JP3597784B2 - Peptic ulcer inhibitory composition and food and drink containing it - Google Patents

Peptic ulcer inhibitory composition and food and drink containing it Download PDF

Info

Publication number
JP3597784B2
JP3597784B2 JP2001034703A JP2001034703A JP3597784B2 JP 3597784 B2 JP3597784 B2 JP 3597784B2 JP 2001034703 A JP2001034703 A JP 2001034703A JP 2001034703 A JP2001034703 A JP 2001034703A JP 3597784 B2 JP3597784 B2 JP 3597784B2
Authority
JP
Japan
Prior art keywords
antibody
powder
kda
protein
pylori
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001034703A
Other languages
Japanese (ja)
Other versions
JP2002234849A (en
Inventor
伸二 東口
武祚 金
Original Assignee
株式会社ファーマフーズ研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファーマフーズ研究所 filed Critical 株式会社ファーマフーズ研究所
Priority to JP2001034703A priority Critical patent/JP3597784B2/en
Publication of JP2002234849A publication Critical patent/JP2002234849A/en
Application granted granted Critical
Publication of JP3597784B2 publication Critical patent/JP3597784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヘリコバクター(Helicobacter)属の菌に由来する消化性潰瘍等を抑制する組成物及びそれを含有する飲食品に関する。
【0002】
【従来の技術】
消化性潰瘍(胃潰瘍、十二指腸潰瘍)や慢性胃炎の発病や再発に深く関与している病原菌として、ヘリコバクター(Helicobacter)属の菌、特にヘリコバクターピロリ(Helicobacter pylori、以下ピロリ菌という)が知られている。
【0003】
しかし、ピロリ菌は高い確率で多くの人の胃の中に存在しているものの、ピロリ菌が存在する人でも健常人がいることから、近年、ピロリ菌の存在が必ずしも消化性潰瘍等につながるものではなく、ピロリ菌により胃潰瘍を発症するのはある特定の菌株が有する細胞障害因子が原因ではないかと考えられている。
【0004】
現在、ピロリ菌による炎症、潰瘍等の細胞障害と直接的な関わりが考えられているのは、空砲化毒素(分子量87kDa、以下Vac Aという)と毒素随伴タンパク(分子量105kDa〜140kDa、以下Cag Aという)である。そして、これらのVac A及びCag Aはピロリ菌の分離菌株であっても存在する株と存在しない株があることも実証されている(SharmaSA et al, Infect Immun 63; 1681−1687, 1995)。実際に、ピロリ菌保有患者の血清抗体として、サイトトキシン(128kDa)とVac Aに対する血清抗体は、全ての患者から検出されるのではなく、消化性潰瘍などの特殊な病態で高率に陽性になることが報告されており、また、in vitroの試験でも上記毒素により細胞が空砲化する現象が確認されている(Leunk RDet al, J Med Microbiol 26: 93−99, 1988)。
【0005】
更に、Cag Aに対する血清抗体陽性率は、胃炎患者で60〜63%、胃潰瘍患者では80〜100%となっており、Cag Aも胃潰瘍と深い関連のある毒素ではないかと考えられている。
【0006】
又ピロリ菌の超音波破砕上清中には低分子タンパクである熱ショックタンパク(HSP、分子量25kDa〜30kDa)があることが知られているが、本タンパクがもつ生物学的意義については未だ解明が進んでいない。
一方、ピロリ菌による消化性潰瘍等の予防及び治療方法として、例えば以下のような方法が提案されている。
【0007】
▲1▼特開平4−275232号公報には、ピロリ菌の全菌体を抗原とした卵黄由来の抗体を含有する食品を用いることにより、ピロリ菌感染の予防方法が開示されている。
【0008】
▲2▼特開平10−287585号公報及び特開平11−80197号公報には、ピロリ菌に特異的なウレアーゼ(分子量32kDa、60kDa)や鞭毛(分子量53kDa、54kDa)を抗原とした卵黄由来の抗体を含有する食品を用いることにより、ピロリ菌の胃での付着を阻止する物質が開示されている。
【0009】
【発明が解決しようとする課題】
しかし、ヒトの場合、通常、ピロリ菌は胃粘膜細胞の奥深くまで入り込んで定着するため、完全除菌は抗生物質等の薬剤でも難しいと言われている。したがって、実際の消化性潰瘍患者を考えた場合、上記の公報に開示された、単にピロリ菌の付着阻害による予防・治療法では、効果的にピロリ菌の除菌や、炎症を抑制できるとは決して言い難い。
【0010】
したがって、本発明の目的は、ピロリ菌による消化性潰瘍をより効果的に抑制する組成物及びそれを含有する飲食品を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明の消化性潰瘍抑制組成物は、ヘリコバクター(Helicobacter)属の菌から抽出された分子量1kDa〜30kDaのタンパク質及び分子量80kDa〜200kDaのタンパク質を抗原として免疫した鶏の卵から得られた抗体を有効成分として含有することを特徴とする。
【0012】
また、本発明の飲食品は、前記消化性潰瘍抑制組成物を含有することを特徴とする。
【0013】
本発明によれば、経口摂取することによりピロリ菌による消化性潰瘍を効果的に抑制できる組成物及び飲食品を提供できる。
【0014】
【発明の実施の形態】
本発明の消化性潰瘍組成物は、ヘリコバクター(Helicobacter)属の菌から抽出された分子量1kDa〜30kDaのタンパク質及び分子量80kDa〜200kDaのタンパク質を抗原として免疫した鶏の卵の抽出物を有効成分として含有する。
【0015】
上記ヘリコバクター(Helicobacter)属の菌としては、特に限定するものではないが、好ましくはサイトトキシンを生産する株であるヘリコバクターピロリ(Helicobacter pylori)、ヘリコバクター シネジ(Helicobacter cinaedi)、ヘリコバクター フェネリ(Helicobacterfennelliae)、ヘリコバクター ハイルマニー(Helicobacter heilmanii)、ヘリコバクター ラッピニ(Helicobacter rappini)、ヘリコバクター フェリス(Helicobacterfelis)等が挙げられる。
【0016】
また、上記の分子量1kDa〜30kDa及び分子量80kDa〜200kDaのタンパク質は、例えば以下のような方法で菌体から調製できる。
【0017】
サイトトキシンを生産するピロリ菌株を常法にしたがって培養し、菌体の不活性化処理を行う。この菌体を適当な緩衝液に懸濁し、超音波破砕機等により破砕した後、菌体を可溶化する。好ましくは、緩衝液にグリシン塩酸緩衝液(pH4)を用いて菌体を可溶化する。この溶液を遠心して可溶化抽出溶液を回収し、ゲル濾過等により、目的の分子量の画分を分取し、必要に応じて凍結乾燥する。
【0018】
なお、上記の分子量80kDa〜200kDaのタンパク質は、その分子量から判断するとVac A及びCag Aを含むと考えられ、又上記の分子量1kDa〜30kDaのタンパク質についてはHSPを含むと考えられる。
【0019】
上記のようにして調製したタンパク質を鶏に免疫する方法としては、例えばMakoto S.et al,Biosci. Biotech. Biochem.,56(2):270−274, 1992に記載された方法等を採用できる。なお、本発明においては、上記タンパク質を免疫原として用いる際には、分子量1kDa〜30kDaのタンパク質と、分子量80kDa〜200kDaのタンパク質とをタンパク質当たり1対1で混ぜて用いることが好ましく、より好ましくは、分子量20kDa〜30kDaのタンパク質と、分子量80kDa〜200kDaのタンパク質とを1対1で混ぜて用いることが好ましい。
【0020】
また、抗原を免疫された鶏が生産した卵から抗体を調製する方法としては、卵から卵黄液を分離し、得られた卵黄液を粉末化した後、その粉末をエタノールによって脱脂した粉末中から緩衝液を用いて抽出することにより調製できる。なお、上記免疫卵をそのまま消化性潰瘍抑制組成物として用いることもできる。
【0021】
本発明の消化性潰瘍抑制組成物の1日当たりの有効摂取量は、上記抗体換算で好ましくは1〜10,000mgであり、より好ましくは1〜100mgである。該摂取量が抗体換算で1mg未満であると消化性潰瘍抑制効果が期待できず、10,000mg超であるとハンドリングの面等で問題を生じる。
【0022】
また、本発明の消化性潰瘍抑制組成物の形態としては、特に制限はなく、例えば錠剤、カプセル剤、溶液、粉末、顆粒等が挙げられる。
【0023】
本発明の飲食品は、上記消化性潰瘍抑制組成物を0.01〜10g(抗体換算で1〜1000mg)含むことが好ましく、0.01〜0.1g(抗体換算で1〜100mg)含むことがより好ましい。
【0024】
上記飲食品としては、特に制限はなく、例えば清涼飲料、ヨーグルト、錠菓、チョコレート、ガム、錠剤等が挙げられる。
【0025】
【実施例】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0026】
実施例1
▲1▼抗原の調製
胃潰瘍患者からヘリコバクター・ピロリ株を分離し、サイトトキシンを生産する株であることを確認した後、7%(v/v)馬脱繊維血液を含むSkirrowの寒天培地で37℃、4日間培養した(10%CO、10%空気、加湿)。
【0027】
次いで、コロニーをかきとり、生理食塩水に懸濁し、この懸濁液に0.5%(v/v)となるようにホルマリンを加え、室温18時間放置して菌体の不活化処理を行った。
【0028】
次いで、菌体を3,000×g、10分間の遠心分離で集め、生理食塩水で3回洗浄した。菌体を1×10CFU/mlになるよう生理食塩水に分散させ、抗原液Aとした。
【0029】
特開平10−287585号公報に記載された方法によりウレアーゼを分取し、SDS−PAGEにてウレアーゼA(32kDa)とウレアーゼB(60kDa)を確認した後、タンパク含量として1.0mg/mlとなるよう溶液を調製し、抗原液Bとした。
【0030】
更に、抗原液Aをグリシン塩酸緩衝液(pH4)に懸濁して超音波破砕機により破砕した後、菌体を可溶化(37℃×2時間)した。この可溶化抽出溶液と不溶部分を遠心(8,000rpm×20分)した後、ゲル濾過(YMC−Pack Diol−200,500×8.0mm I.D., YMC)により、分子量1kDa〜30kDa、80kDa〜200kDaの菌体抽出タンパク液を分取し、凍結乾燥してそれぞれ粉末を得た。
【0031】
得られた菌体抽出タンパク質をタンパク含量として1.0mg/mlとなるように溶液を調製し、分子量1kDa〜30kDaのタンパク液を抗原液C、80kDa〜200kDaのタンパク液を抗原液D、両方をタンパク質含量として1対1で含む抗原液Eとした。
【0032】
▲2▼免疫卵黄の調製
産卵鶏(ホワイトレグホン)を5群に分け、上記5種類の抗原液(抗原液A、抗原液B、抗原液C、抗原液D、抗原液E)を1羽当たり1ml筋肉注射した。初回免疫後、1週毎に各群から集めた鶏卵から卵黄を分離し、週毎の特異抗体価を測定した。
【0033】
鶏卵卵黄中の特異抗体価の測定は、週毎に集められた各卵黄液を2,000倍希釈して酵素免疫測定法(以下、ELISA法という)により行った。週毎の特異抗体価が下がってきた頃合を見計らって、実施例1で得られた5種類の抗原液を用いて追加免疫を行った。
【0034】
追加免疫後も上記と同様のELISA法により特異抗体価を測定し、抗体価が安定した時から鶏卵を採取し、これを免疫卵とした。
【0035】
各免疫卵1kgをホモミキサーで均質化した後、噴霧乾燥して粉末を調製し、卵黄粉末(抗体含有卵黄粉末)を得た。上記の各抗体含有卵黄粉末470gに、エタノールを5倍量添加して脱脂を行い、脂質が1%以下になるよう脱脂を繰り返し行った。得られた脱脂卵黄粉末にPBSバッファーを加えて卵黄水溶性タンパク質を抽出し、抽出溶液を凍結乾燥して粉末化し、抗体粉末A(抗原液Aの免疫卵から得られた粉末)、抗体粉末B(抗原液Bの免疫卵から得られた粉末)、抗体粉末C(抗原液Cの免疫卵から得られた粉末)、抗体粉末D(抗原液Dの免疫卵から得られた粉末)、抗体粉末E(抗原液Eの免疫卵から得られた粉末)を得た。更に、市販の卵を使用し、上記と同様の方法を用いて得られた粉末をコントロール粉末とした。
【0036】
▲3▼細胞障害因子に対する抗体活性の評価
ELISAの固相化抗原を、▲1▼ピロリ菌の全菌体、▲2▼ウレアーゼ、▲3▼1kDa〜30kDaの菌体抽出タンパク質、▲4▼80kDa〜200kDaの菌体抽出タンパク質、及び▲5▼1kDa〜30kDa及び80kDa〜200kDa(1:1)の菌体抽出タンパク質ミックスとし、コーティングを行った。
【0037】
上記抗体粉末A〜E及びコントロール粉末を1mg/mlの濃度で調製し、倍々希釈を10回行い、ELISA法にて分析を行い、同じ発色値での濃度を、コントロール粉末と比較して何倍になるかを求め、その倍数を特異抗体価として評価した。その結果を表1に示す。
【0038】
【表1】

Figure 0003597784
【0039】
表1から、抗体粉末Eに含まれる抗体は、全菌体にも若干反応するものの、特に分子量80kDa〜200kDaの菌体抽出タンパク質に対して高い特異抗体価を示すことが分かる。また、抗体粉末Cに含まれる抗体は、▲3▼1kDa〜30kDaの菌体抽出タンパク質に対する特異抗体価が比較的低いことから、該菌体抽出タンパク質は抗原性が弱いことが分かる。また、抗体粉末Eに含まれる抗体はウレアーゼ抗原とは反応しないことが分かる。
【0040】
実施例2(細胞空砲化抑制効果試験)
HeLa細胞を用いて、ピロリ菌が有する毒素による空砲化試験を以下のようにして行なった。
【0041】
イーグルMEM培地(ニッスイ製)9.4gを蒸留水に溶解して全量を1,000mlとした。その後、オートクレーブ(121℃、15分間)で完全滅菌し、室温まで冷却した後、滅菌済み10%炭酸水素ナトリウム水溶液を15ml加えた。そして、使用前に濾過滅菌したL−グルタミン0.292g及び牛胎児血清を加えて調製し、HeLa細胞の培養液として用いた。
【0042】
実験は極力継代が少ないもので行い、細胞の状態を確認した後、カウンターにより細胞が10個になるように、8穴の滅菌プレートにアプライした。
【0043】
そして、▲1▼滅菌生理食塩水(ネガティブコントロール)、▲2▼実施例1に記載のピロリ菌培養液を遠心分離(1,000rpm、10分間)した上清(ポジティブコントロール)を添加した。このポジティブコントロールによる細胞空砲化を確認した後、上記▲2▼に実施例1で得られた抗体粉末A〜Eを0.01、0.1、0.5、1%になるように添加した各溶液を0.1mlずつ添加し、24時間後の細胞の様子を顕微鏡にて観察した。その結果を表2に示す。
【0044】
【表2】
Figure 0003597784
【0045】
表2から、抗体粉末Cは細胞の空砲化現象をほとんど抑制しないが、抗体粉末Dは細胞の空砲化現象を抑制することが分かる。特に、両方の抗体を含有する抗体粉末Eは劇的に細胞の空砲化現象を抑制することが分かる。
【0046】
実施例3(マウスによる除菌効果試験)
BALB/cマウス(雄、8週齢)を使用し、本消化性潰瘍抑制組成物による除菌試験を実施した。
【0047】
上記マウスに、実施例1で分離されたピロリ菌株(1×10個)を経口投与し、1週間後、試験群の一部を屠殺して胃内のピロリ菌数を測定してピロリ菌が定着していることを確認した。その後、試験動物を6群(1群10匹)に分け、下記の飼料を与えた(自由摂取)。
【0048】
1群:通常飼料
2群:通常飼料+抗体粉末A(0.01%、0.1%、1%)
3群:通常飼料+抗体粉末B(0.01%、0.1%、1%)
4群:通常飼料+抗体粉末C(0.01%、0.1%、1%)
5群:通常飼料+抗体粉末D(0.01%、0.1%、1%)
6群:通常飼料+抗体粉末E(0.01%、0.1%、1%)
【0049】
上記飼料で2ヶ月間飼育した後、開腹し、胃内のピロリ菌の数を測定した。その結果を表3に示す。
【0050】
【表3】
Figure 0003597784
【0051】
表3から、抗体粉末Eを投与した群は、意外にも抗体粉末Bを投与した群とほぼ同程度の高い除菌効果が得られることが分かる。
【0052】
実施例4(スナネズミによる炎症および潰瘍抑制効果試験)
スナネズミはピロリ菌が感染(胃粘膜細胞奥深くまで定着)し、4〜6ヵ月後に非常に高い確率で出血を伴う重度の炎症(胃潰瘍)を発症するモデル動物として認知され、本状態が、実際ヒトでの胃潰瘍患者と状況が似ていると言われている。
【0053】
本モデル動物を用い、実施例1で分離されたピロリ菌株を1×10個投与し4ヵ月後、試験群の一部を屠殺し、胃を開腹して胃内の潰瘍状態を確認した。屠殺した試験動物全てにおいて出血を伴う潰瘍を確認した後、試験動物を6群(1群8匹)に分け、下記の飼料を与えた(自由摂取)。
【0054】
1群:通常飼料
2群:通常飼料+抗体粉末A(0.01%、0.1%、1%)
3群:通常飼料+抗体粉末B(0.01%、0.1%、1%)
4群:通常飼料+抗体粉末C(0.01%、0.1%、1%)
5群:通常飼料+抗体粉末D(0.01%、0.1%、1%)
6群:通常飼料+抗体粉末E(0.01%、0.1%、1%)
【0055】
上記の飼料で2ヶ月間飼育した後、開腹して胃内のピロリ菌の数、及び胃炎・出血を伴う潰瘍の状況を以下の5つの評価基準で点数化して8匹の平均点を求めた。
【0056】
0:症状なし
1:赤くはれ上がっている(1箇所)
2:赤くはれ上がっている(2箇所)
3:赤くはれ上がっている(3箇所以上)
4:出血が認められる(1箇所)
5:出血が無数認められる(2箇所以上)
その結果を表4に示す。
【0057】
【表4】
Figure 0003597784
【0058】
表4から、抗体粉末B及び抗体粉末Eを投与した群は、抗体粉末Aを投与した群に比べて高い除菌効果が得られているものの、どの群も実施例3のような完全除菌に近い状態には至っていないことが分かる。
【0059】
また、炎症状態は、抗体粉末A及び抗体粉末Bを投与した群においてはほとんど回復しておらず、抗体粉末C及び抗体粉末Dを投与した群においてもやや回復傾向が見られるにとどまっている。一方、抗体粉末Eを投与した群においては著しい炎症回復効果が認められることが分かる。本結果から、今回初めてVac A及びCag Aを含むタンパクの抗体とHSPを含むタンパクの抗体を合わせることで驚くべき抗炎症効果が得られることが分かる。
【0060】
実施例5
以下、本発明の消化性潰瘍抑制組成物を含有する飲食品の処方例を挙げる。
【0061】
(1)ヨーグルトの処方例
牛乳 96%
脱脂粉乳 0.5%
本発明の消化性潰瘍抑制組成物 3%
水 0.5%
【0062】
(2)顆粒粉末の処方例
牛乳 50%
卵 40%
砂糖 10%
本発明の消化性潰瘍抑制組成物 3%
【0063】
(3)胃炎、胃潰瘍又は十二指腸潰瘍予防タブレットの処方例
本発明の消化性潰瘍抑制組成物 3%
デキストリン 70%
【0064】
【発明の効果】
以上説明したように本発明によれば、有効成分として、ヘリコバクター(Helicobacter)属の菌から抽出された分子量80kDa〜200kDaのタンパク質を抗原として免疫した鶏の卵から得られた抗体と分子量1kDa〜30kDaのタンパク質を抗原として免疫した鶏の卵から得られた抗体を合わせたことにより、驚くべき抗炎症効果を得ることができた。故に、本抗体を含有させることで、経口摂取することによりピロリ菌による消化性潰瘍を効果的に抑制できる組成物及び飲食品を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composition for suppressing peptic ulcer or the like derived from bacteria of the genus Helicobacter , and to a food or drink containing the same.
[0002]
[Prior art]
Helicobacter bacteria, particularly Helicobacter pylori , are pathogenic bacteria that are deeply involved in the onset and recurrence of peptic ulcers (gastric ulcers, duodenal ulcers) and chronic gastritis. pylori (hereinafter referred to as H. pylori) is known.
[0003]
However, although H. pylori is present in the stomach of many people with a high probability, the presence of H. pylori in recent years does not necessarily lead to peptic ulcers, etc. However, it is thought that the gastric ulcer caused by H. pylori may be caused by a cytotoxic factor of a specific strain.
[0004]
At present, it is considered that cytotoxicity such as inflammation and ulceration caused by H. pylori is directly related to emptying toxin (molecular weight 87 kDa, hereinafter referred to as Vac A) and toxin-associated protein (molecular weight 105 kDa to 140 kDa, hereinafter Cag A) It is). It has also been demonstrated that these Vac A and Cag A are present even though they are isolated strains of H. pylori (SharmaSA et al, Infect Immun 63; 1681-1687, 1995). In fact, serum antibodies to cytotoxin (128 kDa) and Vac A are not detected in all patients, but are highly positive in special disease states such as peptic ulcers. It has also been reported that the toxin causes cells to be blunted in in vitro tests (Leunk RD et al, J Med Microbiol 26: 93-99, 1988).
[0005]
Furthermore, the serum antibody positive rate against Cag A is 60-63% in gastritis patients and 80-100% in gastric ulcer patients, and it is considered that Cag A is also a toxin closely related to gastric ulcer.
[0006]
It is also known that H. pylori sonicated supernatant contains heat shock protein (HSP, molecular weight 25 kDa to 30 kDa) which is a low molecular weight protein, but the biological significance of this protein is still elucidated. Has not progressed.
On the other hand, for example, the following methods have been proposed as methods for preventing and treating peptic ulcers caused by H. pylori.
[0007]
{Circle around (1)} Japanese Patent Application Laid-Open No. 4-275232 discloses a method for preventing H. pylori infection by using a food containing an egg yolk-derived antibody that uses whole H. pylori cells as antigens.
[0008]
(2) JP-A-10-287585 and JP-A-11-80197 describe yolk-derived antibodies using urease (molecular weight: 32 kDa, 60 kDa) and flagella (molecular weight: 53 kDa, 54 kDa) specific to H. pylori. A substance that inhibits adhesion of H. pylori to the stomach by using a food containing the same is disclosed.
[0009]
[Problems to be solved by the invention]
However, in humans, it is said that H. pylori usually penetrates deeply into gastric mucosal cells and colonizes it, so that complete eradication is difficult even with drugs such as antibiotics. Therefore, when considering a patient with actual peptic ulcer, the prophylactic and therapeutic method disclosed in the above-mentioned gazette simply by inhibiting H. pylori adhesion can effectively eliminate H. pylori and suppress inflammation. Never hard to say.
[0010]
Accordingly, an object of the present invention is to provide a composition that more effectively suppresses peptic ulcer caused by H. pylori, and a food and drink containing the same.
[0011]
[Means for Solving the Problems]
To achieve the above object, peptic ulcer inhibiting composition of the present invention, Helicobacter (Helicobacter) eggs genus chicken proteins and molecular weight 80KDa~ 200 kDa protein with a molecular weight 1kDa~30kDa extracted from the bacteria were immunized as an antigen Characterized by containing an antibody obtained from the above as an active ingredient.
[0012]
Further, the food and drink of the present invention is characterized by containing the composition for suppressing peptic ulcer.
[0013]
ADVANTAGE OF THE INVENTION According to this invention, the composition and food / beverage products which can suppress the peptic ulcer by H. pylori effectively by ingestion can be provided.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Peptic ulcer composition of the present invention contains a Helicobacter (Helicobacter) egg extracts chicken immunized with proteins and molecular weight 80KDa~ 200 kDa protein of the genus molecular weight 1kDa~30kDa extracted from the cells as an antigen as an active ingredient I do.
[0015]
The bacterium of the genus Helicobacter is not particularly limited, but is preferably a strain that produces cytotoxin, Helicobacter pylori. pylori), Helicobacter cinaedi), Helicobacter feneri (Helicobacter fennelliae), Helicobacter Heilmanny (Helicobacter) heilmanii), Helicobacter rappini (Helicobacter) rappini), Helicobacter felis and the like.
[0016]
Also, the molecular weight 1kDa~30kDa and molecular weight 80KDa~ 200 kDa protein may be prepared from the bacterial cells, for example, by the following method.
[0017]
The H. pylori strain producing cytotoxin is cultured according to a conventional method, and the cells are inactivated. The cells are suspended in an appropriate buffer, crushed by an ultrasonic crusher or the like, and the cells are solubilized. Preferably, the cells are solubilized using a glycine hydrochloride buffer (pH 4) as a buffer. This solution is centrifuged to collect a solubilized extraction solution, a fraction having a target molecular weight is collected by gel filtration or the like, and freeze-dried as necessary.
[0018]
Incidentally, the protein of the molecular weight 80KDa~ 200 kDa is considered to include Vac A and Cag A Judging from the molecular weight, and the protein of the molecular weight 1kDa~30kDa is believed to comprise HSP.
[0019]
As a method for immunizing chickens with the protein prepared as described above, for example, Makoto S. et al. et al., Biosci. Biotech. Biochem., 56 (2): 270-274, 1992. In the present invention, when using the protein as an immunogen, a protein with a molecular weight 1KDa~30kDa, it is preferable that a protein of molecular weight 80KDa~ 200 kDa used mixed with the protein per one-to-one, more preferably , a protein of molecular weight 20KDa~30kDa, it is preferable to use a protein having a molecular weight 80KDa~ 200 kDa mixed at one to one.
[0020]
In addition, as a method for preparing an antibody from an egg produced by a chicken immunized with an antigen, an egg yolk solution is separated from the egg, the obtained yolk solution is powdered, and the powder is defatted with ethanol from the powder. It can be prepared by extraction using a buffer. In addition, the said immune egg can also be used as a peptic ulcer suppression composition as it is.
[0021]
The effective daily intake of the peptic ulcer suppression composition of the present invention is preferably 1 to 10,000 mg, more preferably 1 to 100 mg, in terms of the above antibody. If the intake is less than 1 mg in terms of antibody, the effect of suppressing peptic ulcer cannot be expected, and if it exceeds 10,000 mg, problems arise in handling and the like.
[0022]
The form of the composition for suppressing peptic ulcer of the present invention is not particularly limited, and examples thereof include tablets, capsules, solutions, powders, and granules.
[0023]
The food or drink of the present invention preferably contains 0.01 to 10 g (1 to 1000 mg in terms of antibody), and preferably 0.01 to 0.1 g (1 to 100 mg in terms of antibody) of the peptic ulcer suppression composition. Is more preferred.
[0024]
The food and drink are not particularly limited and include, for example, soft drinks, yogurt, tablet confectionery, chocolate, gum, tablets and the like.
[0025]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0026]
Example 1
(1) Preparation of antigen Helicobacter pylori strain was isolated from a patient with gastric ulcer and confirmed to be a cytotoxin-producing strain. After that, the strain was cultured on a Skiroll agar medium containing 7% (v / v) equine defibrillated blood. C. for 4 days (10% CO 2 , 10% air, humidified).
[0027]
Next, the colonies were scraped off, suspended in a physiological saline solution, to this suspension was added formalin to a concentration of 0.5% (v / v), and the suspension was left at room temperature for 18 hours to inactivate the cells. .
[0028]
Next, the cells were collected by centrifugation at 3,000 × g for 10 minutes, and washed three times with physiological saline. The bacterial cells were dispersed in physiological saline at a concentration of 1 × 10 8 CFU / ml to obtain an antigen solution A.
[0029]
Urease is separated by the method described in JP-A-10-287585, and after confirming urease A (32 kDa) and urease B (60 kDa) by SDS-PAGE, the protein content becomes 1.0 mg / ml. A solution was prepared and used as antigen solution B.
[0030]
Further, the antigen solution A was suspended in a glycine hydrochloride buffer (pH 4) and crushed by an ultrasonic crusher, and the cells were solubilized (37 ° C. × 2 hours). After the solubilized extraction solution and the insoluble portion were centrifuged (8,000 rpm × 20 minutes), the molecular weight was 1 kDa to 30 kDa by gel filtration (YMC-Pack Diol-200, 500 × 8.0 mm ID, YMC). An 80 kDa to 200 kDa cell extract protein solution was fractionated and freeze-dried to obtain respective powders.
[0031]
A solution was prepared so that the obtained cell extract protein had a protein content of 1.0 mg / ml, and a protein solution having a molecular weight of 1 kDa to 30 kDa was used as an antigen solution C, and a protein solution having a molecular weight of 80 kDa to 200 kDa was used as an antigen solution D. Antigen solution E containing 1: 1 protein content was used.
[0032]
(2) Preparation of immunized egg yolk The laying hens (White Leghorn) are divided into five groups, and the above five types of antigen solutions (antigen solution A, antigen solution B, antigen solution C, antigen solution D, antigen solution E) are used per bird. 1 ml intramuscular injection. After the first immunization, the yolk was separated from the chicken eggs collected from each group every week, and the specific antibody titer was measured every week.
[0033]
The measurement of the specific antibody titer in the chicken egg yolk was performed by enzyme immunoassay (hereinafter, referred to as ELISA) by diluting each yolk fluid collected every week by 2,000 times. When the specific antibody titer was lowered every week, booster immunization was performed using the five kinds of antigen solutions obtained in Example 1.
[0034]
After the additional immunization, the specific antibody titer was measured by the same ELISA method as described above. When the antibody titer became stable, chicken eggs were collected and used as immunized eggs.
[0035]
1 kg of each immunized egg was homogenized with a homomixer and then spray-dried to prepare a powder to obtain an egg yolk powder (antibody-containing egg yolk powder). To 470 g of the above-described antibody-containing egg yolk powder, ethanol was added in a 5-fold amount to perform defatting, and the defatting was repeated until the lipid content was 1% or less. A PBS buffer is added to the obtained defatted egg yolk powder to extract the yolk water-soluble protein, and the extracted solution is freeze-dried to make a powder. Antibody powder A (powder obtained from immunized egg of antigen solution A), antibody powder B (Powder obtained from immunized egg of antigen solution B), antibody powder C (powder obtained from immunized egg of antigen solution C), antibody powder D (powder obtained from immunized egg of antigen solution D), antibody powder E (powder obtained from immunized eggs of antigen solution E) was obtained. Further, using a commercially available egg, a powder obtained by the same method as above was used as a control powder.
[0036]
(3) Evaluation of antibody activity against cytotoxic factor The immobilized antigen of ELISA was used for (1) whole cells of H. pylori, (2) urease, (3) protein extracted from 1 kDa to 30 kDa, and (4) 80 kDa. Coating was performed using a cell extract protein of ~ 200 kDa and (5) a cell extract protein mix of 1 kDa ~ 30 kDa and 80 kDa ~ 200 kDa (1: 1).
[0037]
The antibody powders A to E and the control powder were prepared at a concentration of 1 mg / ml, and diluted ten times, and analyzed by the ELISA method. The concentration at the same color development value was several times that of the control powder. Was determined, and the multiple was evaluated as a specific antibody titer. Table 1 shows the results.
[0038]
[Table 1]
Figure 0003597784
[0039]
From Table 1, it can be seen that the antibody contained in the antibody powder E slightly reacts with all the cells, but shows a high specific antibody titer particularly for the cell extract protein having a molecular weight of 80 kDa to 200 kDa. In addition, since the antibody contained in the antibody powder C has a relatively low specific antibody titer against the protein extract of 1 kDa to 30 kDa, it is understood that the protein extract of the cell has weak antigenicity. In addition, it can be seen that the antibody contained in the antibody powder E does not react with the urease antigen.
[0040]
Example 2 (Cell emptying suppression effect test)
Using HeLa cells, a blanking test with a toxin possessed by H. pylori was performed as follows.
[0041]
9.4 g of Eagle MEM medium (manufactured by Nissui) was dissolved in distilled water to make a total volume of 1,000 ml. Thereafter, the solution was completely sterilized in an autoclave (121 ° C., 15 minutes), cooled to room temperature, and 15 ml of a sterilized 10% aqueous sodium hydrogen carbonate solution was added. It was prepared by adding 0.292 g of L-glutamine sterilized by filtration before use and fetal calf serum and used as a culture solution of HeLa cells.
[0042]
Experiments were performed in what utmost small passage, after checking the state of the cell, so the cell by counter reaches 10 3, was applied to a sterile plate 8 holes.
[0043]
Then, (1) sterile physiological saline (negative control) and (2) a supernatant (positive control) obtained by centrifuging (1,000 rpm, 10 minutes) the H. pylori culture solution described in Example 1 were added. After confirming the cell blanking by the positive control, the antibody powders A to E obtained in Example 1 were added to the above (2) so as to be 0.01, 0.1, 0.5 and 1%. 0.1 ml of each solution was added, and the state of the cells after 24 hours was observed with a microscope. Table 2 shows the results.
[0044]
[Table 2]
Figure 0003597784
[0045]
From Table 2, it can be seen that the antibody powder C hardly suppresses the cell emptying phenomenon, whereas the antibody powder D suppresses the cell emptying phenomenon. In particular, it can be seen that the antibody powder E containing both antibodies dramatically suppresses the cell emptying phenomenon.
[0046]
Example 3 (Test for disinfection effect by mouse)
BALB / c mice (male, 8 weeks old) were used to carry out a bacteria elimination test using the present composition for suppressing peptic ulcer.
[0047]
To the above mice, the H. pylori strain (1 × 10 9 ) isolated in Example 1 was orally administered. One week later, a part of the test group was sacrificed, and the number of H. pylori in the stomach was measured to determine the number of H. pylori in the stomach. Was established. Thereafter, the test animals were divided into six groups (10 animals per group) and fed the following feed (free intake).
[0048]
1 group: normal feed 2 groups: normal feed + antibody powder A (0.01%, 0.1%, 1%)
Group 3: normal feed + antibody powder B (0.01%, 0.1%, 1%)
Group 4: normal feed + antibody powder C (0.01%, 0.1%, 1%)
Group 5: normal feed + antibody powder D (0.01%, 0.1%, 1%)
6 groups: normal feed + antibody powder E (0.01%, 0.1%, 1%)
[0049]
After breeding for 2 months on the above feed, the abdomen was opened and the number of H. pylori in the stomach was measured. Table 3 shows the results.
[0050]
[Table 3]
Figure 0003597784
[0051]
From Table 3, it can be seen that the group to which the antibody powder E was administered surprisingly had almost the same high eradication effect as the group to which the antibody powder B was administered.
[0052]
Example 4 (Test for Inhibition of Inflammation and Ulcer by Gerbils)
Mongolian gerbils are recognized as model animals that become infected with H. pylori (settle deep into gastric mucosal cells) and develop severe inflammation (gastric ulcer) with bleeding at a very high probability 4 to 6 months later. It is said that the situation is similar to that of a gastric ulcer patient.
[0053]
Four months after administering 1 × 10 9 H. pylori strains isolated in Example 1 using this model animal, a part of the test group was sacrificed, and the stomach was opened to confirm the ulcer state in the stomach. After confirming ulcers with bleeding in all of the sacrificed test animals, the test animals were divided into 6 groups (8 animals per group) and fed the following feed (free intake).
[0054]
1 group: normal feed 2 groups: normal feed + antibody powder A (0.01%, 0.1%, 1%)
Group 3: normal feed + antibody powder B (0.01%, 0.1%, 1%)
Group 4: normal feed + antibody powder C (0.01%, 0.1%, 1%)
Group 5: normal feed + antibody powder D (0.01%, 0.1%, 1%)
6 groups: normal feed + antibody powder E (0.01%, 0.1%, 1%)
[0055]
After breeding for 2 months on the above-mentioned feed, the abdomen was opened, and the number of H. pylori in the stomach and the status of ulcer with gastritis / bleeding were scored based on the following five evaluation criteria to obtain an average score of 8 animals. .
[0056]
0: No symptoms 1: Swelling red (one spot)
2: Red swelling (2 places)
3: Red swelling (3 or more places)
4: Bleeding is observed (one place)
5: countless bleeding (two or more)
Table 4 shows the results.
[0057]
[Table 4]
Figure 0003597784
[0058]
From Table 4, it can be seen that although the group to which the antibody powder B and the antibody powder E were administered had a higher eradication effect than the group to which the antibody powder A was administered, all the groups were completely sterilized as in Example 3. It can be seen that the state has not been approached.
[0059]
In addition, the inflammatory state hardly recovered in the group to which the antibody powder A and the antibody powder B were administered, and the tendency to recover only slightly in the group to which the antibody powder C and the antibody powder D were administered. On the other hand, it can be seen that in the group to which the antibody powder E was administered, a remarkable inflammatory recovery effect was observed. From these results, for the first time, it can be seen that a surprising anti-inflammatory effect can be obtained by combining a protein antibody containing Vac A and Cag A with a protein antibody containing HSP.
[0060]
Example 5
Hereinafter, formulation examples of foods and drinks containing the peptic ulcer suppression composition of the present invention will be described.
[0061]
(1) Prescription example of yogurt 96% milk
0.5% skim milk powder
Peptic ulcer inhibitory composition of the present invention 3%
Water 0.5%
[0062]
(2) Formulation example of granule powder Milk 50%
Egg 40%
10% sugar
Peptic ulcer inhibitory composition of the present invention 3%
[0063]
(3) Formulation example of tablet for preventing gastritis, gastric ulcer or duodenal ulcer Peptic ulcer inhibitory composition of the present invention 3%
Dextrin 70%
[0064]
【The invention's effect】
According to the present invention described above, as active ingredient, Helicobacter (Helicobacter) antibody and molecular weight obtained from chicken eggs that a protein of the extracted molecular weight 80KDa~ 200 kDa from bacteria immunized as an antigen of the genus 1kDa~30kDa A surprising anti-inflammatory effect could be obtained by combining antibodies obtained from eggs of chickens immunized with the above protein as an antigen. Therefore, by containing the present antibody, it is possible to provide a composition and a food or drink which can effectively suppress peptic ulcer caused by H. pylori by oral ingestion.

Claims (2)

ヘリコバクター(Helicobacter)属の菌から抽出された分子量1kDa〜30kDaのタンパク質及び分子量80kDa〜200k Daのタンパク質を抗原として免疫した鶏の卵から得られた抗体を有効成分として含有することを特徴とする消化性潰瘍抑制組成物。Digestion, characterized in that it contains a Helicobacter (Helicobacter) genus antibody proteins and molecular weight 80kDa~ 200k Da protein with a molecular weight 1kDa~30kDa extracted from the cells obtained from chicken eggs that had been immunized as an antigen as an active ingredient A composition for inhibiting ulcers. 前記消化性潰瘍抑制組成物を含有する飲食品。A food or drink comprising the composition for suppressing peptic ulcer.
JP2001034703A 2001-02-09 2001-02-09 Peptic ulcer inhibitory composition and food and drink containing it Expired - Lifetime JP3597784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034703A JP3597784B2 (en) 2001-02-09 2001-02-09 Peptic ulcer inhibitory composition and food and drink containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034703A JP3597784B2 (en) 2001-02-09 2001-02-09 Peptic ulcer inhibitory composition and food and drink containing it

Publications (2)

Publication Number Publication Date
JP2002234849A JP2002234849A (en) 2002-08-23
JP3597784B2 true JP3597784B2 (en) 2004-12-08

Family

ID=18898255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034703A Expired - Lifetime JP3597784B2 (en) 2001-02-09 2001-02-09 Peptic ulcer inhibitory composition and food and drink containing it

Country Status (1)

Country Link
JP (1) JP3597784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121956A (en) * 2004-10-28 2006-05-18 Ortho Corp FUNCTIONAL FOOD HAVING ANTI-gamma-GTP ANTIBODY AS ACTIVE INGREDIENT
JP2007185134A (en) * 2006-01-12 2007-07-26 Asama Chemical Co Ltd Packaged beverage and method for producing the same

Also Published As

Publication number Publication date
JP2002234849A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
Korhonen et al. Bovine milk antibodies for health
EP0918528B1 (en) Use of hyperimmunized milk and/or egg for treating gastrointestinal damage
JPH10287585A (en) Preventing agent and therapeutic agent for gastritis, gastric ulcer and duodenal ulcer
WO1997020577A1 (en) Improved therapeutic formulation and method
EP0706400A1 (en) Therapeutic formulation and method
WO2021203034A2 (en) Alimentary and systemic antiviral therapeutics
TW200402303A (en) Composition containing bioactive materials and method of preparation and treatment
JP2002501526A (en) Method for producing immunoglobulin A in milk
CN105555309A (en) Methods and compositions for the treatment and/or prophylaxis of clostridium difficile associated disease
CN112996808A (en) Compositions and methods for treating acute diarrhea and intestinal infections in animals
CN110997898B (en) Composition comprising Lactobacillus plantarum CJLP475 strain and Lactobacillus plantarum CJLP17 strain and application thereof
KR100460173B1 (en) Inhibitor of helicobacter pylori colonization
JPH02160726A (en) Vaccine
KR20010098578A (en) Glycoprotein having inhibitory activity against helicobacter pylori colonization
WO1999002188A1 (en) Hen egg yolk antibodies to clostridium difficile antigens and use in therapy for pseudomembranous colitis
JP3072353B2 (en) Food for preventing gastritis, stomach or duodenal ulcer
JP3597784B2 (en) Peptic ulcer inhibitory composition and food and drink containing it
CA2813612A1 (en) Methods and compositions using anti-lps ligands for the treatment and prevention of inflammatory disorders
EP3212664A1 (en) Manufacture and use of hyperimmune egg pc2
KR100267746B1 (en) Oral immunological preparation containing egg-yolk antibodies, for prevention and treatment of porcine diarrhea caused by enterotoxigenic escherichia coli
WO2004052379A1 (en) Antidiarrheal composition
JP3255161B2 (en) Helicobacter pylori fixation inhibitor
RU2262350C2 (en) Vaccine for prophylaxis and immunotherapy of human and animal diseases caused by pathogenic and opportunistic gram-negative microorganisms of intestine group and their exotoxins and method for its preparing (variants), immunoglobulin preparation (variant) and method for its preparing, immunobiological preparation polycomponent vaccine
US10278404B2 (en) Immunized camel milk-based composition for the treatment or prevention of gastrointestinal infections
Akerele Evaluating the in vitro Characteristics and Protective Efficacy of Chitosan Nanoparticle Vaccines Against Necrotic Enteritis in Broiler Chickens

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040224

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Ref document number: 3597784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term