature lower than the softening point temperature of the resin. Even if the temperature of the pressing member 23b is controlled to a temperature lower than the softening point temperature of the resin, the softened resin is not rapidly cooled because the thermal conductivity of the resin is not so large. To form a closed space by filling the blow holes 122a, and at the same time it is shaped.
[0021]
A carbon dioxide laser is used as a laser beam generator because it has an output capable of supplying energy required to heat a cylindrical portion 121a of a target thermoplastic resin, for example, polyethylene, and has a cylindrical portion 121a. Not only the surface but also the inside can be directly heated, and the laser beam that passes through the cylindrical portion 121a and reaches the opposing wall 124 does not leave enough energy to cause a problem. Because.
[0022]
By irradiating the laser beam from the carbon dioxide gas laser at an angle in this manner, the cylindrical portion 121a is selectively irradiated with the laser beam to selectively heat the cylindrical portion 121a, while the opposite wall surface having a small thickness is provided. The laser beam is hardly radiated to 124, and damage to the opposing wall 124 due to the laser beam irradiation can be avoided. For reference, an example of the shape of the cylindrical portion 121a, the thickness of the opposing wall surface 124, and the inclination angle θ is as follows. The thickness of the cylindrical portion 121a is 1.5 mm, the inner diameter D is φ1.8 mm, The depth H is 3.5 mm, the thickness of the opposed wall surface 124 is 0.5 mm, and the inclination angle θ is 27 degrees.
[0023]
Further, the cylindrical portion 121a is formed in the concave portion 123 because, when a trace remaining in the sealed portion remains in a protruding shape, the trace is transferred to other hollow containers during transportation or movement of a large number of hollow containers. This is because the problem of causing scratches on the outer surface of the container is solved. Therefore, it will be apparent that the present invention is not limited to the case where the cylindrical portion 121a is formed in the concave portion 123.
[0024]
[Second embodiment]
FIG. 4 is an enlarged view of a cross section passing through the center of a blow hole for explaining the second embodiment.
In this embodiment, the cylindrical portion 121a is irradiated with the laser beam 321 irradiated from the laser irradiation device as a diffused laser beam by the convex lens 322. The energy density of the laser beam reaching the opposing wall surface 124 is reduced by forming a diffused laser beam, so that even if the laser beam reaches the opposing wall surface 124, the energy density is low so that the laser beam is not damaged. .
[0025]
Although a diffused laser beam can be generated by a concave lens, when the same diffusion angle is obtained, the convex lens can increase the distance between the lens and the cylindrical portion 121a, so that the lens can be arranged with a margin. The design of the device becomes easy.
Although the above two embodiments have been described for a hollow body such as a food container by a blow molding method, a float filled with a heat storage body or a foamed resin in addition to air, a cold storage pack filled with a cold storage agent, and an injection molding method Also applicable to automotive parts such as spoilers, bumpers, side moldings, rear parcels, door pockets, door panels, etc., furniture such as armrests and cabinets for chairs, toiletry parts, housings for office automation equipment, etc. be able to.
[0026]
【The invention's effect】
According to the present invention, in the method of sealing a resin hollow body, such as a blow hole of a resin hollow body formed by a blow molding method or an injection molding method, by moving a resin around the hole. A cylindrical resin wall is integrally formed around the hole when the resin hollow body is formed, and the resin wall is selectively heated by obliquely irradiating the resin wall with a laser beam from the opening side of the cylindrical resin wall. And the softened resin wall is crushed by a pressing member having a temperature lower than the softening point of the resin to seal the hole, so that the laser beam is directly applied to the wall surface on the opposite side to the blow hole or the like. And no damage to the wall. Moreover, since the laser beam is excellent in controllability of its irradiation area and its energy, the heating area can be limited to the resin wall and its vicinity, and the temperature of that area can be accurately controlled. In this manner, the cylindrical resin wall heated by accurately controlling the temperature is crushed by the pressing member having a temperature lower than the softening point of the resin, so that the resin does not adhere to the pressing member, and further, the blow hole is formed. And the like are securely sealed by the resin of the softened resin wall, and the processed portion is neatly shaped according to the shape of the pressing member. Therefore, it is possible to provide a method for sealing a resin hollow body which is excellent in appearance and shape of a closed portion such as a blow hole, has good airtightness and stability, and is easy to process (invention 1).
[0027]
In addition, a resin hollow body is sealed by moving a resin around the blow hole, a gas injection hole, a gas discharge hole, and the like of the resin hollow body formed by a blow molding method or an injection molding method. In the method, around the hole, a cylindrical resin wall is formed integrally when the resin hollow body is formed, and the resin wall is irradiated with a divergent laser beam from the opening side of the cylindrical resin wall. The resin wall is selectively heated and softened, and the softened resin wall is crushed by a pressing member having a temperature lower than the softening point of the resin to seal the hole, so that the laser beam is applied to the opposite wall surface facing the blow hole or the like. Is reached, the energy density is reduced, and the wall surface is not damaged as in the first aspect of the present invention. Therefore, it is possible to provide a method for sealing a resin hollow body which is excellent in the appearance and shape of a sealing portion such as a blow hole, has good airtightness and stability, and is easy to process (claim 2).
[0028]
According to the second aspect of the present invention, since the divergent laser beam is formed by the convex lens, the distance between the lens and the workpiece can be larger than that of the concave lens. Therefore, a margin in the arrangement of the laser beam irradiation unit and the pressing member is increased, and the configuration of the apparatus is facilitated (the invention of claim 3).
Further, in any one of the first to third aspects of the present invention, since the laser beam is a laser beam from a carbon dioxide laser device, the laser beam has an energy density necessary and sufficient to heat the cylindrical portion, and Not only the surface but also the interior can be heated and the transmitted beam does not leave enough energy to damage other parts of the hollow body. Therefore, the laser beam from the carbon dioxide laser device is the most suitable laser beam for the present invention (the invention of claim 4).
[Brief description of the drawings]
FIG. 1 is a conceptual view of a blow hole sealing device for explaining a first embodiment of a method for sealing a resin hollow body according to the present invention; FIG. 2 is a cross-sectional view in the AA direction of FIG. 1; 1A and 1B show details around the blow hole, FIG. 4A is an enlarged view around the blow hole, and FIG. 4B is an enlarged view of a cross section passing through the center of the blow hole. FIG. 5 is an enlarged view of a cross section passing through the center of the hole. FIG. 5 shows an example of a conventional method of sealing a resin hollow body, (a) is a partial view showing a periphery of a blow hole, and (b) is an enlarged view of a BB cross section thereof. 6A and 6B show another conventional example, in which FIG. 6A is a partial cross-sectional view showing a state in which a bulging portion formed by blow molding is cut, FIG. 6B is a partial cross-sectional view showing a state after cutting, and FIG. Partial cross-sectional view showing heating of the stop, and (d) is a partial cross-sectional view showing shaping of the sealing part.
1 , 1a , 1b Hollow molded body 11 Mouth 12, 12a, 12b Head 121, 121a Tubular part 122, 122a Blow hole 123 Concave part 124 Opposing wall surface 13 Communication part 131 Communication hole 14 Swelling part 15 Sealing part 21 Cutting Plate 22 Gas burners 23, 23a, 23b Pressing member 32 Laser irradiation device 321 Laser beam 322 Convex lens 34 Pressing device 41 Chain conveyor 42 Work transport bucket 43 First work clamp 44 Second work clamp

Claims (4)

ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔やガス注入孔、ガス排出孔等を、その孔の周囲の樹脂を移動させることによって密閉する樹脂製中空体の密閉方法において、
前記孔の周囲に、筒状の樹脂壁を、樹脂製中空体の形成時に一体に形成し、
筒状の樹脂壁の開口部側から樹脂壁にレーザビームを斜めに照射して樹脂壁を選択的に加熱して軟化させ、
軟化した樹脂壁を樹脂の軟化点より低い温度の押圧部材によって圧潰して前記孔を密閉する
ことを特徴とする樹脂製中空体の密閉方法。
In a method of sealing a resin hollow body, the blow hole, gas injection hole, gas discharge hole, etc. of the resin hollow body formed by a blow molding method or an injection molding method are sealed by moving a resin around the hole. ,
Around the hole, a cylindrical resin wall is integrally formed when forming the resin hollow body,
The resin wall is selectively heated and softened by irradiating the resin wall obliquely with a laser beam from the opening side of the cylindrical resin wall,
A method for sealing a resin hollow body, wherein the softened resin wall is crushed by a pressing member having a temperature lower than the softening point of the resin to seal the hole.
ブロー成形法や射出成形法によって形成された樹脂製中空体のブロー孔やガス注入孔、ガス排出孔等を、その孔の周囲の樹脂を移動させることによって密閉する樹脂製中空体の密閉方法において、
前記孔の周囲に、筒状の樹脂壁を、樹脂製中空体の形成時に一体に形成し、
筒状の樹脂壁の開口部側から発散状のレーザビームを樹脂壁に照射して樹脂壁を選択的に加熱して軟化させ、
軟化した樹脂壁を樹脂の軟化点より低い温度の押圧部材によって圧潰して前記孔を密閉する
ことを特徴とする樹脂製中空体の密閉方法。
In a method of sealing a resin hollow body, the blow hole, gas injection hole, gas discharge hole, etc. of the resin hollow body formed by a blow molding method or an injection molding method are sealed by moving a resin around the hole. ,
Around the hole, a cylindrical resin wall is integrally formed when forming the resin hollow body,
The resin wall is selectively heated and softened by irradiating the resin wall with a divergent laser beam from the opening side of the cylindrical resin wall,
A method for sealing a resin hollow body, wherein the softened resin wall is crushed by a pressing member having a temperature lower than the softening point of the resin to seal the hole.
発散状のレーザビームが凸レンズによって形成されることを特徴とする請求項2に記載の樹脂製中空体の密閉方法。3. The method according to claim 2, wherein the divergent laser beam is formed by a convex lens. レーザビームが炭酸ガスレーザ装置によるレーザビームであることを特徴とする請求項1から請求項3のいずれかに記載の樹脂製中空体の密閉方法。The method for sealing a hollow resin body according to any one of claims 1 to 3, wherein the laser beam is a laser beam generated by a carbon dioxide gas laser device.
JP35986997A 1997-12-26 1997-12-26 Sealing method for resin hollow body Expired - Fee Related JP3599991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35986997A JP3599991B2 (en) 1997-12-26 1997-12-26 Sealing method for resin hollow body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35986997A JP3599991B2 (en) 1997-12-26 1997-12-26 Sealing method for resin hollow body

Publications (2)

Publication Number Publication Date
JPH11188783A JPH11188783A (en) 1999-07-13
JP3599991B2 true JP3599991B2 (en) 2004-12-08

Family

ID=18466723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35986997A Expired - Fee Related JP3599991B2 (en) 1997-12-26 1997-12-26 Sealing method for resin hollow body

Country Status (1)

Country Link
JP (1) JP3599991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001383A (en) * 2003-05-20 2005-01-06 Frontier:Kk Method for production of plastic container, method for heating preform and method for heating plastic container
JP4552547B2 (en) * 2004-07-15 2010-09-29 東洋製罐株式会社 Air hole sealing treatment method and air hole sealing treatment apparatus for hollow container

Also Published As

Publication number Publication date
JPH11188783A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
JP2012035532A (en) Method and device of manufacturing hollow molded article
JP5652169B2 (en) Molding method of thermoplastic resin molded product
KR20140146624A (en) Method of sealing containers and lids by melt adhesion by laser
JP5812225B1 (en) Molded lid, method of fitting the lid to the container, and sealing method
JP2008524014A (en) Method for producing multilayer hollow body including at least one weld
US5867966A (en) Method and apparatus for forming the top of a container
JPS612513A (en) Manufacture of double-layer parison of thermoplastic material
JP3599991B2 (en) Sealing method for resin hollow body
US3732050A (en) Apparatus for forming preferably cup-shaped hollow bodies by drawing a material capable of being formed by heat
EP0719630B1 (en) Method for producing containers, such as bottles or the like, with film of thermoplastic synthetic material, and apparatus for carrying out the method
JP3816555B2 (en) Method for producing stretch blow molded container with gripping part
JP2007039041A (en) Container and its manufacturing method
RU95122381A (en) METHOD FOR MANUFACTURING CONTAINERS, FOR EXAMPLE, BOTTLES OR TP FROM FILM OF THERMOPLASTIC SYNTHETIC MATERIAL, DEVICE FOR ITS IMPLEMENTATION AND CONTAINER
JP2011005704A (en) Laser welding method of resin material and resin molded article
JP3596456B2 (en) Method for manufacturing resin molded products
JP5294404B2 (en) Method for producing container with easy opening
JP4499975B2 (en) Method and apparatus for forming a container
JP2022551317A (en) Liquid plastic container and method for manufacturing plastic container
JP3892561B2 (en) Manufacturing method of sealed hollow container
JP2010247409A (en) Method of molding hollow molded article, hollow molded article, and device of manufacturing the molded article
JP2002210773A (en) Method for manufacturing partially foamed resin molded article by laser
WO2020255800A1 (en) Hollow container manufacturing apparatus
JPH04138241A (en) Molding method for hollow container with handle
JPH06114941A (en) Method for thermally fusion-bonding plastic and manufacture of plastic bottle
JPH09136350A (en) Bioclean parison and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees