JP3598348B2 - Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics - Google Patents

Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics Download PDF

Info

Publication number
JP3598348B2
JP3598348B2 JP2001282510A JP2001282510A JP3598348B2 JP 3598348 B2 JP3598348 B2 JP 3598348B2 JP 2001282510 A JP2001282510 A JP 2001282510A JP 2001282510 A JP2001282510 A JP 2001282510A JP 3598348 B2 JP3598348 B2 JP 3598348B2
Authority
JP
Japan
Prior art keywords
vibration
damping
load
static load
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001282510A
Other languages
Japanese (ja)
Other versions
JP2003090831A (en
Inventor
福星 殷
嘉昭 大澤
晋 高森
彰 佐藤
浩司 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001282510A priority Critical patent/JP3598348B2/en
Publication of JP2003090831A publication Critical patent/JP2003090831A/en
Application granted granted Critical
Publication of JP3598348B2 publication Critical patent/JP3598348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、材料の実環境での制振特性を評価するため新しい方法及び装置に関するものである。さらに詳しくは、この出願の発明は、制振材料は実際に使用される場合は応力下にあることが多く、使用環境下での制振特性が従来の試験法から得られたデータと異なる場合が多いなど、これまでの静負荷中での材料制振特性の評価方法はなく、部品或いは構造物の制振設計において問題となっていることから、このような問題を解決し、材料制振特性を静負荷中で評価することのできる新しい技術手段とするものである。
【0002】
【従来技術の課題】
近年、機器の高密度・高性能化、コンパクト化や環境における騒音の問題化から機器の設計には、振動・騒音面での要求がますます厳しくなっている。構造物への制振材料の使用がもっとも直接的な振動対策である。このため、高性能な制振材料の開発と生産が装置や機器の高性能化には欠かせない。しかし、制振部品の設計には参考できるデータが限られていて、静負荷中での制振特性の評価方法は知られていないため、無負荷条件での制振性能の評価値を使用するしかなかった。このような事情から、各種制振合金で製品を試作し、これを実際に搭載して総合的な振動特性を評価しているのが実情である。
【0003】
このような環境で、従来、材料の制振性の評価方法においては、片持ちや中央加振の支持条件において、板状試料を特定の固有周波数で共振させ、試料の変位などの自由減衰の減衰率から材料の制振特性を評価していた。
【0004】
実際に制振材料が使用される場合、制振材料は応力下にあることが殆どであり、このため、従来の応力がかかっていない条件の制振特性データは、実際の使用環境を反映したものではなく、全く利用できない可能性を含むものであった。
従来は、静負荷中での材料制振特性の評価方法はなかったし、また、これまで、静的負荷をパラメータとした材料の制振特性の評価方法もなかったのである。
【0005】
この出願の発明は、以上のとおりの従来の問題点を解決するためになされたものであって、制振材料の制振性能には静的負荷が大きな影響を与えていること、制振材料の実用条件においては、この影響が無視できないこと、そのため試験片にあらかじめ応力(垂直、剪断)を付加し、その負荷状態で制振性を評価する必要があることを見出し、静的負荷中での制振特性の評価方法を創案し、静的負荷中の制振挙動を解明することによって、設計者に制振部品に係る実用的な基礎資料の提供を可能にしたものである。
【0006】
この出願の発明によれば、高性能制振合金が要求されるレーザ計測機器、超精密加工機などの製品への組み込み製造時や使用環境に相当する静負荷中における制振部品の制振特性の基礎資料を提供することが可能となる。
【0007】
【課題を解決するための手段】
この出願の発明は、第1には、制振特性評価方法として、静負荷荷重手段によって、各種変形モードの下に、材料に常時静的荷重を負荷するようにし、振動を導入し、材料中で伝達減衰した振動を検出し、検出データを解析し、制振合金試料の制振特性を測定し、荷重付与下で得られたデータによって無荷時の制振特性との対比又は相違する制振合金試料毎の制振特性との対比により制振特性を評価する方法を提供する。
【0008】
また、この出願の発明は、第2には、静的負荷による材料の変形モードを特定する観点から、変形モードを、圧縮、引張、曲げのいずれか一つ、又はそれらの組合せを選択したモードとする材料の静的負荷付与下での制振特性評価方法を提供する。
【0009】
さらに、この出願の発明は、第3には、材料に付与される好ましい静的負荷の大きさの観点から、静的負荷の応力範囲を、圧縮・引張応力の場合200MPa以下の範囲内、またひずみの場合1×10−3以下の範囲内とする材料の静的負荷付与下での制振特性評価方法を提供する。
【0010】
さらにまた、この出願の発明は、第4には、材料の制振性評価を得るための測定対象源を特定する観点から、負荷をかけた試料自身の制振性測定、又は負荷をかけた試料を介した基礎震動系の制振性測定とすることや、第5には、材料の制振性評価を得るため、測定値から読み取れるデータの具体的現象を特定する観点から、静的負荷の大きさに依存する材料の制振性の変化、又は一定負荷で保持時間に伴う材料の制振性の変化から評価する材料の静的負荷付与下での制振特性を評価する方法をも提供する。
【0011】
この出願の発明は、また、第6には、制振合金材料の制振特性評価を得るための装置の観点から、制振特性評価装置全体を独立した振動系にするために防振ゴム によって支持され、試料としての制振合金材料を支持する鋼製の堅牢な装置架台又は荷重架台と、架台に支持された制振合金材料に常時荷重を負荷し、変形モードを取る静負荷荷重手段と、架台に振動を導入するためのハンマー手段と、振動力センサーを内蔵する振動検出加速度センサ―と、センサーにより検出した検出データを解析する解析器とを備え、前記材料に常時静的荷重を負荷しつつ、ハンマー手段により荷重架台に振動を導入し、静負荷付与下の制振合金材料中で伝達減衰した振動を装置架台上の振動検出加速度センサーにより検出し、検出データを解析器により解析し、制振合金試料の制振特性を測定し、制振特性を評価することを特徴とする材料の静負荷付与下で制振特性評価を得るための装置を提供する。
【0012】
以下、この出願の発明について、さらに詳細に説明する。
【0013】
【発明の実施の形態】
以上のとおり、この出願の発明によれば、次に説明するように、高性能制振材料の実際の使用条件にあわせた弾性変形(圧縮、引張、曲げ)を付加した状態で材料の制振性が評価できる。
【0014】
すなわち、まず、低周波数振動領域(1kHz以下)において、試料に静的負荷であらかじめ弾性変形させ、その負荷状態での試料に一定振幅の低周波数振動を加える。試料を一定振幅で振動維持させる外部応力と試料の変形量を検出し、その間に生じた位相差から材料の制振特性を評価する。一定の加振状態(周波数、ひずみ振幅)において、試料の制振性が静的負荷の変化と共に変化する。この変化によって材料の制振性に及ぼす静的負荷の影響を評価する。
【0015】
また、高周波数振動領域(1kHz〜20kHz)においては、高周波数振動が起こる構造の固有振動モードを利用し、振動の伝達ルートに介在する制振材料に係る制振特性の振動の周波数応答関数を用いて評価する。構造物の固有振動モードを考慮し、試験装置に設置した制振材料試験片に一定の静的負荷をかけ、さらに多くの周波数帯を持つ振動を導入する。試験片もしくは試験装置に設置したセンサーから振動特性を検出する。この検出データの振動レベルの変化、及び共振ピーク値の周波数変化量から材料の制振特性に及ぼす静的負荷の影響を評価する。この場合、周波数に対する材料の減衰特性が評価できる。
【0016】
従来の材料制振性評価法には、静的負荷を材料の制振性に影響を与えるパラメータとして扱っていない。
【0017】
この出願の発明では、高性能制振合金が要求されるレーザ計測機器、超精密加工機などの構造物において、装置全体はすべて制振合金で製造することがなく、架台に固定するジグや振動を発生する部位と接続する部分に制振合金が使用される場合が多い。そのため取付けジグなどでは締め付け力による静的負荷中で用いられる。場合によっては、複合動的負荷もかかることがあるが、測定の困難さから制振性に静的負荷の影響に限定する。
【0018】
制振材料の実際の使用状況としては、ネジなどにより締め付けられるような圧縮変形、部品を吊り下げた状態で固定するような引っ張り変形、梁のように支えとして使用する場合の曲げ変形がある。これらの変形状態においる合金制振性の測定が可能なので、変形モードとして、圧縮、引張、曲げの3種類とする。
【0019】
一般に構造材料の使用条件では材料の塑性変形に至る応力(降伏応力)の約50%が部品の最大の設計応力である。ひずみを重視した部品設計の場合、静負荷によって材料の変形は0〜1×10−3 の範囲で設計されている。低周波数領域(1kHz以下)において、静負荷をかけた試料の応力・ひずみ位相差から材料の制振性能が精度高く測定できる。高周波の領域( 1kHz 〜20kHz)では、基礎振動系の固有モードを利用し、振動伝達経路に介在する試料の制振性能を評価することが、実用条件に近いので、結果の適応範囲が広い。また、この材料の評価法に基づいて、各変形モードにおける材料制振性に及ぼす静的負荷の影響と一定負荷の条件で保持時間に伴った材料制振性能の変化も調べられる。両方とも制振材料の実用化設計に必要なデータであり、制振性を要求する装置、機械など設計分野にも優れた実用性を有する制振材料の開発分野にも重要な材料評価パラメータとなる。
従来、制振材料の制振性評価方法は、片持ちや中央加振の支持条件で板状試料を振動させ、その自由減衰から制振特性を評価していた。実用部品として制振材料が静負荷中で使用されることが普通である。
【0020】
振動周波数、ひずみ振幅の他に、静的負荷が材料の制振特性に大きな影響因子であることが明らかとなっているが、それをパラメータとした材料制振の評価方法がなかった。
【0021】
この出願の発明によれば、静的負荷中の制振挙動を解明することで制振材料開発に新たなアプローチが開ける。静的負荷中での制振特性の評価方法を提案することで、設計者が制振部品の基礎資料を得ることができ、制振材料の実用化に大いに寄与できる。
【0022】
この出願の発明によれば、制振材料の試料に常時静的荷重を負荷しつつ、ハンマー手段により荷重架台に振動を導入し、静負荷付与下の制振合金材料中で伝達減衰した振動を装置架台上の振動検出加速度センサーにより検出し、検出データを解析器により解析し、制振合金試料の制振特性を測定し、無負荷時の制振特性との対比又は相違する制振合金試料毎の制振特性との対比により制振特性を評価することができる。
【0023】
【実施例】
図1は、制振性能の評価における試料の静負荷変形モードを示す。静負荷変形モードは、図に示すように、(a)圧縮荷重負荷中、(b)引張荷重負荷中及び(c)曲げ荷重負荷中が示される。この他にも、捩りモードや各モードを組み合わせたモードもあるが、基礎的な3例を示した。実施例としては高周波領域での実験例と低周波領域での実験例を示す。
【0024】
図1において、制振特性評価装置架台又は荷重架台(1)は、鋼製の堅牢な構造体である。防振ゴム(2)は制振特性評価装置(1)全体を独立した振動系にするために荷重架台(1)を支持する部材として示される。振動検出加速度センサ―(3)が荷重架台(1)に設置される。荷重架台(1)には制振合金試料(4)が配置される。インパルスハンマー(5)は振動を導入するための振動装置で、振動力センサーを内蔵している。常時荷重を負荷するため静負荷荷重(6)が配備される。
【0025】
この静負荷変形モードによる静負荷中制振特性測定方法は、インパルスハンマー(5)により、荷重架台(1)に振動を導入し、静負荷荷重下の制振合金試料(4)中で伝達減衰した振動を、装置架台(1)上の振動検出加速度センサー(3)で検出する。静負荷荷重は、静負荷荷重(6)により変更できる。検出データはFFT(ファーストフーリエ変換)アナライザーで解析する。
(実施例1)
実施例1は、高周波領域の実験例である。高周波領域では基礎構造の振動モードを利用し、負荷が掛けられた試料の制振性能を間接的に測定する。図2に示すように、圧縮荷重負荷中試料(円筒状)の制振性能を評価した例を示す。
【0026】
この実施例によれば、高性能制振合金であるM2052合金(Mnベース、20at.%Cu、5at.%Ni、2at.%Fe合金)とFe−6mass%Al合金を円筒状に加工して、圧縮静荷重下(0MPaと5MPa)での制振特性を評価した。静負荷荷重下の制振性の評価は図2のインパルスハンマー(5)により鋼製の堅牢な荷重架台(1)に振動を導入し、静負荷荷重下の制振合金試料(4)中に振動が伝達し、減衰した振動を、鋼製の堅牢な荷重架台(1)上に設置した振動検出加度センサー(3)で検出した。その振動系の周波数応答関数をFFT(ファーストフーリエ変換)アナライザーで解析した。静負荷荷重は、重りの量で変化できる。振動系は防振ゴム(2)で装置フレームから独立している。
【0027】
図3は、実施例1の静負荷荷重下で制振性をFFT(ファーストフーリエ変換)アナライザーで解析した結果であり、合金の制振性能に及ぼす静的負荷の評価結果を示す。縦軸は振動系のアクセラレンス(周波数応答関数=加速度/力)で、下になるほど制振性能は高い。横軸は振動周波数である。制振合金のM2052合金はFe−6%Al合金と異なり静負荷の影響が低いことを示している。両方の合金は無負荷時において広い周波数帯で非常に高制振性能を示した。圧縮静荷重下においてM2052合金の制振特性の劣化は僅かであるが、Fe−Al合金の場合、7kHz以上の領域では静負荷荷重の制振性が劣化する。10kHzではアクセラレンスが負荷によって10倍悪くなった。即ちFe−Al合金の制振性能は5MPaの静的負荷で10倍劣化した。図3において、2〜3の共振ピークも現れたが、それは基礎振動系の固有するもので、そのピークも静負荷荷重下では制振性能を反映している。本実験での測定は同一径の円筒状試料に一定静負荷荷重の円盤を載せ、インパルスハンマー(5)で反復打撃し、入力した振動の力と検出した加速度信号をFFT(ファーストフーリエ変換)アナライザーで解析した。
(実施例2)
実施例2では、低周波領域の実例である。低周波領域では試料に静的負荷を掛け、試料単位で制振性能を測定する。図4は、実施例2のための制振性能を評価する装置の原理図を示すと共に、曲げ変形モードで負荷中板状試料の制振性能を評価した例を示す。
【0028】
高性能制振合金であるM2052合金(Mnベース、20at.%Cu、5at.%Ni、2at.%Fe合金)とFe−6mass%Al合金を1×10×60mmの板状試料に加工して、試料の表面に生じる最大ひずみ(0〜2×10−4)を一定になるように静負荷をかけ、その負荷にプラスして正弦波振動を入力し試験片に生じる変位は非接触型変位センサーで検出した。振動力と変位波形間の位相差(tanδ)で制振性能を評価した。板状試料(1)の両端は拘束架台(2)に固定され、中央位置に静的負荷Fをかけ、試料にはXの曲げ変形が起こる。その上に試料の中央位置に正弦波応力fを加え、変位Xが検出される。図4(b)に示したように、制振合金の制振性能を測定する。測定温度は25℃であった。加振周波数は1Hzで、試料の表面のひずみ振幅は1×10−5であった。
【0029】
静的負荷中板状試料の制振性能の測定結果は図5に示される。縦軸は変位と応力の位相差を示すtanδであって、合金の制振性能を反映する。静的負荷の大きさを試料表面のひずみに換算して横軸で表示した。表面ひずみが2×10−5より小さい静的負荷をかけた場合、M2052合金と比べてFe−Al合金が高い制振性能を示す。静的負荷の増加に伴い、両合金の制振性能は逆に変化する挙動を示した。静的ひずみが8×10−5まではM2052合金の制振性能がやや増大する傾向を呈し、これに対してFe−Al合金の方が連続的に減少している。
【0030】
それより大きな静的負荷の場合、両方とも減少する。この結果によって、無負荷状態の合金の制振特性は負荷によって大きく異なることが明らかとなった。実際の使用条件に合わせた制振材料を選ばないと、期待する制振効果が生じないこととなる。
【0031】
【発明の効果】
以上、この出願の発明によれば、静的負荷中の制振挙動を解明することで高性能制振合金の実用化に向けて静負荷中での制振特性の評価方を確立し、この静的負荷中での制振特性の評価方法を提案することで、実用性が高い制振材料の基礎資料を提供でき、制振を考慮する製品化設計に貢献できる。
また、材料の静負荷中での制振特性の評価法を提案することで、製品開発に直結する基礎資料が得られ、機械、構造物などのシミュレーションは新しいパラメータを取り入れ、高精度なモデリングができる。
【0032】
さらに、この評価法は制振材料の開発に新しい指針を与えるので、制振材料の実用化にも大いに寄与できると共に、経済的な効果が大きいと考えられる。
【図面の簡単な説明】
【図1】静負荷中の制振特性評価モードを示す図であり、荷重の負荷形態によって、(a)圧縮荷重負荷中、(b)引張荷重負荷中、(c)曲げ荷重負荷中の各モードを示す。
【図2】高周波領域の実験例を示す図である。
【図3】静的負荷付与下で制振性をFFTアナライザーで解析した結果を示す図である。
【図4】低周波領域の実験例で使われた曲げ変形モードで負荷中板材試料の制振性能を評価する装置の原理図である。
【図5】静的負荷荷中板状試料の制振性能の測定結果を示す図である。
【符号の説明】
1・・制振特性評価装置架台又は荷重架台
2・・防振ゴム
3・・振動検出加速度センサー
4・・制振合金試料
5・・インパルスハンマー
6・・静負荷荷重
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a new method and apparatus for evaluating the damping characteristics of a material in a real environment. More specifically, the invention of this application is based on the fact that the damping material is often under stress when actually used, and the damping characteristics in the use environment are different from data obtained from the conventional test method. There is no conventional method for evaluating material vibration control characteristics under static load, and this has been a problem in vibration control design of parts or structures. This is a new technical means that can evaluate the characteristics under static load.
[0002]
[Prior Art Issues]
2. Description of the Related Art In recent years, demands for vibration and noise have become more and more strict in the design of equipment due to the high density, high performance, compactness, and the problem of noise in the environment. The use of damping materials for structures is the most direct measure against vibration. For this reason, the development and production of high-performance damping materials are indispensable for improving the performance of devices and equipment. However, reference data is limited for the design of damping parts, and there is no known method for evaluating the damping characteristics under static load. Therefore, the evaluation value of the damping performance under no-load conditions is used. There was only. Under such circumstances, it is a fact that a product is experimentally manufactured with various damping alloys and is actually mounted to evaluate a comprehensive vibration characteristic.
[0003]
In such an environment, conventionally, in a method of evaluating the vibration damping property of a material, a plate-shaped sample is resonated at a specific natural frequency under a supporting condition of cantilever or center vibration, and free damping such as displacement of the sample is suppressed. The damping characteristics of the material were evaluated from the damping rate.
[0004]
When a damping material is actually used, the damping material is almost always under stress. For this reason, the conventional damping characteristic data under the condition where no stress is applied reflects the actual use environment. It did not, but included the possibility that it could not be used at all.
Heretofore, there has been no method for evaluating the vibration damping characteristics of a material under a static load, and there has been no method for evaluating the vibration damping characteristics of a material using a static load as a parameter.
[0005]
The invention of this application has been made in order to solve the conventional problems as described above, and that the static load has a large effect on the damping performance of the damping material. It was found that under practical conditions, this effect could not be neglected. Therefore, it was necessary to apply stress (vertical, shear) to the test specimen in advance and evaluate the damping performance under the loaded condition. By devising a method for evaluating the vibration damping characteristics of a vehicle and elucidating the vibration damping behavior during a static load, it was possible to provide designers with practical basic data on vibration damping components.
[0006]
According to the invention of this application, the vibration damping characteristics of the vibration damping component during a static load corresponding to the use environment or at the time of being incorporated into a product such as a laser measuring device or an ultra-precision processing machine that requires a high-performance damping alloy. It is possible to provide basic materials for
[0007]
[Means for Solving the Problems]
According to the invention of this application, first, as a method for evaluating vibration damping characteristics, a static load is always applied to a material under various deformation modes by a static load means to introduce vibration, Detect vibration transmitted and attenuated by the above, analyze the detection data, measure the vibration damping characteristics of the vibration damping alloy sample, and compare the vibration damping characteristics with no load or the vibration damping characteristics based on the data obtained under load application. Provided is a method for evaluating vibration damping characteristics by comparison with the vibration damping characteristics of each vibration alloy sample.
[0008]
Secondly, the invention of this application provides a mode in which any one of compression, tension, and bending, or a combination thereof is selected as a deformation mode from the viewpoint of specifying a deformation mode of a material due to a static load. Provided is a method for evaluating vibration damping characteristics of a material to be subjected to a static load.
[0009]
Thirdly, the invention of this application thirdly sets the stress range of the static load within the range of 200 MPa or less in the case of compressive / tensile stress, from the viewpoint of the preferable magnitude of the static load applied to the material. Provided is a method for evaluating vibration damping characteristics of a material having a strain of 1 × 10 −3 or less under a static load.
[0010]
Furthermore, in the invention of this application, fourthly, from the viewpoint of specifying the measurement target source for obtaining the evaluation of the vibration damping property of the material, the vibration damping property of the loaded sample itself is measured, or the load is applied. Fifthly, in order to obtain the damping evaluation of the basic vibration system through the sample, and fifthly, in order to obtain the damping evaluation of the material, from the viewpoint of identifying the specific phenomena of the data that can be read from the measured values, There is also a method to evaluate the damping characteristics of a material under a static load, which is evaluated based on the change in the damping property of the material depending on the size of provide.
[0011]
Sixth, the invention of this application is based on a device for obtaining the evaluation of the damping characteristics of the damping alloy material. Supported, a rigid steel gantry or load gantry that supports the damping alloy material as a sample, and a static load means that constantly applies a load to the damping alloy material supported by the gantry and takes a deformation mode. A hammer means for introducing vibration to the gantry, a vibration detection acceleration sensor having a built-in vibration force sensor, and an analyzer for analyzing detection data detected by the sensor, and constantly applying a static load to the material. In addition, vibration is introduced into the load base by the hammer means, and the vibration attenuated in the damping alloy material under the static load is detected by the vibration detection acceleration sensor on the equipment base, and the detected data is analyzed by the analyzer. An apparatus for measuring the damping characteristics of a damping alloy sample and evaluating the damping characteristics is provided.
[0012]
Hereinafter, the invention of this application will be described in more detail.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, according to the invention of this application, as described below, the vibration damping of a high-performance vibration damping material is performed in a state where elastic deformation (compression, tension, bending) according to actual use conditions is added. Sex can be evaluated.
[0014]
That is, first, in a low-frequency vibration region (1 kHz or less), the sample is elastically deformed by a static load in advance, and a low-frequency vibration having a constant amplitude is applied to the sample in the loaded state. An external stress that causes the sample to maintain vibration at a constant amplitude and the amount of deformation of the sample are detected, and the vibration suppression characteristics of the material are evaluated based on the phase difference generated during the detection. In a constant excitation state (frequency, strain amplitude), the vibration suppression of the sample changes with a change in the static load. This change evaluates the effect of static load on the damping properties of the material.
[0015]
In the high-frequency vibration region (1 kHz to 20 kHz), the natural frequency mode of the structure in which high-frequency vibration occurs is used to calculate the frequency response function of the vibration of the vibration-damping material interposed in the vibration transmission route. And use it for evaluation. Considering the natural vibration mode of the structure, a certain static load is applied to the vibration-damping material test piece installed in the test apparatus, and vibration having more frequency bands is introduced. Vibration characteristics are detected from sensors placed on the test specimen or test equipment. The influence of the static load on the vibration damping characteristics of the material is evaluated based on the change in the vibration level of the detected data and the frequency change amount of the resonance peak value. In this case, the attenuation characteristics of the material with respect to the frequency can be evaluated.
[0016]
The conventional material damping evaluation method does not treat the static load as a parameter affecting the material damping.
[0017]
According to the invention of this application, in a structure such as a laser measuring device or an ultra-precision processing machine that requires a high-performance vibration-damping alloy, the entire apparatus is not manufactured entirely by the vibration-damping alloy. In many cases, a vibration damping alloy is used in a portion connected to a portion where vibration occurs. Therefore, it is used in a static load due to a tightening force in a mounting jig or the like. In some cases, a combined dynamic load may be applied, but due to the difficulty of measurement, the effect of the static load on the damping performance is limited.
[0018]
Actual usage of the vibration damping material includes a compression deformation that is tightened by a screw or the like, a tensile deformation that fixes a part in a suspended state, and a bending deformation when used as a support like a beam. Since the vibration damping properties of the alloy in these deformed states can be measured, three types of deformation modes are used: compression, tension, and bending.
[0019]
Generally, about 50% of the stress (yield stress) that leads to plastic deformation of the material under the use conditions of the structural material is the maximum design stress of the part. In the case of component design that emphasizes strain, material deformation is designed in the range of 0 to 1 × 10 −3 due to static load. In the low frequency range (1 kHz or less), the vibration damping performance of a material can be measured with high accuracy from the stress / strain phase difference of a sample subjected to a static load. In the high frequency range (1 kHz to 20 kHz), it is close to practical conditions to evaluate the vibration control performance of the sample interposed in the vibration transmission path using the eigenmode of the basic vibration system, so that the results can be applied in a wide range. Further, based on the evaluation method of the material, the influence of the static load on the material vibration damping property in each deformation mode and the change of the material vibration damping performance with the holding time under a constant load condition are also examined. Both are data necessary for the practical design of damping materials, and material evaluation parameters that are important in the development field of damping materials that have excellent practicality in the design field such as equipment and machines that require damping properties. Become.
Conventionally, a method of evaluating the vibration damping properties of a vibration damping material has been to vibrate a plate-like sample under cantilevered or central vibration support conditions, and to evaluate the vibration damping characteristics from its free attenuation. It is common for damping materials to be used under static load as practical parts.
[0020]
In addition to the vibration frequency and strain amplitude, it has been clarified that the static load is a major influencing factor on the damping characteristics of the material. However, there is no method for evaluating the damping of the material using the parameters as parameters.
[0021]
According to the invention of this application, a new approach to the development of a vibration damping material can be opened by elucidating the vibration damping behavior during a static load. By proposing a method of evaluating the damping characteristics under static load, a designer can obtain basic data of damping components and greatly contribute to the practical use of damping materials.
[0022]
According to the invention of this application, vibration is introduced into the load base by a hammer means while constantly applying a static load to the sample of the vibration damping material, and the vibration attenuated in the vibration damping alloy material under a static load is applied. Vibration detection on the equipment stand Detected by the acceleration sensor, analyze the detected data with an analyzer, measure the vibration damping characteristics of the vibration damping alloy sample, compare it with the vibration damping characteristics at no load, or differ from the vibration damping alloy sample The vibration suppression characteristics can be evaluated by comparison with the vibration suppression characteristics for each.
[0023]
【Example】
FIG. 1 shows a static load deformation mode of a sample in the evaluation of vibration damping performance. As shown in the figure, the static load deformation mode indicates (a) during compression load application, (b) during tensile load application, and (c) during bending load application. In addition to these, there are a torsion mode and a mode in which each mode is combined, but three basic examples are shown. As an embodiment, an experimental example in a high frequency region and an experimental example in a low frequency region will be described.
[0024]
In FIG. 1, the vibration-damping-characteristics evaluation device stand or the load stand (1) is a rigid structure made of steel. The anti-vibration rubber (2) is shown as a member for supporting the load mount (1) so that the whole of the vibration damping characteristic evaluation device (1) becomes an independent vibration system. The vibration detection acceleration sensor (3) is installed on the load frame (1). A vibration damping alloy sample (4) is arranged on the load base (1). The impulse hammer (5) is a vibration device for introducing vibration, and has a built-in vibration force sensor. A static load (6) is provided to constantly apply a load.
[0025]
The method of measuring the vibration damping characteristics during static load in the static load deformation mode is as follows. Vibration is introduced into the load base (1) by an impulse hammer (5), and the transmission attenuation in the vibration damping alloy sample (4) under the static load is applied. The vibration thus detected is detected by a vibration detection acceleration sensor (3) on the device mount (1). The static load can be changed by the static load (6). The detected data is analyzed by an FFT (Fast Fourier Transform) analyzer.
(Example 1)
Example 1 is an experimental example in the high frequency range. In the high frequency region, the vibration mode of the basic structure is used to indirectly measure the vibration damping performance of a loaded sample. As shown in FIG. 2, an example in which the vibration damping performance of a sample (cylindrical) under a compressive load is evaluated.
[0026]
According to this embodiment, the M2052 alloy (Mn base, 20 at.% Cu, 5 at.% Ni, 2 at.% Fe alloy) and the Fe-6 mass% Al alloy, which are high performance damping alloys, are processed into a cylindrical shape. The vibration damping characteristics under a static compression load (0 MPa and 5 MPa) were evaluated. In order to evaluate the vibration damping property under a static load, vibration was introduced into a rigid steel load base (1) using the impulse hammer (5) in FIG. The transmitted vibration and the attenuated vibration were detected by a vibration detection addition sensor (3) installed on a rigid steel load frame (1). The frequency response function of the vibration system was analyzed with an FFT (fast Fourier transform) analyzer. The static load can vary with the amount of weight. The vibration system is independent of the device frame by a rubber cushion (2).
[0027]
FIG. 3 is a result of analyzing the damping performance under a static load of Example 1 with an FFT (Fast Fourier Transform) analyzer, and shows an evaluation result of a static load exerted on the damping performance of the alloy. The vertical axis represents the acceleration (frequency response function = acceleration / force) of the vibration system, and the lower the lower, the higher the vibration suppression performance. The horizontal axis is the vibration frequency. This shows that the M2052 alloy as the vibration damping alloy is less affected by the static load, unlike the Fe-6% Al alloy. Both alloys showed very high damping performance over a wide frequency band at no load. Although the vibration damping characteristics of the M2052 alloy are slightly deteriorated under the static compression load, the vibration damping characteristics of the static load deteriorate in the region of 7 kHz or more in the case of the Fe-Al alloy. At 10 kHz, the acceleration was ten times worse with the load. That is, the vibration damping performance of the Fe—Al alloy was degraded 10 times under a static load of 5 MPa. In FIG. 3, two or three resonance peaks also appear, which are peculiar to the fundamental vibration system, and the peaks also reflect the vibration damping performance under a static load. In this experiment, a disk with a constant static load was placed on a cylindrical sample of the same diameter, and the disk was repeatedly hit with an impulse hammer (5). Was analyzed.
(Example 2)
The second embodiment is an example of a low-frequency region. In the low frequency region, a static load is applied to the sample, and the vibration suppression performance is measured for each sample. FIG. 4 shows a principle diagram of an apparatus for evaluating vibration damping performance for Example 2, and shows an example of evaluating the vibration damping performance of a plate-in-load sample in a bending deformation mode.
[0028]
M2052 alloy (Mn base, 20 at.% Cu, 5 at.% Ni, 2 at.% Fe alloy) and Fe-6 mass% Al alloy, which are high-performance damping alloys, are processed into a 1 x 10 x 60 mm plate sample. A static load is applied so that the maximum strain (0 to 2 × 10 −4 ) generated on the surface of the sample becomes constant, and a sine wave vibration is input to the load, and the displacement generated on the test piece is a non-contact type displacement. Detected by sensor. The vibration damping performance was evaluated based on the phase difference (tan δ) between the vibration force and the displacement waveform. Both ends of the plate-like sample (1) is fixed to the restraining frame (2), multiplied by the static load F 0 in a central position, the bending deformation of the X 0 occurs in the sample. A sine wave stress f * is applied to the central position of the sample, and the displacement X * is detected. As shown in FIG. 4B, the damping performance of the damping alloy is measured. The measurement temperature was 25 ° C. The excitation frequency was 1 Hz, and the strain amplitude on the surface of the sample was 1 × 10 −5 .
[0029]
FIG. 5 shows the measurement results of the vibration damping performance of the plate sample during the static load. The vertical axis is tan δ indicating the phase difference between the displacement and the stress, and reflects the damping performance of the alloy. The magnitude of the static load was converted to the strain on the sample surface and indicated on the horizontal axis. When a static load having a surface strain of less than 2 × 10 −5 is applied, the Fe—Al alloy exhibits higher vibration damping performance than the M2052 alloy. As the static load increased, the damping performance of both alloys changed in reverse. When the static strain is up to 8 × 10 −5, the vibration damping performance of the M2052 alloy tends to slightly increase, whereas the Fe—Al alloy continuously decreases.
[0030]
For larger static loads, both decrease. From this result, it became clear that the vibration damping characteristics of the alloy in the no-load state differed greatly depending on the load. Unless a damping material is selected in accordance with actual use conditions, the expected damping effect will not be produced.
[0031]
【The invention's effect】
As described above, according to the invention of this application, by elucidating the damping behavior during a static load, a method for evaluating the damping characteristics under a static load was established for practical use of a high-performance damping alloy. By proposing a method for evaluating the vibration damping characteristics under static load, it is possible to provide basic materials for vibration damping materials with high practicality, and to contribute to product design considering vibration damping.
In addition, by proposing a method for evaluating the damping characteristics of a material under static load, basic data directly related to product development can be obtained, and simulations of machines and structures incorporate new parameters, and high-precision modeling is performed. it can.
[0032]
Furthermore, since this evaluation method provides a new guideline for the development of the vibration damping material, it can greatly contribute to the practical use of the vibration damping material and is considered to have a great economic effect.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram illustrating a vibration damping characteristic evaluation mode under a static load, in which (a) under a compressive load, (b) under a tensile load, and (c) under a bending load, depending on the load type. Indicates the mode.
FIG. 2 is a diagram showing an experimental example in a high-frequency region.
FIG. 3 is a diagram showing a result of analyzing a vibration damping property with an FFT analyzer under a static load.
FIG. 4 is a principle diagram of an apparatus for evaluating the vibration damping performance of a sheet material under load in a bending deformation mode used in an experimental example in a low frequency region.
FIG. 5 is a diagram showing the results of measuring the vibration damping performance of a plate-shaped sample under a static load.
[Explanation of symbols]
1. Vibration damping characteristics evaluation device stand or load stand 2. Vibration isolation rubber 3. Vibration detection acceleration sensor 4. Damping alloy sample 5. Impulse hammer 6. Static load

Claims (6)

防振ゴムにより支持され独立した振動系を形成する装置架台又は荷重架台に制振合金材料を支持し、制振合金材料に静負荷荷重手段により所望の変形モードで常時荷重を負荷し、振動導入手段により荷重架台に振動を導入し、静負荷付与下における制振合金材料中の伝達減衰振動を振動検出手段により検出し、検出データを解析器により解析し、前記材料に常時静的荷重を負荷しつつ、制振合金試料の制振特性を測定し、無負荷時の制振特性との対比又は相違する制振合金試料毎の制振特性との対比により制振特性を評価することを特徴とする材料の静負荷付与下での制振特性評価方法。The vibration-damping alloy material is supported on a device stand or load stand that is supported by the vibration-proof rubber and forms an independent vibration system, and a constant load is applied to the vibration-damping alloy material in the desired deformation mode by the static load means to introduce vibration. The vibration is introduced into the load frame by the means, the transmission damping vibration in the damping alloy material under the application of the static load is detected by the vibration detecting means, the detection data is analyzed by the analyzer, and the static load is always applied to the material. While measuring the damping characteristics of the damping alloy sample, the damping characteristics are evaluated by comparing with the damping characteristics at no load or by comparing the damping characteristics of each different damping alloy sample. Method for evaluating the vibration damping characteristics of a material to be subjected to a static load. 請求項1において、静的負荷による制振合金材料の変形モードが、圧縮、引張、曲げのいずれか一つもしくはそれらの組合せのモードであることを特徴とする材料の静的負荷付与下での制振特性評価方法。2. The method according to claim 1, wherein the deformation mode of the damping alloy material due to the static load is any one of compression, tension, and bending or a combination thereof. Evaluation method of damping characteristics. 請求項2において、静的負荷の応力範囲を、圧縮・引張応力では200MPa以下の範囲内、またひずみでは1×10-3以下の範囲内としてそのいずれか一つを選択したことを特徴とする材料の静的負荷付与下での制振特性評価方法。In claim 2, any one of the stress ranges of static load is selected as being within a range of 200 MPa or less for compressive / tensile stress and within a range of 1 × 10 -3 or less for strain. Evaluation method of vibration damping characteristics under static load of material. 請求項1ないし3のいずれかにおいて、材料の制振性評価を、負荷をかけた試料自身の制振性測定、又は負荷をかけた試料を介した基礎振動系の制振性測定のいずれか一つの選択によって得ることを特徴とする材料の静的負荷付与下での制振特性評価方法。4. The method according to claim 1, wherein the evaluation of the vibration damping property of the material is performed by measuring a vibration damping property of the loaded sample itself or a vibration damping property measurement of the basic vibration system through the loaded sample. A method for evaluating vibration damping characteristics of a material under a static load, which is obtained by one selection. 請求項1ないし4のいずれかにおいて、材料の制振性評価を、静的負荷の大きさに依存する材料の制振性の変化、又は一定負荷で保持時間に伴う材料の制振性の変化のいずれか一つの選択された要因から得ることを特徴とする材料の静的負荷付与下での制振特性評価方法。5. The method according to claim 1, wherein the evaluation of the damping property of the material is based on a change in the damping property of the material depending on the magnitude of the static load, or a change in the damping property of the material with a holding time at a constant load. A method for evaluating vibration damping properties of a material under a static load, wherein the method is obtained from any one of the selected factors. 制振特性評価装置全体を独立した振動系にするために防振ゴムによって支持され、試料としての制振合金材料を支持する鋼製の堅牢な装置架台又は荷重架台と、架台に支持された制振合金材料に常時荷重を負荷し、各種変形モードを取る静負荷荷重手段と、架台に振動を導入するためのハンマー手段と、振動力センサーを内蔵する振動検出加速度センサ―と、センサーにより検出した検出データを解析する解析器とを備え、前記材料に常時静的荷重を負荷しつつ、ハンマー手段により荷重架台に振動を導入し、静負荷付与下の制振合金材料中で伝達減衰した振動を装置架台上の振動検出加速度センサーにより検出し、検出データを解析器により解析し、制振合金試料の制振特性を測定し、制振特性を評価することを特徴とする材料の静負荷付与下で制振特性評価を得るための装置。In order to make the whole of the vibration suppression characteristics evaluation device an independent vibration system, it is supported by vibration-proof rubber, and it is a rigid steel mount or load mount that supports the damping alloy material as a sample, Static load load means that constantly applies a load to the vibration alloy material and takes various deformation modes, hammer means to introduce vibration to the gantry, vibration detection acceleration sensor with built-in vibration force sensor, and detection by the sensor And an analyzer for analyzing the detection data, while constantly applying a static load to the material, introducing vibration to the load gantry by a hammer means, and transmitting the vibration attenuated in the damping alloy material under a static load. With a static load on the material, the vibration is detected by an acceleration sensor on the device mount, the detected data is analyzed by an analyzer, the vibration control characteristics of the vibration control alloy sample are measured, and the vibration control characteristics are evaluated. Apparatus for obtaining damping characterization below.
JP2001282510A 2001-09-18 2001-09-18 Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics Expired - Lifetime JP3598348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001282510A JP3598348B2 (en) 2001-09-18 2001-09-18 Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001282510A JP3598348B2 (en) 2001-09-18 2001-09-18 Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics

Publications (2)

Publication Number Publication Date
JP2003090831A JP2003090831A (en) 2003-03-28
JP3598348B2 true JP3598348B2 (en) 2004-12-08

Family

ID=19106150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001282510A Expired - Lifetime JP3598348B2 (en) 2001-09-18 2001-09-18 Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics

Country Status (1)

Country Link
JP (1) JP3598348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980245B2 (en) * 2005-01-17 2012-07-18 ピー−レスポンス アイピー プロプライエタリー リミテッド Non-destructive testing of process vessel linings
WO2009130818A1 (en) * 2008-04-24 2009-10-29 国際計測器株式会社 Electrodynamic vibration testing system
EP3575768B1 (en) * 2018-06-01 2021-10-20 GF Machining Solutions AG System and method for determining structural characteristics of a machine tool
CN112304587A (en) * 2020-10-22 2021-02-02 南通装配式建筑与智能结构研究院 Shock attenuation product test device

Also Published As

Publication number Publication date
JP2003090831A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
Bennouna et al. The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam
US7621189B2 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
JP2015530570A (en) A method for determining the non-propagation threshold of fatigue cracks at high frequencies.
JP2010048680A (en) Vibration test method and apparatus
Koruk et al. Identification and removal of adverse effects of non-contact electromagnetic excitation in Oberst Beam Test Method
Vasques et al. Viscoelastic Damping Technologies-Part II: Experimental Identification Procedure and Validation.
JP3598348B2 (en) Method of evaluating damping characteristics under application of static load on material and apparatus for obtaining evaluation of damping characteristics
Tabin et al. Methods for identifying dynamic parameters of clip-on extensometer–specimen structure in tensile tests
Körük Quantification and minimization of sensor effects on modal parameters of lightweight structures
Baharin et al. Effect of accelerometer mass on thin plate vibration
Vasques et al. Experimental identification of GHM and ADF parameters for viscoelastic damping modeling
Tian et al. Vibration analysis of an elastic-sphere oscillator contacting semi-infinite viscoelastic solids in resonant ultrasound microscopy
Rao et al. Dynamic characterization of automotive exhaust isolators
Chandravanshi et al. Experimental modal analysis of the vibratory feeder and its structural elements
Fujikawa Analysis of steering column vibration
Nguyen et al. Effect of boundary conditions on the dynamic instability and non-linear response of rectangular plates, Part II: Experiment
Tomilin et al. Frequency dependence of the internal friction of the amg6 alloy
Rao et al. Measurement of dynamic parameters of automotive exhaust hangers
Boyadzhieva et al. Acoustic Nondestructive Characterization of Metal Pantographs for Material and Defect Identification
Kong et al. Dynamical measurements on viscoelastic behaviors of spiders in electro-dynamic loudspeakers
Cambiaghi et al. High frequency dynamic testing of rubbers and rubber to metal devices
Singh et al. Free Vibration Analysis on cantilever beam-a review
Le et al. Design and optimization of medium-high frequency FBG acceleration sensor based on symmetry flexible hinge structure
Uriarte et al. Suppression of ringing oscillations from high speed rubber compression curves through a detailed modal characterization of servo-hydraulic machines
Faiiazee et al. Effect of fastening method on the vibration energy flow through bolted structural joints

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

R150 Certificate of patent or registration of utility model

Ref document number: 3598348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term