JP3599066B2 - Permanent magnet type rotating electric machine - Google Patents

Permanent magnet type rotating electric machine Download PDF

Info

Publication number
JP3599066B2
JP3599066B2 JP7809195A JP7809195A JP3599066B2 JP 3599066 B2 JP3599066 B2 JP 3599066B2 JP 7809195 A JP7809195 A JP 7809195A JP 7809195 A JP7809195 A JP 7809195A JP 3599066 B2 JP3599066 B2 JP 3599066B2
Authority
JP
Japan
Prior art keywords
blocks
permanent magnets
permanent magnet
pair
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7809195A
Other languages
Japanese (ja)
Other versions
JPH08251847A (en
Inventor
鉄男 三星
浩二 梶本
光浩 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP7809195A priority Critical patent/JP3599066B2/en
Publication of JPH08251847A publication Critical patent/JPH08251847A/en
Application granted granted Critical
Publication of JP3599066B2 publication Critical patent/JP3599066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、永久磁石を回転子に設けた永久磁石形回転電機に関する。
【0002】
【従来の技術】
従来、永久磁石形回転電機では、例えば永久磁石の回転子が8極、固定子が12スロットの場合、図5に示すように、リング状の固定子1の内側に突出する凸極11を設け、凸極11に空隙を介して対向する回転子2を設け、回転子2の外周には複数個の周囲が四角形の永久磁石3を円周方向に等間隔に配列してある。永久磁石3が軸方向に平行に配列してあると、これをブロック▲1▼〜▲4▼の4ブロックに分けた場合、図6に示すように、各ブロックは幾何学的に合同の関係となり、各ブロック内の永久磁石3と凸極11の位置関係が全く等しくなる。この各ブロックの境界線を境に、磁束分布は周期的に変化するので、これら4つのブロック毎のコギングトルクは大きさも位相も全く等しくなる。したがって、全体のコギングトルクは、各ブロックごとのコギングトルクの4倍になり、極めてコギングトルクが大きく、滑らかな回転ができないという問題がある。
この問題を解決する方法として、永久磁石を軸方向に対して傾きを持つ、いわゆるスキューした形状にしたり、例えば図7に示すように、回転子2の外周に周囲が四角形の永久磁石3Aを円周方向に複数個配列するとともに、軸方向にも永久磁石3Bを複数個配列し、軸方向に進むにつれて僅かに円周方向にずらして、スキュー効果をもたらす配列にしたものが開示されている(例えば、実開昭61−17876号、実開平3−86752号)。
【0003】
【発明が解決しようとする課題】
ところが、従来技術の永久磁石をスキューした形状にしたものでは、永久磁石を焼結や鋳造によって成形する場合、変形が大きかったり、加工工数が大きいという問題があった。
また、永久磁石を軸方向にずらして配列するものでは、互いに異極となる磁極が軸方向に接近しているので、近接する磁極間で磁束の流れが生じる。例えば、図7に示した永久磁石3AのS極3A と永久磁石3BのN極3B とは接近しているので、固定子に流れずにS極3A とN極3B との間に矢印で示すような漏洩磁束が生じ、図8に示すように、回転子の円周方向の磁束分布が正弦波とならず、コギングトルクに対するスキュー効果が小さくなるという問題があった。
本発明は、永久磁石の配列を変えてスキュー効果を維持し、コギングトルクの低い永久磁石形回転電機を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記問題を解決するため、本発明は、内側に突出する複数の凸極を備えたリング状の固定子と、前記凸極の内側に空隙を介して対向し、かつ円周方向に複数の永久磁石を回転子鉄心の外周面から突出させて配置した回転子とを備えた永久磁石形回転電機において、前記凸極と前記永久磁石を円周方向に等間隔に4個のブロックに分け、前記ブロックのうち前記回転子の中心に対して対称の位置にある一方の1対のブロックおよび他の1対のブロックの中の前記凸極と前記永久磁石との位置関係がそれぞれ幾何学的に合同な配置とし、前記一方の1対のブロックに発生するコギングトルクを他の1対のブロックのコギングトルクが互いに打ち消し合うように、他の1対のブロックの永久磁石を円周方向にずらして固定したものである。
また、12極の前記凸極と、8極の前記永久磁石とを備え、前記一方の1対のブロックの永久磁石の位置に対し、他の1対のブロックの永久磁石の位置を円周方向に前記一方の1対のブロックで発生するコギングトルクの1周期の機械角で1/2の角度だけ回転させた位置に固定したものである。
また、内側に突出する複数の凸極を備えたリング状の固定子と、前記固定子の凸極の内側に空隙を介して対向し、かつ円周方向および軸方向にスキューさせて複数の永久磁石を配置した回転子とを備えた永久磁石形回転電機において、前記軸方向に隣り合う永久磁石間の隙間が、前記円周方向に隣り合う永久磁石間の隙間より大きくなるようにしたものである。
【0005】
【作用】
上記手段により、回転子の中心に対して対称の位置にある一方の1対のブロックから生じるコギングトルクと、他方の1対のブロックから生じるコギングトルクが、半周期ずれているため、互いに打ち消し合い、全体のコギングトルクは大きく低減される。
また、一方の永久磁石のS極と軸方向に隣り合う永久磁石のN極とは円周方向に隣接する磁石の隙間より大きい隙間だけ離れているので、軸方向に隣り合うS極とN極との間には漏洩磁束が生じることがなく、回転子の円周方向の磁束分布が正弦波となり、コギングトルクは低減される。
【0006】
【実施例】
以下、本発明を図に示す実施例について説明する。
図1は本発明の第1の実施例を示す正面図で、8極12スロットの永久磁石形回転電機を実例として説明する。
図において、1はリング状の固定子で、円周方向に等間隔に配置され、かつ内側に突出する12個の凸極11を備え、隣接する凸極11の間には12個のスロット12を形成し、スロット12の中には固定子コイルを収納するようにしてある。2は回転子、21は薄板鋼板を積層して形成した回転子鉄心で、回転子鉄心21の外周に8個の周囲が四角形の永久磁石3を固定してある。
永久磁石3の回転子2上の配置方法を説明すると、固定子1および回転子2を円周方向に4等分してブロック▲1▼〜▲4▼に分けたとき、回転子2の中心に対して対称の位置にある1対のブロック▲1▼およびブロック▲3▼の永久磁石3はそれぞれ幾何学的に合同で、回転子2の外周を磁極の数で割った角度の間隔で配置してある。回転子2の中心に対して対称の位置にある他の1対のブロック▲2▼およびブロック▲4▼の永久磁石3はそれぞれ幾何学的に合同で、ブロック▲1▼およびブロック▲3▼に対して時計回りに7.5度回転させた位置に固定してある。
永久磁石3の位置決めは、回転子鉄心21を打ち抜く時、各ブロックごとの永久磁石の位置に合わせて回転子鉄心21の外周に突起を設け、その突起に合わせて永久磁石3を配置すれば、加工工数を増やすことなく、簡単に永久磁石の位置決めができる。
【0007】
ここで、コギングトルクの発生原理について説明する。
図5に基づいて説明した従来例では、永久磁石3が回転子2の外周に等間隔に配置され、図6に示すように、4個の互いに幾何学的に合同なブロック▲1▼〜▲4▼で発生するコギングトルクは同じ位相で大きさを持っているため、全体のコギングトルクは各ブロックのコギングトルクの4倍となる。また、コギングトルクの1周期は機械角で、360度を磁極数(8)とスロット数(12)の最小公倍数(24)で割った角度(15度)になる。
そこで、バランスを取るために、回転子2の回転中心に対して対称の位置にある二つの幾何学的に合同なブロック▲1▼とブロック▲3▼の永久磁石3はそのままの位置としておく。同じく回転子2の回転中心に対して対称の位置にあるブロック▲2▼とブロック▲4▼の永久磁石3の位置を、機械角でコギングトルクの1/2周期である15度の1/2の7.5度だけブロック▲1▼とブロック▲3▼の永久磁石3から時計回りに回転して、ブロック▲1▼とブロック▲3▼とは異なる位置関係で、しかも幾何学的に合同な関係にする。
これにより、ブロック▲1▼とブロック▲3▼から生じるコギングトルクと、ブロック▲2▼とブロック▲4▼から生じるコギングトルクが、図2に示すように、半周期ずれているため、互いに打ち消し合い、全体のコギングトルクは大きく低減される。
【0008】
図3は本発明の第2の実施例を示す側面図で、8極の永久磁石を軸方向に2列設けた回転子を示してある。
図において、2は回転子、21は回転子鉄心、3Aは回転子鉄心21の外周に等間隔に8個配列した永久磁石である。3Bは永久磁石3Aと同じ数だけ回転子鉄心21の外周に等間隔に、かつ永久磁石3Aから軸方向に円周方向の磁石間の隙間G より広い隙間G を開けて、機械角でコギングトルクの1/2周期である15度の1/2の7.5度だけ円周方向にずらして配列し、スキュー効果をもたらすようにしてある。
したがって、永久磁石3AのS極3A と永久磁石3BのN極3B とは円周方向に隣接する磁石の隙間G より大きい隙間G だけ離れているので、S極3A とN極3B との間には漏洩磁束が生じることがなく、図4に示すように、回転子の円周方向の磁束分布が正弦波となり、コギングトルクは低減される。
【0009】
【発明の効果】
以上述べたように、本発明によれば、固定子と回転子との円周方向の位置関係が、磁気的に全く合同な複数の円周方向ブロックに分け、ブロックごとに永久磁石の固定位置をコギングトルクを打ち消すように移動してあるので、周囲が四角形の永久磁石でも永久磁石にスキューを与えたものと同じ効果を生じる。
また、永久磁石を軸方向に複数個配置し、かつ円周方向にずらして配置する場合は、円周方向の磁石間の隙間より軸方向の磁石間の隙間を大きくして、漏洩磁束を減らし、コギングトルクの発生を抑制するので、極めてコギングトルクが低く、永久磁石の加工工数やコストが低い永久磁石形回転電機を提供できる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す正面図である。
【図2】本発明の第1の実施例のコギングトルクを示す説明図である。
【図3】本発明の第2の実施例を示す(a)正面図および(b)側面図である。
【図4】本発明の第2の実施例のコギングトルクを示す説明図である。
【図5】従来例を示す正面図である。
【図6】従来例のコギングトルクを示す説明図である。
【図7】従来例を示す(a)正面図および(b)側面図である。
【図8】従来例のコギングトルクを示す説明図である。
【符号の説明】
1 固定子、11 凸極、12 スロット、2 回転子、21 回転子鉄心、3、3A,3B 永久磁石、G ,G 隙間
[0001]
[Industrial applications]
The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet provided on a rotor.
[0002]
[Prior art]
Conventionally, in a permanent magnet type rotating electric machine, for example, when the rotor of the permanent magnet has eight poles and the stator has twelve slots, a protruding pole 11 protruding inside the ring-shaped stator 1 is provided as shown in FIG. A rotor 2 is provided opposite to the salient poles 11 with a gap therebetween, and a plurality of permanent magnets 3 having a quadrangular periphery are arranged on the outer periphery of the rotor 2 at equal intervals in the circumferential direction. If the permanent magnets 3 are arranged in parallel in the axial direction, and if the permanent magnets 3 are divided into four blocks (1) to (4), the blocks are geometrically congruent as shown in FIG. And the positional relationship between the permanent magnet 3 and the salient pole 11 in each block becomes completely equal. Since the magnetic flux distribution periodically changes from the boundary of each block, the cogging torque of each of these four blocks has exactly the same magnitude and phase. Therefore, the entire cogging torque is four times the cogging torque of each block, and there is a problem that the cogging torque is extremely large and smooth rotation cannot be performed.
As a method for solving this problem, the permanent magnet is formed into a so-called skewed shape having an inclination with respect to the axial direction. For example, as shown in FIG. There is disclosed an arrangement in which a plurality of permanent magnets 3B are arranged in the circumferential direction and a plurality of permanent magnets 3B are also arranged in the axial direction, and are slightly shifted in the circumferential direction as they progress in the axial direction to provide a skew effect ( For example, Japanese Utility Model Application Laid-Open No. 61-17876 and Japanese Utility Model Application Laid-Open No. 3-87552).
[0003]
[Problems to be solved by the invention]
However, when the permanent magnet of the related art is formed into a skewed shape, there is a problem that when the permanent magnet is formed by sintering or casting, the deformation is large and the number of processing steps is large.
Further, in the case where the permanent magnets are arranged shifted in the axial direction, magnetic poles having different polarities are close to each other in the axial direction, so that a magnetic flux flows between adjacent magnetic poles. For example, since the close to the N pole 3B N S pole 3A S and the permanent magnet 3B of the permanent magnet 3A shown in FIG. 7, between the S-pole 3A S and N poles 3B N without flowing to the stator As shown in FIG. 8, there is a problem that the magnetic flux distribution in the circumferential direction of the rotor does not become a sine wave, and the skew effect on cogging torque is reduced.
SUMMARY OF THE INVENTION An object of the present invention is to provide a permanent magnet type rotating electric machine having a low cogging torque while maintaining the skew effect by changing the arrangement of the permanent magnets.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, the present invention provides a ring-shaped stator having a plurality of inwardly projecting salient poles, a plurality of permanent magnets facing the inside of the salient poles via a gap, and circumferentially. In a permanent magnet type rotating electric machine having a rotor in which magnets are arranged so as to protrude from an outer peripheral surface of a rotor core, the salient poles and the permanent magnets are divided into four blocks at equal intervals in a circumferential direction, The positional relationship between the salient poles and the permanent magnets in one pair of blocks symmetrically positioned with respect to the center of the rotor and in the other pair of blocks is geometrically congruent, respectively. The permanent magnets of the other pair of blocks are fixed in the circumferential direction so that the cogging torque generated in the one pair of blocks cancels out the cogging torque of the other pair of blocks. It was done.
In addition, the magnetic head includes the twelve poles of the salient poles and the eight poles of the permanent magnets, and positions the permanent magnets of the other pair of blocks in the circumferential direction with respect to the positions of the permanent magnets of the one pair of blocks. The cogging torque generated in the one pair of blocks is fixed at a position rotated by half the mechanical angle of one cycle of the cogging torque.
Further, a ring-shaped stator having a plurality of convex poles protruding inward is opposed to the inside of the salient poles of the stator via a gap, and is skewed in a circumferential direction and an axial direction to form a plurality of permanent magnets. In a permanent magnet type rotating electric machine including a rotor having magnets disposed therein, a gap between the permanent magnets adjacent in the axial direction is larger than a gap between the permanent magnets adjacent in the circumferential direction. is there.
[0005]
[Action]
By the above means, the cogging torque generated from one pair of blocks symmetrically positioned with respect to the center of the rotor and the cogging torque generated from the other pair of blocks are shifted by half a cycle, so that they cancel each other. The overall cogging torque is greatly reduced.
Further, since the S pole of one permanent magnet and the N pole of the permanent magnet adjacent in the axial direction are separated by a gap larger than the gap between the magnets adjacent in the circumferential direction, the S pole and the N pole adjacent in the axial direction are separated. No leakage magnetic flux is generated between them, and the magnetic flux distribution in the circumferential direction of the rotor becomes a sine wave, and the cogging torque is reduced.
[0006]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view showing a first embodiment of the present invention, and a permanent magnet type rotating electric machine having 8 poles and 12 slots will be described as an example.
In the drawing, reference numeral 1 denotes a ring-shaped stator, which is provided at equal intervals in a circumferential direction and has 12 salient poles 11 protruding inward, and 12 slots 12 between adjacent salient poles 11. Is formed, and the stator coil is accommodated in the slot 12. Reference numeral 2 denotes a rotor, and reference numeral 21 denotes a rotor core formed by laminating thin steel plates. Eight permanent magnets 3 each having a rectangular periphery are fixed to the outer periphery of the rotor core 21.
The method of arranging the permanent magnet 3 on the rotor 2 will be described. When the stator 1 and the rotor 2 are divided into four equal parts in the circumferential direction and divided into blocks (1) to (4), the center of the rotor 2 The permanent magnets 3 of the pair of blocks (1) and (3) located symmetrically with respect to are geometrically congruent, and are arranged at an angular interval obtained by dividing the outer circumference of the rotor 2 by the number of magnetic poles. I have. The permanent magnets 3 of the other pair of blocks (2) and (4) located symmetrically with respect to the center of the rotor 2 are geometrically congruent, respectively, and On the other hand, it is fixed at a position rotated by 7.5 degrees clockwise.
The positioning of the permanent magnets 3 is as follows. When the rotor core 21 is punched, a projection is provided on the outer periphery of the rotor core 21 in accordance with the position of the permanent magnet for each block, and the permanent magnet 3 is arranged in accordance with the projection. The permanent magnet can be easily positioned without increasing the number of processing steps.
[0007]
Here, the principle of generating the cogging torque will be described.
In the conventional example described with reference to FIG. 5, the permanent magnets 3 are arranged at equal intervals on the outer periphery of the rotor 2, and as shown in FIG. 6, four mutually geometrically congruent blocks (1) to (1) Since the cogging torques generated in 4) have the same phase and magnitude, the total cogging torque is four times the cogging torque of each block. One cycle of the cogging torque is a mechanical angle, which is an angle (15 degrees) obtained by dividing 360 degrees by the least common multiple (24) of the number of magnetic poles (8) and the number of slots (12).
Therefore, in order to balance, the permanent magnets 3 of the two geometrically congruent blocks (1) and (3) located symmetrically with respect to the rotation center of the rotor 2 are left as they are. Similarly, the positions of the permanent magnets 3 in the block (2) and the block (4) which are symmetrical with respect to the rotation center of the rotor 2 are set to 1/2 of 15 degrees which is 1/2 cycle of cogging torque in mechanical angle. Is rotated clockwise by 7.5 degrees from the permanent magnets 3 of the block (1) and the block (3), and the blocks (1) and (3) have different positional relations and are geometrically congruent. Make a relationship.
As a result, the cogging torque generated from the block (1) and the block (3) and the cogging torque generated from the block (2) and the block (4) are shifted by a half cycle as shown in FIG. The overall cogging torque is greatly reduced.
[0008]
FIG. 3 is a side view showing a second embodiment of the present invention, and shows a rotor provided with two rows of 8-pole permanent magnets in the axial direction.
In the figure, 2 is a rotor, 21 is a rotor core, and 3A is eight permanent magnets arranged at equal intervals on the outer periphery of the rotor core 21. 3B is equal intervals on the outer circumference of only the rotor core 21 as many as the permanent magnet 3A, and opening the wide gap G 2 from the gap G 1 between the circumferential direction of the magnet from the permanent magnet 3A in the axial direction, a mechanical angle It is arranged so as to be shifted in the circumferential direction by 7.5 degrees, which is 1/2 of 15 degrees, which is 1/2 cycle of the cogging torque, to provide a skew effect.
Therefore, since the separated by a gap G 1 is larger than gap G 2 magnets circumferentially adjacent to the N pole 3B N S pole 3A S and the permanent magnet 3B of the permanent magnet 3A, S pole 3A S and N poles 3B N and without magnetic flux leakage occurs between the, as shown in FIG. 4, the magnetic flux distribution in the circumferential direction of the rotor is a sine wave, the cogging torque is reduced.
[0009]
【The invention's effect】
As described above, according to the present invention, the circumferential positional relationship between the stator and the rotor is divided into a plurality of circumferentially identical blocks that are magnetically identical, and the fixed position of the permanent magnet is fixed for each block. Is moved so as to cancel the cogging torque, so that even with a permanent magnet having a rectangular periphery, the same effect as that obtained by skewing the permanent magnet is produced.
Also, when a plurality of permanent magnets are arranged in the axial direction and shifted in the circumferential direction, the gap between the magnets in the axial direction is made larger than the gap between the magnets in the circumferential direction to reduce the leakage magnetic flux. Since the generation of cogging torque is suppressed, there is an effect that a permanent magnet type rotating electric machine having extremely low cogging torque and low man-hour and cost for processing the permanent magnet can be provided.
[Brief description of the drawings]
FIG. 1 is a front view showing a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a cogging torque according to the first embodiment of the present invention.
3A is a front view and FIG. 3B is a side view showing a second embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a cogging torque according to a second embodiment of the present invention.
FIG. 5 is a front view showing a conventional example.
FIG. 6 is an explanatory diagram showing a cogging torque of a conventional example.
7A is a front view and FIG. 7B is a side view showing a conventional example.
FIG. 8 is an explanatory diagram showing a cogging torque of a conventional example.
[Explanation of symbols]
1 stator, 11 salient, 12 slots, 2 rotor 21 rotor core, 3, 3A, 3B permanent magnet, G 1, G 2 gap

Claims (3)

内側に突出する複数の凸極を備えたリング状の固定子と、前記凸極の内側に空隙を介して対向し、かつ円周方向に複数の永久磁石を回転子鉄心の外周面から突出させて配置した回転子とを備えた永久磁石形回転電機において、
前記凸極と前記永久磁石を円周方向に等間隔に4個のブロックに分け、
前記ブロックのうち前記回転子の中心に対して対称の位置にある一方の1対のブロックおよび他の1対のブロックの中の前記凸極と前記永久磁石との位置関係がそれぞれ幾何学的に合同な配置とし、
前記一方の1対のブロックに発生するコギングトルクを他の1対のブロックのコギングトルクが互いに打ち消し合うように、他の1対のブロックの永久磁石を円周方向にずらして固定したことを特徴とする永久磁石形回転電機。
A ring-shaped stator having a plurality of inwardly projecting salient poles, facing the inside of the salient poles via a gap, and projecting a plurality of permanent magnets in the circumferential direction from the outer peripheral surface of the rotor core. In the permanent magnet type rotating electric machine having the rotor arranged
Dividing the salient pole and the permanent magnet into four blocks at equal intervals in the circumferential direction,
The positional relationship between the salient poles and the permanent magnets in one pair of blocks and the other pair of blocks symmetrically positioned with respect to the center of the rotor is geometrically different from each other. A congruent arrangement,
The permanent magnets of the other pair of blocks are fixed in the circumferential direction so that the cogging torque generated in the one pair of blocks cancels the cogging torque of the other pair of blocks. And a permanent magnet type rotating electric machine.
12極の前記凸極と、8極の前記永久磁石とを備え、前記一方の1対のブロックの永久磁石の位置に対し、他の1対のブロックの永久磁石の位置を円周方向に前記一方の1対のブロックで発生するコギングトルクの1周期の機械角で1/2の角度だけ回転させた位置に固定した請求項1記載の永久磁石形回転電機。It has 12 poles of the salient poles and 8 poles of the permanent magnets, and positions the permanent magnets of the other pair of blocks in the circumferential direction with respect to the positions of the permanent magnets of the one pair of blocks. 2. The permanent magnet type rotating electric machine according to claim 1, wherein the rotating machine is fixed at a position rotated by a half of the mechanical angle of one cycle of the cogging torque generated in one of the blocks. 内側に突出する複数の凸極を備えたリング状の固定子と、前記固定子の凸極の内側に空隙を介して対向し、かつ円周方向および軸方向にスキューさせて複数の永久磁石を配置した回転子とを備えた永久磁石形回転電機において、
前記軸方向に隣り合う永久磁石間の隙間が、前記円周方向に隣り合う永久磁石間の隙間より大きくなるようにしたことを特徴とする永久磁石形回転電機。
A ring-shaped stator having a plurality of salient poles protruding inward, and a plurality of permanent magnets opposed to each other inside the salient poles of the stator via a gap and skewed in the circumferential and axial directions. In the permanent magnet type rotating electric machine having the arranged rotor,
A permanent magnet type rotating electric machine characterized in that a gap between the permanent magnets adjacent in the axial direction is larger than a gap between the permanent magnets adjacent in the circumferential direction.
JP7809195A 1995-03-08 1995-03-08 Permanent magnet type rotating electric machine Expired - Fee Related JP3599066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7809195A JP3599066B2 (en) 1995-03-08 1995-03-08 Permanent magnet type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7809195A JP3599066B2 (en) 1995-03-08 1995-03-08 Permanent magnet type rotating electric machine

Publications (2)

Publication Number Publication Date
JPH08251847A JPH08251847A (en) 1996-09-27
JP3599066B2 true JP3599066B2 (en) 2004-12-08

Family

ID=13652193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7809195A Expired - Fee Related JP3599066B2 (en) 1995-03-08 1995-03-08 Permanent magnet type rotating electric machine

Country Status (1)

Country Link
JP (1) JP3599066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000201T5 (en) 2006-01-24 2008-11-13 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Slotted cores for a motor stator, motor stator, permanent magnet type synchronous motor, and punch punch punching method for slotted cores
US7928622B2 (en) 2008-03-05 2011-04-19 Mitsuba Corporation Brushless motor with skewed rotor segments

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190050A (en) 1999-04-01 2001-07-10 Asmo Co Ltd Rotating-field type motor
EP1217713B1 (en) * 2000-12-20 2010-02-10 Yamaha Motor Electronics Kabushiki Kaisha Permanent magnet type rotor and permanent magnet type rotary electrical machine
EP1233503A3 (en) 2001-02-14 2004-12-01 Koyo Seiko Co., Ltd. Brushless DC motor and method of manufacturing brushless DC motor
JP2004015967A (en) * 2002-06-10 2004-01-15 Toyoda Mach Works Ltd Electric motor
JP5012837B2 (en) * 2002-10-18 2012-08-29 三菱電機株式会社 Manufacturing method of permanent magnet type rotating electrical machine
US7067948B2 (en) * 2002-10-18 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Permanent-magnet rotating machine
US6753632B1 (en) * 2003-01-07 2004-06-22 Emerson Electric Co. Controlling electric motor cogging
DE10303848A1 (en) * 2003-01-30 2004-08-19 Rexroth Indramat Gmbh Three-phase machine with optimized running properties
US6906443B2 (en) * 2003-04-21 2005-06-14 Eaton Corporation Brushless DC motor with stepped skewed rotor
JP4269953B2 (en) * 2004-01-23 2009-05-27 株式会社デンソー Rotating electric machine
JP4904736B2 (en) * 2005-07-21 2012-03-28 日産自動車株式会社 Rotating electric machine stator
JP4888770B2 (en) * 2006-11-17 2012-02-29 富士電機株式会社 Permanent magnet motor rotor
JP5123008B2 (en) 2008-03-05 2013-01-16 株式会社ミツバ Brushless motor
WO2011127960A1 (en) 2010-04-13 2011-10-20 Abb Research Ltd Electrical machine with circumferentially skewed rotor poles or stator coils
JP5691734B2 (en) * 2011-03-29 2015-04-01 シンフォニアテクノロジー株式会社 Permanent magnet type rotating electric machine and rotating electric machine device
US9912204B2 (en) 2013-01-28 2018-03-06 Mitsubishi Electric Corporation Permanent magnet type rotating electric machine
WO2022135713A1 (en) 2020-12-23 2022-06-30 Elaphe Pogonske Tehnologije D.O.O. Synchronous polyphase electrical machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000201T5 (en) 2006-01-24 2008-11-13 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Slotted cores for a motor stator, motor stator, permanent magnet type synchronous motor, and punch punch punching method for slotted cores
US8102092B2 (en) 2006-01-24 2012-01-24 Kabushiki Kaisha Yaskawa Denki Split cores for motor stator, motor stator, permanent magnet type synchronous motor and punching method by split core punching die
US7928622B2 (en) 2008-03-05 2011-04-19 Mitsuba Corporation Brushless motor with skewed rotor segments

Also Published As

Publication number Publication date
JPH08251847A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
JP3599066B2 (en) Permanent magnet type rotating electric machine
EP0841738B1 (en) Motor
JP3601757B2 (en) Permanent magnet motor
JP3708855B2 (en) Synchronous motor with built-in permanent magnet
JP2721061B2 (en) Synchronous motor that can reduce cogging torque
JP2008301628A (en) Hybrid type permanent magnet rotary electric machine
WO2003105318A1 (en) Rotary permanent magnet electric motor with varying air gap between interfacing stator and rotor elements
JPH07336967A (en) Axial-direction air-gap synchronous motor
CA2482974C (en) Rotary permanent magnet electric motor with varying air gap between interfacing stator and rotor elements
JPH06261513A (en) Brushless motor
JP3889232B2 (en) Rotor and electric motor
JPH0629353U (en) Permanent magnet type rotating electric machine stator core
JP4405000B2 (en) motor
JP2001298922A (en) Vernier motor
JPH02123953A (en) Permanent magnet motor
JPH10304606A (en) Permanent magnet-type motor
JP3818338B2 (en) Permanent magnet motor
JP2002218684A (en) Rotor of rotating machine
JPH1189199A (en) Axial air gap type synchronous motor
JP3701646B2 (en) Rotating electric machine
JPH0680372U (en) Rotating electric machine
JPH07222419A (en) Rotating electric machine
TWI643430B (en) Rotor and rotary electric machine
JP2002272029A (en) Brushless dc motor and method of manufacturing the same
JP2614437B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees