JP3597912B2 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP3597912B2
JP3597912B2 JP12014995A JP12014995A JP3597912B2 JP 3597912 B2 JP3597912 B2 JP 3597912B2 JP 12014995 A JP12014995 A JP 12014995A JP 12014995 A JP12014995 A JP 12014995A JP 3597912 B2 JP3597912 B2 JP 3597912B2
Authority
JP
Japan
Prior art keywords
optical
polarization
optical signal
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12014995A
Other languages
Japanese (ja)
Other versions
JPH08313755A (en
Inventor
一夫 廣西
智司 黒柳
卓二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12014995A priority Critical patent/JP3597912B2/en
Publication of JPH08313755A publication Critical patent/JPH08313755A/en
Application granted granted Critical
Publication of JP3597912B2 publication Critical patent/JP3597912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【産業上の利用分野】
本発明は光フィルタに関し、特に複数の波長の光信号から任意の複数の波長の光信号を選択することができる光フィルタに関するものである。
【0001】
光フィルタは、光通信、光交換、光クロスコネクト、光を用いた信号処理、光計測等の分野で利用できるものとして注目されており、特に光交換や光クロスコネクトの分野では近年、波長多重化により高いスループットを目指す装置の研究・開発が活発となっている。
【0002】
【従来の技術】
上記のような光フィルタとしては、従来より図5に示すような音響光学効果(AO効果)を用いたものが知られている。なお、同図(a)はこの光フィルタをブロック図で示したもので、同図(b)は該ブロック図に対応したデバイスのレイアウトを示したものである。
【0003】
図中、21は偏光ビームスプリッタ(PBS)を示し、その入力端子Bより波長多重されたランダム偏光λ,λ,・・・,λが入力され、その出力端子C,Dよりそれぞれ互いに偏波面が直交した光信号(TMモード信号とTEモード信号)に分離されてそれぞれモード変換器22,23へ送られる。
【0004】
モード変換器22においては同図(b)に示すように表面弾性波(SAW)励起電極(IDT)に所定の周波数の高周波信号を与えることによって特定の波長λのみをTMモードからTEモードに変換し、その他の波長についてはそのまま出力して偏光ビームスプリッタ24の入力端子Aに送る。
【0005】
また、モード変換器23においても励起電極に所定の周波数の高周波信号を与えることにより波長λのみTEモードからTMモードに変換され、その他の波長についてはそのまま通過して偏光ビームスプリッタ24の入力端子Bに送られる。
【0006】
そして、偏光ビームスプリッタ24においてTEモードとTMモードの波長λのフィルタ光が偏波合成されて出力端子Cから取り出され、出力端子Dからはその他の波長の非フィルタ光が取り出されるようになっている。
【0007】
このようにして、偏光無依存型の光フィルタが構成されている。
【0008】
【発明が解決しようとする課題】
このような音響光学効果を用いた光フィルタは、励起電極(IDT)を駆動するために高周波発振器が必要であり、また、複数の波長を同時に選択する場合に選択する波長の数だけの発振周波数が必要であり、構成が複雑で消費電力も高くなるという問題点があった。
【0009】
したがって本発明は、構成が簡単で消費電力も少なくて済む光フィルタを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る光フィルタは、光信号入力部、偏光分離部、非可逆性の偏波面回転体、光回折体、光変調器、及び光反射部の順に入力した光信号が進み、該光反射部で反射された該光信号が該光変調器、該光回折体、該偏波面回転体、及び該偏光分離部の順に戻り、該偏光分離部で該光信号入力部と異なる空間方位に分離して光信号出力部から出力させるとともに該光変調器を該光回折体で回折して波長分離した光信号の内の任意の一つは複数の波長成分のみが透過するように駆動する光フィルタであって、該偏光分離部が第1、第2、及び第3の偏光分離部に分かれており、該第1の偏光分離部の一方の出力側には他方の入力光信号と同じ偏波面を有する光信号にして該第2の偏光分離部に与えるための偏波面を90°回転させる第1の光学素子を挿入し、該偏波面回転体から戻って来た該反射光信号を該第2の偏光分離部で該入力光信号と異なる空間方位に分離し且つその分離された一方の該反射光信号を偏波面を90°回転させる第2の光学素子により他方の該反射光信号と異なる偏波面を有する光信号にし該第3の偏光分離部に与えて偏波合成することを特徴としている。
【0011】
また上記の光フィルタにおいて、該偏光分離部は第1、第2、及び第3の偏光分離部に分かれており、該第1の偏光分離部の一方の出力側には他方の入力光信号と同じ偏波面を有する光信号にして該第2の偏光分離部に与えるための偏波面を90°回転させる光学素子を挿入し、該第2の偏光分離部で該偏波面回転体からの該反射光信号を該入力光信号と異なる空間方位に分離し且つその分離された一方の該反射光信号を該光学素子により他方の該反射光信号と同じ偏波面を有する光信号にし該第3の偏光分離部に与えて偏波合成することができる。
【0012】
さらに上記の光フィルタにおいて、該光反射部は、該光変調器を透過した光信号を垂直に反射する曲面を有する鏡か、この鏡の代わりに多角形の面を有する鏡又は位相共役ミラーを用いてもよい。
【0013】
さらに上記の光フィルタにおいては、該光変調器での透過量を調整することもできる。
また、光回析体として、透過型のものを用いてもよい。
【0014】
【作用】
本発明に係る光フィルタにおいては、光信号入力部より光信号が入力され、この光信号は偏光分離部を通って非可逆性の偏波面回転体に送られ、ここで偏波面が回転させられる。
【0015】
この偏波面回転体を通った光信号はさらに光回折体に入射され、波長多重されているおの各波長毎の光信号成分に分離された形で回折される。
【0016】
このように光回折体で回折された光信号は光変調器に送られるが、このとき光変調器は所望の任意の光信号成分のみを透過させるように駆動されているので、その所望の任意の波長の光信号成分のみが光変調器を透過して光反射部に送られる。
【0017】
光反射部は、入射した光を垂直に反射する局面を有する鏡、又は多角形の面を持つ鏡や位相共役ミラーを用いてもよく、このような光反射部で反射させられた光信号は再び光変調器を透過して光回折体に送られる。
【0018】
そして、この光回折体で再び波長多重された形に戻り、同じ光軸を通って上記の偏波面回転体に戻され、ここで偏波面が非可逆的に、すなわち元の偏波面に戻らずに元の偏波面とほぼ直交する偏波面に回転させられ、さらに偏光分離部に戻るが、この偏光分離部においては入力して来た光信号と偏波面が90°異なっているので、入力光信号と異なる空間方位に分離させられて光信号出力部から取り出されることになる。
【0019】
また、このような光フィルタにおいては、上記の光変調器の透過量を調整することにより、任意の波長の光損失を変化させることも可能となる。
【0020】
さらに本発明においては、上記の偏光分離部が単一であると偏波依存性の光フィルタとなるで、偏波無依存化した光フィルタとするため、上記の偏光分離部を単一のものではなく第1〜第3の偏光分離部に分け、第1の偏光分離部では入力した光信号を偏波面が異なる二つの光信号に分離し、その内の一方の光信号を偏波面を90°回転させる第1の光学素子によって偏波面を変化させることにより、この第1の偏光分離部から出力された二つの光信号の偏波面が同じになるようにして第2の偏光分離部に与える。
【0021】
第2の偏光分離部では入力した二つの光信号はそのまま通過して非可逆性の偏波面回転体を通り光回折体で回折されて上記のように光変調器を透過した後、光反射部で反射され再び光回折体で入射光線と同じ光軸上を伝搬して偏波面回転体を通り第2の偏光分離部に戻る。
【0022】
第2の偏光分離部では戻って来た二つの光信号を入力された光信号とは異なる空間方位に分離して出力する。
【0023】
そして、その分離した一方の光信号は偏波面から90°回転させる第2の光学素子によって偏波面を変化させることにより第2の偏光分離部の光信号の偏波面がなるようにして第3の偏光分離部に与える。
【0024】
第3の偏光分離部では入力してきた二つの光信号を偏波合成して一つの光信号として光信号出力部より取り出す。
【0025】
このようにすることにより偏波に依存しない光フィルタを構成することが可能となる。
【0026】
【実施例】
図1は本発明に係る光フィルタの実施例(1)を示したもので、この実施例では入力光ファイバ1とレンズ2とで光信号入力部を形成し、光ファイバ1から入力してきた光信号をレンズ2によって平行光線にしている。
【0027】
レンズ2からの平行光線は偏光分離部を形成する偏光分離膜(または偏光ビームスプリッタまたは複屈折性物質)3を通過して非可逆性の偏波面回転体を形成するファラデー回転子4に送られる。
【0028】
このファラデー回転子4においては偏光ビームスプリッタ3を透過した光信号の偏波面を45度回転させるものであり、このファラデー回転子4から出力された光信号はさらに光回折体を形成する回折格子5に入射され、波長多重されている個々の波長(λ〜λ)の光信号成分に分離して回折される。
【0029】
このように回折格子5で回折した各波長の光信号成分は光変調器(又は空間型光変調器或いは光変調器アレイ)を形成する光シャッターアレイ6に送られるが、この光シャッターアレイ6は光シャッターアレイ駆動系10によって駆動され、所望の波長、例えば波長λのみを希望する場合には、この波長λにおける光シャッターアレイ6の対応部分を透明にし、その他の部分を不透明にすることによって透過させるようになっている。
【0030】
なお、この光シャッターアレイ駆動系10は光シャッターアレイ6を透明または不透明にするだけではなくその中間の半透明状態にして所望の波長の光信号成分を減衰した形で取り出すことも可能である。
【0031】
光シャッターアレイ6を透過した例えば波長λの光信号成分は光反射部を形成する曲面鏡7で入射して来た方向と垂直に反射される。
【0032】
なお、この曲面鏡7としてはその他に多角形の面を持つ鏡や位相共役ミラーを用いてもよい。
【0033】
曲面鏡7で反射して戻って来た波長λの光信号成分は光シャッターアレイ6を透過して回折格子5で回折され、入射光線と同じ光軸を通ってファラデー回転子4に送られる。
【0034】
ファラデー回転子4ではやはり45度だけ回転させられて偏光分離膜3に送られるが、ファラデー回転子4での回転は元の偏波面に戻らせる可逆的なものではなく、非可逆的なものであるので、曲面鏡7で反射して来た光信号はファラデー回転子4によって45°+45°=90°だけ偏波面が回転させられているので入力して来た光信号に対しては偏波面が90°異なることになる。
【0035】
図2の例では、レンズ2から偏光分離膜3への入射光は紙面に平行な偏波面であり、ファラデー回転子4から偏光分離膜3への入射光は紙面に垂直な偏波面として示されている。
【0036】
従って、偏光分離膜3においては、この光ビームスプリッタ3で反射分離されて光信号出力部を形成するレンズ8で集光され同じく光信号出力を形成する出力光ファイバ9から出力されることになる。
【0037】
上記の図1に示した光フィルタにおいては、入力して来た光信号の偏波面によっては、偏光分離膜3において反射分離されてしまいファラデー回転子4に送られなくなってしまう場合が生ずる偏波依存性のものとなっている。
【0038】
そこで、偏波無依存化させるため図2に示した本発明に係る光フィルタの実施例(2)においては図1に示した偏光分離膜3を第1の偏光分離部を形成する偏光分離膜31と、第2の偏光分離部を形成する偏光分離膜32と、第3の偏光分離部を形成する偏光分離膜33とで構成している。
【0039】
そして、光ファイバ1及びレンズ2から入力して来た光信号は偏光分離膜31においてそのまま直進する光信号成分と分離される光信号成分とに分けられる。
【0040】
そして、分離された方の光信号は反射鏡11で反射され、さらに偏波面を90°回転させる光学素子としてのファラデー回転子又は半波長(λ/2)板12において偏波面を90°回転させることにより、例えば図示の例では紙面に垂直な偏波面から紙面に平行(上下)な偏波面に変化させ、偏光分離膜31をそのまま通過した光信号と同じ偏波面にして偏光分離膜32に送る。
【0041】
偏光分離膜32においては入力して来た二つの光信号成分をそのまま通過させ、それぞれ図1の実施例(1)と同様にファラデー回転子4と回折格子5と光シャッターアレイ6とを経由して曲面鏡7に送られ、この曲面鏡7で反射させられて光シャッターアレイ6と回折格子5とファラデー回転子4とを経由して偏光分離膜32に戻される。
【0042】
そして、この偏光分離膜32において反射して来た光信号は偏光分離膜31から入力して来た光信号とは90°の角度を持つ方向に反射させられて分離されることになる。
【0043】
そして、このように偏光分離膜32で分離された二つの反射光信号のうちの一方は半波長板13において偏波面が90°回転させられるので、他方の分離させられた反射光信号と直交する偏波面となる。
【0044】
そして、半波長板13から出力された光信号と偏光分離膜32から分離されて反射鏡14で反射させられた光信号とが偏光分離膜33に与えられ、ここで偏波合成されて一つの光信号になり光信号出力部を構成するレンズ8と出力光ファイバ9とを経由して出力されることになる。
【0045】
なお、上記の光シャッターアレイ6としてはトゥイスト・ネマティク液晶やファラデー回転素子などの偏光制御素子と偏光子によって構成でき、数ボルトの電圧で駆動でき且つ、消費電流が小さいので消費電力を小さくできる。
【0046】
また、ここで光シャッターアレイ6の損失を光シャッターアレイ駆動系10によってアナログで調整できるようにして波長に対して任意の光損失特性を持つ光フィルタを構成することが可能となる。
【0047】
図3及び図4に、図1及び図2でそれぞれ透過型の光回折格子5を用いた実施例(3)及び(4)を示す。
【0048】
【発明の効果】
以上説明したように本発明に係る光フィルタによれば、周波発振器等を必要とせずに構成が簡単で消費電力が少なくて済み、且つ偏波に依存しない光フィルタを与えることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る光フィルタの実施例(1)を示したブロック図である。
【図2】本発明に係る光フィルタの実施例(2)を示したブロック図である。
【図3】本発明に係る光フィルタの実施例(3)を示したブロック図である。
【図4】本発明に係る光フィルタの実施例(4)を示したブロック図である。
【図5】従来の光フィルタを示した図である。
【符号の説明】
1 入力光ファイバ
2 レンズ
3,31〜33 偏光分離膜
4 ファラデー回転子
5 回折格子
6 光シャッターアレイ
7 曲面鏡
8 レンズ
9 出力光ファイバ
10 光シャッターアレイ駆動系
12,13 半波長板
図中、同一符号は同一または相当部分を示す。
[Industrial applications]
The present invention relates to an optical filter, and more particularly, to an optical filter capable of selecting an optical signal having a plurality of arbitrary wavelengths from an optical signal having a plurality of wavelengths.
[0001]
Optical filters have attracted attention as being usable in fields such as optical communication, optical switching, optical cross-connect, signal processing using light, and optical measurement. In particular, wavelength multiplexing has recently been used in the fields of optical switching and optical cross-connect. Research and development of devices aiming at high throughput due to the development of technology are active.
[0002]
[Prior art]
As an optical filter as described above, a filter using an acousto-optic effect (AO effect) as shown in FIG. 5 is conventionally known. FIG. 1A is a block diagram showing the optical filter, and FIG. 2B is a diagram showing a device layout corresponding to the block diagram.
[0003]
In the figure, reference numeral 21 denotes a polarization beam splitter (PBS), which receives wavelength-multiplexed random polarized lights λ 1 , λ 2 ,..., Λ n from its input terminal B, and mutually outputs from its output terminals C and D, respectively. The optical signals (TM mode signal and TE mode signal) whose polarization planes are orthogonal to each other are separated and sent to the mode converters 22 and 23, respectively.
[0004]
In the mode converter 22, as shown in FIG. 3B, a high frequency signal of a predetermined frequency is applied to a surface acoustic wave (SAW) excitation electrode (IDT) to change only a specific wavelength λ i from the TM mode to the TE mode. After conversion, the other wavelengths are output as they are and sent to the input terminal A of the polarizing beam splitter 24.
[0005]
Also, in the mode converter 23, only the wavelength λ i is converted from the TE mode to the TM mode by supplying a high-frequency signal of a predetermined frequency to the excitation electrode, and the other wavelengths are passed as they are and the input terminal of the polarization beam splitter 24 is passed. Sent to B.
[0006]
Then, so as TE mode and filters light of a wavelength lambda i of the TM mode in the polarizing beam splitter 24 is taken out from the output terminal C is polarization-non-filtered light of other wavelengths is extracted from the output terminal D ing.
[0007]
Thus, a polarization-independent optical filter is configured.
[0008]
[Problems to be solved by the invention]
An optical filter using such an acousto-optic effect requires a high-frequency oscillator to drive an excitation electrode (IDT), and has an oscillation frequency equal to the number of wavelengths to be selected when a plurality of wavelengths are selected simultaneously. However, there is a problem that the configuration is complicated and power consumption is increased.
[0009]
Therefore, an object of the present invention is to provide an optical filter having a simple configuration and low power consumption.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the optical filter according to the present invention has an optical signal input unit, a polarization splitting unit, an irreversible polarization plane rotator, an optical diffractor, an optical modulator, and a light reflecting unit. The light signal advances, and the light signal reflected by the light reflection unit returns to the light modulator, the light diffraction body, the polarization plane rotator, and the polarization separation unit in this order, and the light signal is reflected by the polarization separation unit. any one or more wavelength components of the separated into spatial orientation different from the input unit causes output from the optical signal output part diffracts the light modulator in optical diffraction element optical signal wavelength separation only Is an optical filter that is driven to transmit light, wherein the polarization separation unit is divided into first, second, and third polarization separation units, and one output side of the first polarization separation unit is Polarization plane for converting an optical signal having the same polarization plane as the other input optical signal to the second polarization splitting unit A first optical element for rotating by 90 ° is inserted, and the reflected light signal returned from the polarization plane rotator is separated into a spatial orientation different from that of the input light signal by the second polarization separation unit, and the separation is performed. One of the reflected light signals is converted into an optical signal having a polarization plane different from that of the other reflected light signal by a second optical element for rotating the plane of polarization by 90 °, and is given to the third polarization separation unit to be polarized and synthesized. It is characterized by doing.
[0011]
In the above optical filter, the polarization separation unit is divided into first, second, and third polarization separation units, and one input side of the first polarization separation unit is connected to the other input optical signal. An optical element for rotating the polarization plane by 90 ° to be converted into an optical signal having the same polarization plane and given to the second polarization separation unit is inserted, and the reflection from the polarization plane rotator is performed by the second polarization separation unit. Separating the optical signal into a spatial orientation different from that of the input optical signal and converting the one of the separated reflected optical signals into an optical signal having the same polarization plane as the other reflected optical signal by the optical element; Polarization synthesis can be performed by giving the signal to the separation unit.
[0012]
Further, in the above optical filter, the light reflecting portion may be a mirror having a curved surface that vertically reflects an optical signal transmitted through the optical modulator, or a mirror having a polygonal surface or a phase conjugate mirror instead of this mirror. May be used.
[0013]
Further, in the above optical filter, the amount of transmission through the optical modulator can be adjusted.
Further, a transmission type light diffracting body may be used.
[0014]
[Action]
In the optical filter according to the present invention, an optical signal is input from the optical signal input unit, and the optical signal is sent to the irreversible polarization plane rotator through the polarization separation unit, where the polarization plane is rotated. .
[0015]
The optical signal that has passed through the polarization plane rotator is further incident on the optical diffracting body, and is diffracted in a form that is separated into wavelength-multiplexed optical signal components for each wavelength.
[0016]
The optical signal diffracted by the optical diffractor is sent to the optical modulator. At this time, the optical modulator is driven so as to transmit only a desired arbitrary optical signal component. Only the optical signal component having the wavelength of? Is transmitted through the optical modulator and sent to the light reflecting section.
[0017]
The light reflecting portion may use a mirror having a surface that reflects incident light vertically, or a mirror having a polygonal surface or a phase conjugate mirror, and the optical signal reflected by such a light reflecting portion is The light passes through the optical modulator again and is sent to the optical diffraction body.
[0018]
Then, it returns to the wavelength multiplexed form again by this optical diffracting body, passes through the same optical axis, and returns to the above-mentioned polarization plane rotator, where the polarization plane is irreversible, that is, does not return to the original polarization plane Is rotated to a plane of polarization substantially orthogonal to the original plane of polarization, and returns to the polarization separation section. In this polarization separation section, since the polarization plane differs from the input optical signal by 90 °, the input light The signal is separated into a spatial direction different from the signal and is extracted from the optical signal output unit.
[0019]
Further, in such an optical filter, by adjusting the transmission amount of the optical modulator, it is possible to change the optical loss of an arbitrary wavelength.
[0020]
Furthermore, in the present invention, if the above-mentioned polarization splitting unit is single, it becomes a polarization-dependent optical filter. Instead, the optical signal is divided into first to third polarization separation units, and the first polarization separation unit separates an input optical signal into two optical signals having different polarization planes, and converts one of the optical signals to a polarization plane of 90. By changing the plane of polarization by the first optical element that is rotated by an angle, the two optical signals output from the first polarization separation unit are given to the second polarization separation unit so that the polarization planes of the two optical signals are the same. .
[0021]
In the second polarization splitting unit, the two input optical signals pass through as they are, are passed through the irreversible polarization plane rotator, are diffracted by the light diffracting body, and are transmitted through the optical modulator as described above. Is reflected again by the optical diffracting body, propagates on the same optical axis as the incident light beam, and returns to the second polarization separation section through the polarization plane rotator.
[0022]
The second polarization separation unit separates the two returned optical signals into spatial orientations different from the input optical signal and outputs the separated optical signals.
[0023]
The third as the one separated optical signal polarization plane of the second polarization separating part of the optical signal is different by changing the polarization plane by the second optical element is rotated 90 ° from the polarization To the polarization separation section.
[0024]
In the third polarization separation unit, the two input optical signals are polarization-synthesized and extracted as one optical signal from the optical signal output unit.
[0025]
By doing so, it is possible to configure an optical filter that does not depend on polarization.
[0026]
【Example】
FIG. 1 shows an embodiment (1) of an optical filter according to the present invention. In this embodiment, an optical signal input portion is formed by an input optical fiber 1 and a lens 2, and light input from the optical fiber 1 is formed. The signal is converted into a parallel beam by the lens 2.
[0027]
The parallel rays from the lens 2 pass through a polarization splitting film (or a polarizing beam splitter or a birefringent substance) 3 forming a polarization splitting section, and are sent to a Faraday rotator 4 forming an irreversible polarization plane rotator. .
[0028]
The Faraday rotator 4 rotates the plane of polarization of the optical signal transmitted through the polarization beam splitter 3 by 45 degrees, and the optical signal output from the Faraday rotator 4 further includes a diffraction grating 5 that forms an optical diffractor. And is separated and diffracted into optical signal components of individual wavelengths (λ 1 to λ 4 ) that are wavelength-multiplexed.
[0029]
The optical signal components of each wavelength diffracted by the diffraction grating 5 are sent to an optical shutter array 6 forming an optical modulator (or a spatial light modulator or an optical modulator array). is driven by the optical shutter array drive system 10, a desired wavelength, for example, if desired only the wavelength lambda 2 is that this is a transparent corresponding parts of the optical shutter array 6 at the wavelength lambda 2, is opaque to other parts To allow transmission.
[0030]
The optical shutter array drive system 10 can not only make the optical shutter array 6 transparent or opaque, but also make the optical shutter array 6 in a semi-transparent state between the optical shutter array 6 and take out an optical signal component of a desired wavelength in an attenuated form.
[0031]
The optical signal component of, for example, the wavelength λ 2 transmitted through the optical shutter array 6 is reflected by a curved mirror 7 forming a light reflecting portion in a direction perpendicular to the incident direction.
[0032]
In addition, a mirror having a polygonal surface or a phase conjugate mirror may be used as the curved mirror 7.
[0033]
Optical signal component of the curved mirror 7 wavelength lambda 2 came back after being reflected in the diffracted by the diffraction grating 5 is transmitted through the optical shutter array 6 is sent to the Faraday rotator 4 passes through the same optical axis as the incident beam .
[0034]
The Faraday rotator 4 is also rotated by 45 degrees and sent to the polarization splitting film 3, but the rotation in the Faraday rotator 4 is not reversible to return to the original polarization plane, but irreversible. Since the optical signal reflected by the curved mirror 7 has its polarization plane rotated by 45.degree. + 45.degree. = 90.degree. By the Faraday rotator 4, it has a polarization plane of the input optical signal. Differ by 90 °.
[0035]
In the example of FIG. 2, the light incident on the polarization splitting film 3 from the lens 2 is a polarization plane parallel to the paper surface, and the light incident on the polarization separation film 3 from the Faraday rotator 4 is shown as a polarization plane perpendicular to the paper surface. ing.
[0036]
Accordingly, in the polarization splitting film 3, the light is split and reflected by the light beam splitter 3, and is condensed by the lens 8 forming the optical signal output portion, and is output from the output optical fiber 9 which also forms the optical signal output. .
[0037]
In the optical filter shown in FIG. 1, depending on the plane of polarization of the input optical signal, the polarization may be reflected and separated by the polarization separation film 3 and may not be sent to the Faraday rotator 4. It is dependent.
[0038]
Therefore, in the embodiment (2) of the optical filter according to the present invention shown in FIG. 2 for making the polarization independent, the polarization separation film 3 shown in FIG. 1 is replaced with a polarization separation film forming a first polarization separation part. 31, a polarization separation film 32 forming a second polarization separation portion, and a polarization separation film 33 forming a third polarization separation portion.
[0039]
Then, the optical signal input from the optical fiber 1 and the lens 2 is separated into an optical signal component which goes straight as it is in the polarization separation film 31 and an optical signal component which is separated.
[0040]
Then, the separated optical signal is reflected by the reflecting mirror 11, and further the Faraday rotator as an optical element for rotating the polarization plane by 90 ° or the half-wave (λ / 2) plate 12 rotates the polarization plane by 90 °. Thereby, for example, in the illustrated example, the plane of polarization is changed from a plane of polarization perpendicular to the plane of the paper to a plane of polarization parallel (up and down) to the plane of the paper, and is sent to the polarization separation film 32 with the same polarization plane as the optical signal passed through the polarization separation film 31 as it is. .
[0041]
In the polarization splitting film 32, the two input optical signal components are passed as they are, and each of them passes through the Faraday rotator 4, the diffraction grating 5, and the optical shutter array 6 similarly to the embodiment (1) of FIG. The light is then sent to a curved mirror 7, reflected by the curved mirror 7, and returned to the polarization splitting film 32 via the optical shutter array 6, the diffraction grating 5, and the Faraday rotator 4.
[0042]
The optical signal reflected by the polarization separation film 32 is reflected and separated in a direction having an angle of 90 ° with respect to the optical signal input from the polarization separation film 31.
[0043]
Then, one of the two reflected light signals separated by the polarization separation film 32 in this way is orthogonal to the other separated reflected light signal because the polarization plane is rotated by 90 ° in the half-wave plate 13. It becomes the plane of polarization.
[0044]
Then, the optical signal output from the half-wave plate 13 and the optical signal separated from the polarization splitting film 32 and reflected by the reflecting mirror 14 are given to the polarization splitting film 33, where they are polarized and combined to form one An optical signal is output through the lens 8 and the output optical fiber 9 which constitute the optical signal output unit.
[0045]
The optical shutter array 6 can be composed of a polarization control element such as a twisted nematic liquid crystal or a Faraday rotator and a polarizer, can be driven by a voltage of several volts, and consumes a small amount of current, so that power consumption can be reduced.
[0046]
Further, the loss of the optical shutter array 6 can be adjusted in an analog manner by the optical shutter array drive system 10, so that an optical filter having an arbitrary optical loss characteristic with respect to the wavelength can be configured.
[0047]
FIGS. 3 and 4 show embodiments (3) and (4) using the transmission type optical diffraction grating 5 in FIGS. 1 and 2, respectively.
[0048]
【The invention's effect】
According to the optical filter according to the present invention described above, see already with less power consumption and easy construction without requiring a high-frequency oscillator or the like, and can provide an optical filter that is independent of the polarization Become.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment (1) of an optical filter according to the present invention.
FIG. 2 is a block diagram showing an embodiment (2) of the optical filter according to the present invention.
FIG. 3 is a block diagram showing an embodiment (3) of an optical filter according to the present invention.
FIG. 4 is a block diagram showing an embodiment (4) of an optical filter according to the present invention.
FIG. 5 is a diagram showing a conventional optical filter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input optical fiber 2 Lens 3, 31-33 Polarization separation film 4 Faraday rotator 5 Diffraction grating 6 Optical shutter array 7 Curved mirror 8 Lens 9 Output optical fiber 10 Optical shutter array drive system 12, 13 Same in the half-wave plate diagram Symbols indicate the same or corresponding parts.

Claims (6)

光信号入力部、偏光分離部、非可逆性の偏波面回転体、光回折体、光変調器、及び光反射部の順に入力した光信号が進み、該光反射部で反射された該光信号が該光変調器、該光回折体、該偏波面回転体、及び該偏光分離部の順に戻り、該偏光分離部で該光信号入力部と異なる空間方位に分離して光信号出力部から出力させるとともに該光変調器を、該光回折体で回折して波長分離した光信号の内の任意の一つは複数の波長成分のみが透過するように駆動する光フィルタであって、
該偏光分離部が第1、第2、及び第3の偏光分離部に分かれており、該第1の偏光分離部の一方の出力側には他方の入力光信号と同じ偏波面を有する光信号にして該第2の偏光分離部に与えるための偏波面を90°回転させる第1の光学素子を挿入し、該偏波面回転体から戻って来た該反射光信号を該第2の偏光分離部で該入力光信号と異なる空間方位に分離し且つその分離された一方の該反射光信号を偏波面を90°回転させる第2の光学素子により他方の該反射光信号と異なる偏波面を有する光信号にし該第3の偏光分離部に与えて偏波合成することを特徴とした光フィルタ。
An optical signal input in the order of an optical signal input unit, a polarization separation unit, an irreversible polarization plane rotator, an optical diffractor, an optical modulator, and a light reflection unit advances, and the optical signal reflected by the light reflection unit Returns in the order of the optical modulator, the optical diffractor, the polarization rotator, and the polarization separation unit, and separates the light into a spatial orientation different from that of the optical signal input unit by the polarization separation unit and outputs the light from the optical signal output unit. the optical modulator causes to, an optical filter is driven so that only any one or more wavelength components of the optical signal diffracted by the wavelength demultiplexing by the optical diffraction element is transmitted,
An optical signal having the same polarization plane as one of the input optical signals at one output side of the first polarization splitter, wherein the polarization splitter is divided into first, second, and third polarization splitters; And a first optical element for rotating the polarization plane by 90 ° for application to the second polarization separation unit is inserted, and the reflected light signal returned from the polarization plane rotator is subjected to the second polarization separation. A second optical element that separates the reflected optical signal into a spatial orientation different from that of the input optical signal and rotates the plane of polarization of the one reflected optical signal by 90 °, and has a polarization plane different from the other reflected optical signal. An optical filter characterized in that the optical filter is converted into an optical signal and applied to the third polarization separation unit to combine the polarizations.
請求項1記載の光フィルタにおいて、該光反射部が、該光変調器を透過した光信号を垂直に反射する曲面を有する鏡であることを特徴とした光フィルタ。2. The optical filter according to claim 1 , wherein said light reflecting portion is a mirror having a curved surface for vertically reflecting an optical signal transmitted through said optical modulator. 請求項に記載の光フィルタにおいて、該曲面を有する鏡の代わりに多角形の面を有する鏡を用いることを特徴とした光フィルタ。 3. The optical filter according to claim 2 , wherein a mirror having a polygonal surface is used instead of the mirror having the curved surface. 請求項に記載の光フィルタにおいて、該曲面を有する鏡の代わりに位相共役ミラーを用いることを特徴とした光フィルタ。 3. The optical filter according to claim 2 , wherein a phase conjugate mirror is used instead of the mirror having the curved surface. 請求項1乃至のいずれかに記載の光フィルタにおいて、該光変調器での透過量を調整できるようにしたことを特徴とする光フィルタ。In the optical filter according to any one of claims 1 to 4, an optical filter, characterized in that to be able to adjust the amount of transmission of at optical modulator. 請求項1乃至5のいずれかに記載の光フィルタにおいて、該光回析体が、透過型のものであることを特徴とした光フィルタ。The optical filter according to any one of claims 1 to 5, wherein the optical diffraction element is a transmission type.
JP12014995A 1995-05-18 1995-05-18 Optical filter Expired - Lifetime JP3597912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12014995A JP3597912B2 (en) 1995-05-18 1995-05-18 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12014995A JP3597912B2 (en) 1995-05-18 1995-05-18 Optical filter

Publications (2)

Publication Number Publication Date
JPH08313755A JPH08313755A (en) 1996-11-29
JP3597912B2 true JP3597912B2 (en) 2004-12-08

Family

ID=14779181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12014995A Expired - Lifetime JP3597912B2 (en) 1995-05-18 1995-05-18 Optical filter

Country Status (1)

Country Link
JP (1) JP3597912B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362525B (en) * 2000-05-18 2002-07-24 Marconi Comm Ltd Radiation power equalization in wavelength division multiplexing (WDM) optical communication system
KR100832637B1 (en) * 2004-12-02 2008-05-27 삼성전기주식회사 Printing apparatus of oder-sperating and multibeam type using optical modulator
KR100832638B1 (en) * 2004-12-02 2008-05-27 삼성전기주식회사 Printing apparatus of order-speration type using optical modul
US10422508B2 (en) * 2016-03-28 2019-09-24 Kla-Tencor Corporation System and method for spectral tuning of broadband light sources

Also Published As

Publication number Publication date
JPH08313755A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US5892612A (en) Tunable optical filter with white state
US7106512B2 (en) Wavelength selective switching device and method for selectively transmitting optical signals based on wavelength
US4685773A (en) Birefringent optical multiplexer with flattened bandpass
US5627666A (en) Liquid crystal phase modulator using cholesteric circular polarizers
US6781736B2 (en) Folded liquid-crystal variable optical attenuator
EP0788010A1 (en) Polarization-independent acousto-optical tunable filter
JP2000147247A (en) Tunable optical filter
JPH10190116A (en) Acoustooptic tunable laser
US20040190822A1 (en) Wavelength selector switch
US6016216A (en) Polarization-independent acousto-optic tunable filter
JP3597912B2 (en) Optical filter
WO2003083519A2 (en) Acousto-optic tunable filter with segmented acousto-optic interaction region
JP2001311913A5 (en)
US6404536B1 (en) Polarization independent tunable acousto-optical filter and the method of the same
JP2005266362A (en) Polarization independent optical device
JPH085976A (en) Variable wavelength optical filter
JPH05323265A (en) Polarization non-dependency type wavelength variable filter
JP4092986B2 (en) Light switch
JP3199190B2 (en) Variable optical delay circuit
JP2991355B2 (en) Optical frequency shift switch
US6618516B1 (en) Optical switching devices
JPS6134128B2 (en)
JP3245976B2 (en) Optical multiplexer
JP3997775B2 (en) Wavelength division multiplexing transmission system and wavelength division multiplexing circuit used therefor
JP3951881B2 (en) Optical parts

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

EXPY Cancellation because of completion of term