JP3598050B2 - How to measure sieve opening diameter - Google Patents

How to measure sieve opening diameter Download PDF

Info

Publication number
JP3598050B2
JP3598050B2 JP2000222986A JP2000222986A JP3598050B2 JP 3598050 B2 JP3598050 B2 JP 3598050B2 JP 2000222986 A JP2000222986 A JP 2000222986A JP 2000222986 A JP2000222986 A JP 2000222986A JP 3598050 B2 JP3598050 B2 JP 3598050B2
Authority
JP
Japan
Prior art keywords
sieve
diameter
classification
powder
opening diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000222986A
Other languages
Japanese (ja)
Other versions
JP2002039936A (en
Inventor
成史 倉本
浩伸 鳥淵
伸治 若槻
令晋 佐々木
真美子 森川
真一 渡嘉敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000222986A priority Critical patent/JP3598050B2/en
Publication of JP2002039936A publication Critical patent/JP2002039936A/en
Application granted granted Critical
Publication of JP3598050B2 publication Critical patent/JP3598050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ふるいの開孔径の測定方法に関する。
【0002】
【従来の技術】
各種分野で取り扱われる粉体はその種類、目的、用途によって、必要とされる平均粒子径及び粒子径の分布が異なる。特に、液晶表示素子用スペーサー、異方導電フィルム用導電性粒子、液体クロマトグラフィー用充填剤、フィルム用滑剤あるいは静電荷像現像用トナーといった用途に用いられる粉体の場合、粒子径の分布を狭くする必要がある。
中でも、液晶表示素子用スペーサーとして用いられる粉体は、粒子径分布を特に狭くする必要があり、種々の方法により作製した原料粉体から目的とする粒子径および粒子径分布となるように精密に分別して使用する必要がある。
【0003】
一般に、粉体の粒子径分布を狭くするためには、いわゆる分級装置が用いられる。分級装置としては、サイクロン、沈降塔、あるいはふるい等が乾式または湿式で用いられる。しかしながら、旋回流中の遠心力と重力とのバランスを利用して分級を行うサイクロンでは、その構造上、分級ゾーンをショートパスする粒子が存在するため、粒子径分布を狭くすることに限界があり、また少量ではあるものの粒子径分布から大きく外れた粒子が残存するといった問題を有している。
また、媒体中での沈降速度の差を利用して分級する沈降塔においては、温度、振動などの要因によって沈降速度が変化するため、分級精度を上げることが困難であり、また粒子径の小さいものについては、沈降速度が極めて小さいため分級に多大な時間が必要である。沈降塔を改良し、下方より媒体を供給し上方よりオーバーフローさせる装置も提案されているが、上記した沈降塔と同様の問題を有している。
【0004】
これに対して、ふるいは一定の目開きを通過するか否かで分級を行うものであり、上記のような問題を有しないため、粒子径の小さいものの分級に適している。中でも、電成ふるいと呼ばれる、メッキによって矩形の孔を有するスクリーンを作製したものは、目開きが非常によくそろっており分級の精度が高く、しかも厚みより小さな孔加工が可能であり、サイドエッジがなく断面形状がきれいであり、優れたふるいである。
ふるいを用いて分級を精度よく行うためには、ふるいの開孔径の大きさを正確に把握しておくことが前提となるが、従来知られた測定方法はいずれも問題を有する。例えば、電成ふるいについては、ふるい作製時のメッキ条件(速度・時間)により開孔径の大きさを決定する方法があるが、メッキ作製時の環境により開孔径の大きさが変動しやすいために精度が劣る。また、各種顕微鏡を用いて開孔部の長さを測定する方法では、数多くの開孔部について測定を行う必要があり煩雑である。また、ふるいに光を照射して透過した光量から開孔径の大きさを求める方法や、ふるいに流体を通過させ、その通過性(時間など)を測定することで開孔径の大きさを求める方法では、基準サンプルが必要であるが、線数等が変化した場合には透過した光量や通過性と開孔径の大きさとの関係が大きく変化するため、煩雑な工程が必要となる。さらに、上記のいずれの方法においても、ふるいの開孔径の大きさに分布がある場合には精度が落ちるという問題がある。また、小さい開孔径のふるいの場合、線部分の影響あるいは圧損のために通過しうる粒子径が開孔部分よりも小さくなる傾向があることから、上記の方法によって測定された開孔径は、実際にふるいを通過しうる粒子径を正確に表すものではない。
【0005】
【発明が解決しようとする課題】
したがって、本発明の課題は、簡便な操作により、ふるいを実際に通過しうる粒子径を正確に表したふるいの開孔径を精度良く測定する方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明のふるいの開孔径の測定方法は、開孔径が
0.2〜50μmのふるいの開孔径を測定する方法であって、
次の(a)〜(c)の条件を満たす粒度分布を有する粉体を前記ふるいによって分級した後、
(a)10%径が予想されるふるいの開孔径よりも大きい
(b)90%径が予想されるふるいの開孔径よりも小さい
(c)10%径と90%径との差が2μm以上である
前記ふるいを通過した粉体の最大粒子径を測定し、その値を前記ふるいの開孔径と定義することを特徴とする。
【0007】
【発明の実施の形態】
本発明では、実際の分級と同様の方法により分級を行ってふるいの開孔径を測定するので、精度良く測定を行うことができる。このとき分級に用いる測定粉体は、次の(a)〜(c)の条件を満たす粒度分布を有するものである。
(a)10%径が予想されるふるいの開孔径(予想開孔径)よりも大きい
(b)90%径が予想されるふるいの開孔径(予想開孔径)よりも小さい
(c)10%径と90%径との差が2μm以上である
予想開孔径が測定粉体の10%径と90%径の間にあり、カット点付近の粒子径を有する粒子の割合が高いため、精度良く測定を行うことができる。また、測定粉体の10%径と90%径との差が2μm以上と大きいため、予想開孔径と実際の開孔径との間に差が生じても精度に影響を与えない。また、測定粉体の粒子径の分布が広いため、ふるいの開孔径のばらつきが大きい場合でも測定が可能である。なお、ここで用いる測定粉体は、その形状が球状であり、アスペクト比が1.5以下であるものが好ましい。
【0008】
ふるいの予想開孔径は、電成ふるいについては、線数とふるい作製時のメッキ条件(速度・時間)からおおよそ推測することができる。この他にも各種顕微鏡を用いた観察や、その透光度等からおおよそ推測することが可能である。
本発明によりふるいの開孔径の測定を行った後、該ふるいを用いて実際に分級を行うので、測定粉体としては、実際の分級の際に不純物とならないものを用いることが好ましく、実際に分級を行うものと同種のものを用いることが最も好ましい。分級には、有機架橋重合体粒子、無機系粒子、有機質無機質複合体粒子等の粉体が用いられる。
【0009】
分級の方法としては、測定粉体を液状媒体に分散させた分散体を用いる湿式法が好ましい。媒体として不活性ガスや空気などを用いる乾式法と比較して、湿式法によった場合の方が超音波の照射効率、分散の安定性が高く、またふるいへの粒子の付着が少ない。特に液晶表示素子用スペーサーなどに用いる10μm程度以下の粒子径の小さいものは凝集力が強いため、乾式法では分散が不十分になる場合がある。
測定粉体を分散させる液状媒体としては、用いるふるいの材質、開孔径、線数、および粉体の性状あるいは粒子径分布などによって適切に選択することができる。
【0010】
分散体における測定粉体の濃度は、ふるい上への粒子の堆積を防止するため、通常の分級と比較して希薄であることが好ましい。具体的には0.01〜30wt%であることが好ましく、より好ましくは0.1〜20wt%である。前記範囲よりも濃度が薄い場合、分級に多大な時間が必要となる。
上記粉体を用いて分級を行った後、ふるいを通過した粉体の最大粒子径を測定し、その値を前記ふるいの開孔径と定義する。したがって、本発明により測定された開孔径は、実際にふるいを通過しうる粒子径を正確に表すものである。
ふるいを通過した粉体の最大粒子径を測定する方法としては、コールターカウンター法、光散乱法、沈降法等の粒度分布測定や、各種顕微鏡を用いた粒子径測定等の一般的な方法を採用することができる。
【0011】
本発明で測定の対象となるふるいとは、一定の目開きを通過するか否かで分級を行うためのものであり、開孔径が0.2〜50μmのものであれば特に制限はない。細線を編んだふるい、金属箔などをエッチングにより微細な孔をあけたもの、電成ふるいと呼ばれる、メッキによって矩形の孔を有するスクリーンを作製したもの等が挙げられる。一般に、目開き10μm以上の場合には細線を編んだふるいが用いられ、それ以下の場合には金属箔などをエッチングにより微細な孔をあけたものや、電成ふるいが用いられる。これらは細線を編んだものと比較して目開きが非常によくそろっており分級の精度を向上させることができるものである。特に電成ふるいは、厚みより小さな孔加工が可能であり、サイドエッジがなく断面形状がきれいであるため、開孔径、単位あたりの開孔数の調整が容易であるばかりでなく、開孔径分布が非常に良好であり、非常に精度良く分級を行うことができる。
【0012】
電成ふるいの製造方法としては、高精度にクロスライン状に腐食させたガラス原板上に、真空蒸着、スパッタリング等の物理メッキ、あるいは電解メッキ、無電解メッキ等の化学メッキにより導電性被膜を形成した後、腐食部分の溝以外のメッキ層を除去し、これに電解メッキ等の方法でメッシュを形成し、ガラス原板から剥離する方法が挙げられる。このようにして作製されたメッシュはガラス原板から剥離後、必要に応じてさらに電解メッキを施してもかまわない。また、他の製造方法として、ガラス平板上に真空蒸着、スパッタリング等の物理メッキ、あるいは電解メッキ、無電解メッキ等の化学メッキにより導電性被膜を形成し、その被膜上にレジストを塗布した後、所定の形状のパターンを形成し、その後エッチングによりパターン以外の部分を除去し、ガラス原板から剥離後、電解メッキを施す方法も挙げられる。
【0013】
図1に、電成ふるいを備えた分級装置の一例を示すが、本発明はこれによって何ら限定されるものではない。図1において、電成ふるい1は、ハウジング上部4およびハウジング下部4′によって挟み込まれる形で固定される。電成ふるい1の強度を上げるためのサポート2が設けられ、エラストマーからなるパッキン3を介してハウジング4、4′に接続されている。ハウジング上部4内には超音波照射チップ5が挿入され、これによりハウジング内の媒体に超音波振動が照射される。ハウジング上部4内には媒体の循環ライン6、6′及び媒体の供給ライン7が設けられている。測定粉体を液状媒体に分散させた分散体はハウジング上部4内に仕込まれ、媒体とともに電成ふるいの開孔径よりも小さい粒子がハウジング下部4′へと移動する。操作の経過に伴い、ハウジング上部4内に存在する電成ふるいの開孔径よりも小さい粒子が減少していき、最終的には電成ふるいの開孔径を境にして、粒子径の大きいもの(ハウジング上部4内に残留した粒子)と粒子径の小さいもの(ハウジング下部4′に移動した粒子)とに分級することができる。
【0014】
【実施例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれに限定されるものではない。
(実施例1)
ニッケル系で予想開孔径5.5ミクロンの電成ふるい(ふるいA)について、図1記載の装置を用いて、球状で平均粒子径が5.21μmで10%径が6.22μm,90%径が4.15μmである粉体1の分級を行った。
分級にあたって、粉体の分散媒としてメタノールを用い、分散体濃度が2wt%の条件で5分間分級を行った。
【0015】
分級中ハウジング下部に流出した分散体を回収し、分級終了後にコールターマルチサイザーIIE型により粒子径測定を行ったところ、最大粒子径は5.76μmであった。上記粉体1の分級を再度行い、ハウジング下部に流出した分散体の粒子径測定を行ったところ、5.76μmであり、1回目と同じ値となり、再現性が確認できた。
(実施例2)
ニッケル系で予想開孔径2.0ミクロンの電成ふるい(ふるいB)について、図1記載の装置を用いて、球状で平均粒子径が2.83μmで10%径が4.52μm,90%径が1.27μmである粉体2の分級を行った。
【0016】
分級にあたって、粉体の分散媒としてメタノールを用い、分散体濃度が0.5wt%の条件で10分間分級を行った。
分級中ハウジング下部に流出した分散体を回収し、分級終了後にコールターマルチサイザーIIE型により粒子径測定を行ったところ、最大粒子径は2.43μmであった。
(実施例3)
ニッケル系で予想開孔径10ミクロンのナイロン製ふるい(ふるいC)について、図1記載の装置を用いて、球状で平均粒子径が9.10μmで10%径が8.21μm,90%径が11.48μmである粉体3の分級を行った。
【0017】
分級にあたって、粉体の分散媒としてメタノールを用い、分散体濃度が10wt%の条件で2分間分級を行った。
分級中ハウジング下部に流出した分散体を回収し、分級終了後にコールターマルチサイザー11E型により粒子径測定を行ったところ、最大粒子径は10.2μmであった。
(比較例1)
実施例1において、粉体1のかわりに、球状で平均粒子径が4.95μmで10%径が5.45μm,90%径が3.22μmである比較粉体1(5%径が5.72μm)の分級を行った。
【0018】
分級にあたって、粉体の分散媒としてメタノールを用い、分散体濃度が2wt%の条件で10分間分級を行ったところ、分散体のほぼ全量がハウジング下部に流出した。このハウジング下部に流出した分散体を回収し、コールターマルチサイザーIIE型により粒子径測定を行ったところ、5.4μm以上の領域で分布に不連続な部分が見られ、最大粒子径は5.57μmであった。上記比較粉体1の分級を再度行い、ハウジング下部に流出した分散体の粒子径測定を行ったところ、5.70μmであり、1回目と2回目ではばらつきが大きいことがわかった。このようにばらつきが大きい理由は、比較例1では、ふるいに引っかかる粒子が極めて少なく、開孔径が不正確であるためと考えられる。
【0019】
(比較例2)
実施例2において、粉体2のかわりに、球状で平均粒子径が3.58μmで10%径が5.16μm,90%径が2.27μmである比較粉体2(95%径が1.66μm)の分級を行った。
分級にあたって、粉体の分散媒としてメタノールを用い、分散体濃度が0.5wt%の条件で10分間分級を行ったが、下部ハウジングに流出する液にほとんど粒子は存在せず、最大粒子径を測定することが出来なかった。
(比較例3)
実施例3において、粉体3のかわりに、球状で平均粒子径が9.07μmで10%径が8.21μm,90%径が9.98μmである比較粉体3の分級を行った。
【0020】
分級にあたって、粉体の分散媒としてメタノールを用い、分散体濃度が10wt%の条件で2分間分級を行ったところ、すべての分散体がハウジング下部に流出した。この、ハウジング下部に流出した分散体を回収し、コールターマルチサイザーIIE型により粒子径測定を行ったところ、比較粉末3と同様の粒度分布を示し、開孔径を求めることが出来なかった。
【0021】
【発明の効果】
本発明によると、簡便な操作により、ふるいを実際に通過しうる粒子径を正確に表したふるいの開孔径を精度良く測定することができる。
【図面の簡単な説明】
【図1】電成ふるいを備えた分級装置の一例を表す概略断面図である。
【符号の説明】
1 電成ふるい
2 サポート
3 パッキン
4 ハウジング上部
4′ ハウジング下部
5 超音波照射チップ
6、6′ 媒体循環ライン
7 媒体供給ライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the opening diameter of a sieve.
[0002]
[Prior art]
The required average particle size and the distribution of the particle size differ depending on the kind, purpose, and use of the powder handled in various fields. In particular, in the case of powders used for spacers for liquid crystal display elements, conductive particles for anisotropic conductive films, fillers for liquid chromatography, lubricants for films, or toners for developing electrostatic images, the particle size distribution is narrowed. There is a need to.
Above all, the powder used as the spacer for the liquid crystal display element needs to have a particularly narrow particle size distribution, and the raw material powders produced by various methods are precisely adjusted to have the target particle size and particle size distribution. It must be used separately.
[0003]
Generally, in order to narrow the particle size distribution of the powder, a so-called classifier is used. As a classifier, a cyclone, a sedimentation tower, a sieve, or the like is used in a dry type or a wet type. However, in cyclones that perform classification using the balance between centrifugal force and gravity in swirling flow, there are particles that short-pass through the classification zone due to their structure, so there is a limit to narrowing the particle size distribution. In addition, there is a problem that, although a small amount, particles largely deviate from the particle size distribution remain.
Further, in a sedimentation tower that classifies using a difference in sedimentation velocity in a medium, the sedimentation velocity changes due to factors such as temperature and vibration, so it is difficult to increase the classification accuracy, and the particle diameter is small. Since the sedimentation speed is extremely low, a large amount of time is required for classification. An apparatus in which a settling tower is improved to supply a medium from below and overflow from above is also proposed, but has the same problem as the above-mentioned settling tower.
[0004]
On the other hand, a sieve performs classification based on whether or not it passes through a certain mesh. Since it does not have the above-described problems, it is suitable for classification of particles having a small particle diameter. Of these, screens with rectangular holes made by plating, called electroformed sieves, have very good openings, high classification accuracy, and can be processed into holes smaller than the thickness. It has a clean cross section without any defects and is an excellent sieve.
In order to perform classification with high accuracy using a sieve, it is premised that the size of the opening diameter of the sieve is accurately grasped, but all of the conventionally known measuring methods have problems. For example, for electric sieves, there is a method of determining the size of the opening diameter according to the plating conditions (speed / time) when producing the sieve. However, since the size of the opening diameter tends to fluctuate depending on the environment at the time of plating production. Poor accuracy. In addition, the method of measuring the length of the aperture using various microscopes requires measurement of many apertures, which is complicated. In addition, a method of determining the size of the aperture diameter from the amount of light transmitted by irradiating light to the sieve or a method of determining the size of the aperture diameter by passing a fluid through the sieve and measuring the passage property (time, etc.) In this case, a reference sample is required. However, when the number of lines or the like changes, the relationship between the amount of light transmitted or the transmissivity and the size of the aperture diameter greatly changes, so that a complicated process is required. Further, in any of the above methods, there is a problem that accuracy is reduced when the size of the opening diameter of the sieve has a distribution. In the case of a sieve having a small opening diameter, the particle diameter that can pass through due to the influence of the line portion or the pressure loss tends to be smaller than that of the opening portion. It does not accurately represent the particle size that can pass through a sieve.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a method for accurately measuring the opening diameter of a sieve that accurately represents the particle diameter that can actually pass through the sieve by a simple operation.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the method for measuring the opening diameter of the sieve of the present invention is a method for measuring the opening diameter of a sieve having an opening diameter of 0.2 to 50 μm,
After classifying powder having a particle size distribution satisfying the following conditions (a) to (c) by the sieve,
(A) 10% diameter is larger than expected sieve opening diameter (b) 90% diameter is smaller than expected sieve opening diameter (c) Difference between 10% diameter and 90% diameter is 2 μm or more The maximum particle size of the powder that has passed through the sieve is measured, and the value is defined as the opening diameter of the sieve.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the classification is performed by the same method as the actual classification and the opening diameter of the sieve is measured, so that the measurement can be performed with high accuracy. The measurement powder used for classification at this time has a particle size distribution satisfying the following conditions (a) to (c).
(A) 10% diameter is larger than expected sieve opening diameter (expected opening diameter) (b) 90% diameter is smaller than expected sieve opening diameter (expected opening diameter) (c) 10% diameter The expected pore diameter where the difference between the diameter and the 90% diameter is 2 μm or more is between the 10% diameter and the 90% diameter of the measured powder, and the ratio of the particles having the particle diameter near the cut point is high, so that the measurement is performed accurately It can be performed. Further, since the difference between the 10% diameter and the 90% diameter of the measured powder is as large as 2 μm or more, even if a difference occurs between the expected opening diameter and the actual opening diameter, the accuracy is not affected. In addition, since the distribution of the particle size of the measurement powder is wide, measurement can be performed even when the variation in the opening diameter of the sieve is large. The measurement powder used here preferably has a spherical shape and an aspect ratio of 1.5 or less.
[0008]
The expected opening diameter of the sieve can be roughly estimated from the number of wires and the plating conditions (speed / time) at the time of producing the sieve. In addition to this, it is possible to roughly estimate from observation using various microscopes and the light transmittance.
After measuring the opening diameter of the sieve according to the present invention, since the classification is actually performed using the sieve, it is preferable to use a measurement powder that does not become an impurity during the actual classification, It is most preferable to use the same type as that to be classified. Powders such as organic cross-linked polymer particles, inorganic particles, and organic-inorganic composite particles are used for classification.
[0009]
As a classification method, a wet method using a dispersion in which a measurement powder is dispersed in a liquid medium is preferable. Compared to the dry method using an inert gas or air as a medium, the wet method has higher ultrasonic irradiation efficiency and dispersion stability, and less particles adhere to the sieve. In particular, particles having a small particle size of about 10 μm or less used for a spacer for a liquid crystal display element or the like have a strong cohesive force, so that dispersion may be insufficient by a dry method.
The liquid medium in which the powder to be measured is dispersed can be appropriately selected depending on the material of the sieve to be used, the pore size, the number of lines, the properties of the powder, the particle size distribution, and the like.
[0010]
It is preferable that the concentration of the measurement powder in the dispersion is lower than that in the ordinary classification, in order to prevent the particles from being deposited on the sieve. Specifically, it is preferably 0.01 to 30% by weight, more preferably 0.1 to 20% by weight. If the concentration is lower than the above range, a large amount of time is required for classification.
After classification using the powder, the maximum particle size of the powder that has passed through the sieve is measured, and the value is defined as the opening diameter of the sieve. Therefore, the pore size measured according to the present invention accurately represents the particle size that can actually pass through the sieve.
As a method for measuring the maximum particle diameter of the powder that has passed through the sieve, a general method such as a particle size distribution measurement such as a Coulter counter method, a light scattering method, a sedimentation method, or a particle diameter measurement using various microscopes is employed. can do.
[0011]
The sieve to be measured in the present invention is used for classification based on whether or not the sieve passes through a certain aperture, and there is no particular limitation as long as the pore size is 0.2 to 50 μm. Examples thereof include a sieve obtained by knitting a fine wire, a metal foil or the like in which fine holes are formed by etching, and a screen having a rectangular hole formed by plating, which is called an electric sieve. In general, when the mesh size is 10 μm or more, a knitted sieve having a fine wire is used. When the mesh size is smaller than 10 μm, a metal foil or the like having fine holes formed by etching or an electric sieve is used. These have very good openings compared to those obtained by knitting fine wires, and can improve classification accuracy. In particular, the electric sieve is capable of drilling holes smaller than its thickness and has a clean cross-sectional shape without side edges, making it easy to adjust the hole diameter and the number of holes per unit, as well as the hole diameter distribution. Is very good, and classification can be performed very accurately.
[0012]
As a method of manufacturing an electric sieve, a conductive film is formed on a glass plate corroded in a cross-line shape with high precision by physical plating such as vacuum evaporation and sputtering, or chemical plating such as electrolytic plating and electroless plating. After that, there is a method of removing the plating layer other than the groove of the corroded portion, forming a mesh on the plating layer by a method such as electrolytic plating, and peeling the mesh from the glass plate. After the mesh thus produced is peeled off from the glass base plate, it may be further subjected to electrolytic plating if necessary. Also, as another manufacturing method, a vacuum plating, physical plating such as sputtering on a glass flat plate, or electrolytic plating, forming a conductive film by chemical plating such as electroless plating, after applying a resist on the film, There is also a method in which a pattern having a predetermined shape is formed, a portion other than the pattern is removed by etching, and the resultant is peeled off from the glass base plate, followed by electrolytic plating.
[0013]
FIG. 1 shows an example of a classification device provided with an electric sieve, but the present invention is not limited thereto. In FIG. 1, the electric sieve 1 is fixed by being sandwiched between a housing upper part 4 and a housing lower part 4 '. A support 2 for increasing the strength of the electric sieve 1 is provided, and is connected to the housings 4 and 4 'via a packing 3 made of an elastomer. An ultrasonic irradiation chip 5 is inserted into the housing upper part 4, whereby the medium in the housing is irradiated with ultrasonic vibration. In the housing upper part 4, a medium circulation line 6, 6 ′ and a medium supply line 7 are provided. The dispersion obtained by dispersing the measurement powder in the liquid medium is charged in the housing upper part 4, and particles smaller than the opening diameter of the electric sieve move together with the medium to the housing lower part 4 '. As the operation proceeds, particles smaller than the opening diameter of the electric sieve existing in the housing upper part 4 decrease, and finally, the particles having a larger particle diameter starting from the opening diameter of the electric sieve ( The particles can be classified into particles remaining in the housing upper part 4) and particles having a small particle diameter (particles moved to the housing lower part 4 ').
[0014]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
(Example 1)
Using a device shown in FIG. 1, a nickel-based electric sieve having an expected pore size of 5.5 μm (Sieve A) was spherical and had an average particle size of 5.21 μm, a 10% size of 6.22 μm, and a 90% size. Of powder 1 having a particle size of 4.15 μm was classified.
In the classification, methanol was used as a dispersion medium for the powder, and classification was performed for 5 minutes under the condition that the concentration of the dispersion was 2 wt%.
[0015]
The dispersion flowing out to the lower portion of the housing during the classification was collected, and the particle size was measured using a Coulter Multisizer IIE after the classification. As a result, the maximum particle size was 5.76 μm. The powder 1 was classified again, and the particle size of the dispersion flowing out to the lower portion of the housing was measured. The result was 5.76 μm, which was the same value as the first time, and reproducibility was confirmed.
(Example 2)
Using a device shown in FIG. 1, a nickel-based electric sieve having an expected opening diameter of 2.0 μm (sieve B) was spherical and had an average particle diameter of 2.83 μm, a 10% diameter of 4.52 μm, and a 90% diameter. Was classified to 1.27 μm.
[0016]
In the classification, methanol was used as a dispersion medium of the powder, and classification was performed for 10 minutes at a dispersion concentration of 0.5 wt%.
The dispersion flowing out to the lower part of the housing during the classification was collected, and the particle size was measured by Coulter Multisizer IIE after the classification. As a result, the maximum particle size was 2.43 μm.
(Example 3)
Using a device shown in FIG. 1, a nickel-based nylon sieve having a predicted opening diameter of 10 μm (sieve C) is spherical and has an average particle diameter of 9.10 μm, a 10% diameter of 8.21 μm, and a 90% diameter of 11%. The powder 3 having a size of .48 μm was classified.
[0017]
In the classification, methanol was used as a dispersion medium for the powder, and classification was performed for 2 minutes under the condition that the concentration of the dispersion was 10 wt%.
The dispersion flowing out to the lower portion of the housing during the classification was collected, and the particle size was measured using a Coulter Multisizer 11E after the classification. As a result, the maximum particle size was 10.2 μm.
(Comparative Example 1)
In Example 1, instead of powder 1, comparative powder 1 having a spherical shape with an average particle diameter of 4.95 μm, a 10% diameter of 5.45 μm, and a 90% diameter of 3.22 μm (5% diameter of 5.22 μm). 72 μm).
[0018]
In the classification, methanol was used as a dispersion medium for the powder, and classification was performed for 10 minutes at a dispersion concentration of 2 wt%. As a result, almost the entire amount of the dispersion flowed out to the lower portion of the housing. The dispersion flowing out to the lower portion of the housing was collected and subjected to particle size measurement using a Coulter Multisizer IIE. As a result, a discontinuous portion was observed in a region of 5.4 μm or more, and the maximum particle size was 5.57 μm Met. The classification of the comparative powder 1 was performed again, and the particle size of the dispersion flowing out to the lower portion of the housing was measured. The result was 5.70 μm, and it was found that the dispersion was large between the first time and the second time. It is considered that the reason for such a large variation is that in Comparative Example 1, the number of particles caught on the sieve was extremely small, and the pore size was inaccurate.
[0019]
(Comparative Example 2)
In Example 2, instead of powder 2, comparative powder 2 having a spherical average particle diameter of 3.58 μm, a 10% diameter of 5.16 μm, and a 90% diameter of 2.27 μm (95% diameter of 1.27 μm). (66 μm).
In the classification, methanol was used as a dispersion medium for the powder, and the classification was performed for 10 minutes under the condition that the concentration of the dispersion was 0.5 wt%. It could not be measured.
(Comparative Example 3)
In Example 3, instead of the powder 3, the comparative powder 3 having a spherical shape with an average particle diameter of 9.07 μm, a 10% diameter of 8.21 μm, and a 90% diameter of 9.98 μm was classified.
[0020]
In the classification, methanol was used as a dispersion medium for the powder, and the classification was performed for 2 minutes under the condition that the concentration of the dispersion was 10 wt%. The dispersion flowing out to the lower portion of the housing was collected and subjected to particle size measurement using a Coulter Multisizer IIE.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the opening diameter of the sieve which accurately represented the particle diameter which can actually pass through a sieve can be measured with simple operation.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating an example of a classification device provided with an electric sieve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric sieve 2 Support 3 Packing 4 Housing upper part 4 'Housing lower part 5 Ultrasonic irradiation chip 6, 6' Medium circulation line 7 Medium supply line

Claims (2)

開孔径が0.2〜50μmのふるいの開孔径を測定する方法であって、
次の(a)〜(c)の条件を満たす粒度分布を有する粉体を前記ふるいによって分級した後、
(a)10%径が予想されるふるいの開孔径よりも大きい
(b)90%径が予想されるふるいの開孔径よりも小さい
(c)10%径と90%径との差が2μm以上である
前記ふるいを通過した粉体の最大粒子径を測定し、その値を前記ふるいの開孔径と定義することを特徴とする、ふるいの開孔径の測定方法。
A method for measuring an opening diameter of a sieve having an opening diameter of 0.2 to 50 μm,
After classifying powder having a particle size distribution satisfying the following conditions (a) to (c) by the sieve,
(A) 10% diameter is larger than expected sieve opening diameter (b) 90% diameter is smaller than expected sieve opening diameter (c) Difference between 10% diameter and 90% diameter is 2 μm or more Measuring the maximum particle diameter of the powder that has passed through the sieve, and defining the value as the opening diameter of the sieve.
前記ふるいが電成ふるいである、請求項1記載のふるいの開孔径の測定方法。The method according to claim 1, wherein the sieve is an electric sieve.
JP2000222986A 2000-07-24 2000-07-24 How to measure sieve opening diameter Expired - Lifetime JP3598050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000222986A JP3598050B2 (en) 2000-07-24 2000-07-24 How to measure sieve opening diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000222986A JP3598050B2 (en) 2000-07-24 2000-07-24 How to measure sieve opening diameter

Publications (2)

Publication Number Publication Date
JP2002039936A JP2002039936A (en) 2002-02-06
JP3598050B2 true JP3598050B2 (en) 2004-12-08

Family

ID=18717152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222986A Expired - Lifetime JP3598050B2 (en) 2000-07-24 2000-07-24 How to measure sieve opening diameter

Country Status (1)

Country Link
JP (1) JP3598050B2 (en)

Also Published As

Publication number Publication date
JP2002039936A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
Etzler et al. Particle size analysis: a comparative study of various methods
US20070229823A1 (en) Determination of the number concentration and particle size distribution of nanoparticles using dark-field microscopy
JP6373986B2 (en) Particle suspension used as a low-contrast standard for liquid testing
JP2001252588A (en) Powder classifying method
JPS6326552A (en) Particle counter and manufacture thereof
US20090130339A1 (en) Method for Preparing Electroconductive Particles with Improved Dispersion and Adherence
US20050178727A1 (en) Method and device for treating fine particles
JP3598050B2 (en) How to measure sieve opening diameter
Roostaei et al. Comparison of various particle-size distribution-measurement methods
Hogg Issues in particle size analysis
KR101052494B1 (en) Method for Measuring Flow Characteristics of Electronic Printing Ink Using Micro Particle Imagemeter and Microfluidic Chip Using Immersion Oil Technology
CN109231151A (en) A kind of device and application for making self-assembly structure
CN110506201A (en) Device for detecting particles and particle detecting method
CN111965156A (en) High-gain surface Raman scattering device and manufacturing method thereof
HSU et al. Floc size reduction in the turbulent environment
CN208932976U (en) It is a kind of for making the device of self-assembly structure
RU2653143C1 (en) Method of measurement of concentration of aghlomerates of non-spherical nano-dimensional particles in liquid media
JP3996318B2 (en) Powder classification method
Ye et al. Investigation of the SERS application of gold films deposited on uncured polydimethylsiloxane with tunable LSPR
JP3965015B2 (en) Automatic powder classifier
JP3920542B2 (en) Powder classification method
JP2001252589A (en) Powder classifying method
Daus et al. Metal Melt Filtration in a Water-Based Model System Using a Semi-automated Pilot Plant: Experimental Methods, Influencing Factors, Models
Rideal Filter calibration: high precision method
Doroszkowski Particle size and size measurement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3598050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

EXPY Cancellation because of completion of term