JP3597619B2 - Brine electrolysis equipment for hypochlorite generation - Google Patents

Brine electrolysis equipment for hypochlorite generation Download PDF

Info

Publication number
JP3597619B2
JP3597619B2 JP35355495A JP35355495A JP3597619B2 JP 3597619 B2 JP3597619 B2 JP 3597619B2 JP 35355495 A JP35355495 A JP 35355495A JP 35355495 A JP35355495 A JP 35355495A JP 3597619 B2 JP3597619 B2 JP 3597619B2
Authority
JP
Japan
Prior art keywords
plate
electrolytic cell
salt water
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35355495A
Other languages
Japanese (ja)
Other versions
JPH09174057A (en
Inventor
善胤 田村
Original Assignee
有限会社徳島商科
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社徳島商科 filed Critical 有限会社徳島商科
Priority to JP35355495A priority Critical patent/JP3597619B2/en
Publication of JPH09174057A publication Critical patent/JPH09174057A/en
Application granted granted Critical
Publication of JP3597619B2 publication Critical patent/JP3597619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、希釈塩水を電解して次亜塩素酸ソーダを含む次亜液を生成する次亜液生成用の塩水電解装置に関するものである。
【0002】
【従来の技術】
上水道の滅菌消毒等に用いる次亜液生成用の塩水電解装置には、従来、特公昭57−8192号公報に記載されるように、電解槽内に複数枚の電極板からなる電極ユニットを設け、希釈塩水を電極ユニットの電極板間で電解して次亜液を生成するようにしたものがある。
【0003】
この従来の塩水電解装置は、電解槽内に、左右両側から突出する複数枚の電極板を上手側から下手側へと交互に配置して、これら電極板により電解槽内に水平方向にジグザグ状に屈曲する横向流路を形成し、この横向流路内を流れる希釈塩水を電極板間で電解して次亜液を生成するようになっている。
【0004】
【発明が解決しようとする課題】
この従来の塩水電解装置は、複数枚の電極板を交互に組み合わせて横向流路を形成しているため、希釈塩水の流れが蛇行状になり、比較的に高能率でコンパクトな電解槽を構成できる利点がある反面、電極板間で希釈塩水及び電解ガスの乱れが生じ易く、また電極板に局部的にスケーリングが発生し、長期に亘って安定的に運転し難い欠点がある。
【0005】
即ち、従来は横向流路方式を採用しているため、電極板間で希釈塩水を電解した時に発生する電解ガスの流れ方向と希釈塩水の流れ方向が直角に交差することになる。その結果、電極板間で希釈塩水及び電解ガスの乱れが生じ易くなり、電極板間での電解効率が低下すると共に、電極板の陰極に局部スケーリングが発生し生長する。従って、長期間に亘って高能率状態で安定的に運転し難い欠点がある。
【0006】
また横向流路方式では、電解槽から流出する次亜液中に水素ガス(電解ガスの主成分)が同伴すると、電解槽の出口側、貯液タンク等において、静電気による引火爆発の危険性が十分に予想され、また仮に、これを防止するための装備をしても、装備が不調でトラブルが重なると、重大な人身事故を招く恐れがある。
本発明は、かかる従来の課題に鑑み、希釈塩水及び電解ガスの乱れを防止できると共に、電解ガスを次亜液からスムーズに分離でき、しかもコンパクトで長期間に亘って高能率で安定的に運転できる次亜液生成用の塩水電解装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
発明は、電解槽1 内に複数枚の電極板37からなる電極ユニット17を設け、希釈塩水を前記電極板37間で電解して次亜液を生成するようにした次亜液生成用の塩水電解装置において、前記電解槽1 内に、希釈塩水を下向きに案内する潜り板 34 と、希釈塩水を上向きに案内し且つその上端から希釈塩水を下流側に溢流させる溢流板 35 とを交互に配置して、前記潜り板 34 と前記溢流板 35 とにより、希釈塩水が下向きに流れる下向流路7 〜11と上向きに流れる上向流路12〜15とをその上手側から下手側に向かってジグザグ状に交互に形成し、前記上向流路12〜15に、前記電極板37が希釈塩水の流れ方向に沿って上下方向となる前記電極ユニット17を配置し、前記下向流路 8 10 に、希釈塩水を冷却する冷却手段 16 を配置し、前記電解槽 1 内に、幅方向の両側に希釈塩水の流れ方向に沿って配置された保持板 38 と、前記電解槽 (1) 内の下部で前記保持板 (38) 間に略平行に配置された整流板 39 とを備え、前記潜り板 34 、前記溢流板 35 、前記電極板 37 を前記保持板 38 、前記整流板 39 のスリット 40,41 に挿入したものである。
【0008】
また前記下向流路8 〜10の流路面積を前記上向流路12〜15の流路面積よりも大にする前記電解槽 1 内の上部にガスゾーン 36 を設けている。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳述する。
図1乃至図7は本発明の第1の実施形態を例示する。図1において、1 は電解槽で、希釈塩水を電解して1%の次亜塩素酸ソーダを含む次亜液を生成するためのものである。2 はガス排出筒で、希釈塩水の電解時に発生する水素ガス等の電解ガスを電解槽1 から抜き取るように、電解槽1 の上側に固定されている。3 は気液分離器で、次亜液と電解ガスとを分離して電解ガスを大気に放出するためのものである。4 はミスト分離器で、気液分離器3 から大気に放出されるガス中の水分を凝縮して、その水分を除去するようになっている。
【0011】
電解槽1 は、図2乃至図7に示すように、上側が開口した槽本体5 と、この槽本体5 の開口側に着脱自在に装着された蓋体6 とを備え、槽本体5 内に下向流路7 〜11と上向流路12〜15とが形成されると共に、その下向流路8 〜10内に冷却手段16が、上向流路12〜15内に電極ユニット17が夫々配置されている。蓋体6 は内蓋18と外蓋19とによって構成されている。
【0012】
槽本体5 は、ステンレス製等の外殻体20内に、底壁21と、この底壁21の幅方向両側の一対の側壁22と、側壁22の上手側及び下手側の一対の端壁23,24 とを備えた箱状であって、その上手側の端壁23に希釈塩水の流入口25が、下手側の端壁24に、次亜塩素酸ソーダを含有する次亜液の流出口26が夫々一対づつ固定されている。
【0013】
内蓋18は槽本体5 の上端開口側を塞ぐように、その外殻体20内に嵌合した状態で側壁22及び端壁23,24 の上端にOリング等のシール材27を介して着脱自在に載置されており、外蓋19により槽本体5 側に押圧して固定されている。
【0014】
外蓋19は、周縁側に切り欠き部28が一定間隔をおいて形成され、この各切り欠き部28に係脱自在に係合する締め付け手段29により槽本体5 に固定されている。各締め付け手段29は、下端が槽本体5 のブラケット30に枢軸31を介して枢支され且つ切り欠き部28に係脱自在な締め付けボルト32と、この締め付けボルト32に螺合し且つ外蓋19を下方に締め付けるナット33等から構成されている。
なお、底壁21、側壁22、端壁23,24 及び内蓋18は絶縁性の合成樹脂板等から構成されている。また外蓋19は、合成樹脂製又はステンレス製の何れでも良い。
【0015】
電解槽1 内には、図2乃至図5に示すように、希釈塩水を下向きに案内する潜り板34と、希釈塩水を上向きに案内し且つその上端から希釈塩水を下流側に溢流させる溢流板35とが、上手側から下手側に所定の間隔をおいて4枚づつ交互に配置され、この潜り板34と溢流板35とによって、塩水又は次亜液が下向きに流れる下向流路7 〜11と、塩水又は次亜液が上向きに流れる上向流路12〜15とが上下に交互に屈曲すべくジグザグ状に構成されると共に、その上部側にガスゾーン36が設けられている。
【0016】
下向流路7 〜11は槽本体5 内に5個あり、その両端の2個の下向流路7 〜11の流路面積が上向流路12〜15と略同幅程度であるのに対して、中間の3個の下向流路7 〜11の流路面積は、上向流路12〜15の流路面積よりも大であって、その3個の下向流路7 〜11内に冷却手段16が配置されている。上向流路12〜15は槽本体5 内に4個あって、その各上向流路12〜15には複数枚の電極板37からなる電極ユニット17が設けられている。
【0017】
潜り板34、溢流板35及び電極板37は、電解槽1 内の幅方向の両側で側壁22の内面に流れ方向に沿って配置された保持板38と、この保持板38間の中央で且つ電解槽1 内の下部に保持板38と略平行に配置された整流板39とにより互いに平行に支持されている。即ち、保持板38は槽本体5 の各側壁22と略同高さであり、また整流板39は低い帯状であって、これら保持板38及び整流板39には各潜り板34、溢流板35及び電極板37に対応してスリット40,41 が形成され、その各スリット40,41 に潜り板34、溢流板35及び電極板37が挿入されている。
【0018】
整流板39は、下向流路7 〜11の下端から上向流路12〜15へと流れる希釈塩水を整流する整流作用と、各潜り板34、溢流板35及び電極板37等を支持する支持作用とを有し、希釈塩水に対して十分な整流作用が得られるように、上端側に山形部39a が長手方向に形成されている。
【0019】
潜り板34及び溢流板35は、共に合成樹脂板等の絶縁材料により構成されている。潜り板34の下側には、その両側の下向流路7 〜11と上向流路12〜15とが連通するように底壁21との間に所定の間隙が設けられ、また潜り板34の上側には、この潜り板34の上手側と下手側とを連通させるガス通路41を形成すべく、内蓋18との間に所定の間隙が設けられている。各溢流板35は、下手側の溢流板35ほど高さが低くなるように、下端を底壁21に当接させて設けられている。
【0020】
各冷却手段16は、下向流路7 〜11内を流れる希釈塩水を冷却するためのもので、螺旋状に巻いた冷却管、又は多数のフィンを備えた冷却管等を備えてなり、両端の冷却水供給管42と冷却水排出管43とを介して蓋体6 により支持されている。各冷却水供給管42と冷却水排出管43は、蓋体6 の内蓋18と外蓋とを上下に貫通し且つ上下のストッパーリング44とナット45とにより蓋体6 に着脱自在に固定されている。そして、冷却水供給管42は冷却水供給継手46に、冷却水排出管43は冷却水排出継手47に夫々接続され、冷却水供給管42から各冷却手段16に冷却水を供給し、その冷却水を冷却水排出管43から排出するようになっている。
【0021】
各電極ユニット17はバイポーラ型であって、等間隔をおいて平行に配置された複数枚、例えば4枚の電極板37を備え、その上手側端と下手側端との電極板37に給電棒48が接続されている。各給電棒48は蓋体6 の内蓋18と外蓋19とを上下に貫通し且つ上下のストッパーリング49とナット50とにより蓋体6 に着脱自在に固定されており、その上端側がターミナル51となっている。そして、各ターミナル51は、図6及び図7に示すように各電極ユニット17が直列となるようにケーブル52で接続されている。
【0022】
ガス排出筒2 は下端が電解槽1 内のガスゾーン36に連通するように、蓋体6 上に立設されており、このガス排出筒2 の上端には、電解槽1 内の内圧が一定以上に上昇した時に作動するリリーフ弁53が装着されている。
【0023】
気液分離器3 は、円筒状の分離器本体54と、この分離器本体54の上端に装着されたガス排気弁55と、このガス排気弁55の弁体55a を上下に開閉するフロート56と、ガス排気弁55の開時に分離器本体54からのガスを大気に放出するガス放出管57とを備えている。分離器本体54は、その下端部側が管継手58を介して流出口26に、上部側が配管59を介してガス排出筒2 に夫々接続されている。
なお、64は電極板37用のスペーサである。
【0024】
上記構成の塩水電解装置において、電解槽1 を組み立てる場合には、冷却手段16の冷却水供給管42、冷却水排出管43等を介して冷却手段16を蓋体6 に装着すると共に、保持板38及び整流板39の各スリット40,41 に潜り板34、溢流板35及び電極板37を挿入し、電極ユニット17を給電棒48等を介して蓋体6 に装着する。これで、蓋体6 側に電極ユニット17、冷却手段16等をユニット状に装着できるので、次に保持板38及び整流板39を槽本体5 内に挿入し、槽本体5 の開口側にシール材27を介して蓋体6 を載置すれば良い。従って、電極ユニット17、冷却手段16等の取り扱いが容易であり、組み立て時の作業性が著しく向上する。
【0025】
なお、電極ユニット17、冷却手段16等を槽本体5 内に挿入して蓋体6 を槽本体5 上に載置した後、締め付け手段29により蓋体6 を槽本体5 に締め付けて固定する。また冷却手段16の冷却水供給管42及び冷却水排出管43、電極ユニット17の給電棒48を蓋体6 に固定する場合には、これらを蓋体6 の孔に挿入し、ストッパーリング44,49 をOリングを介して蓋体6 に下側から当接させて、上側からナット45,50 を締め付けて固定する。これによって、内圧式の電解槽1 であるにも拘わらず、電解槽1 からの電解ガスのガス漏れを確実に防止できる。
【0026】
次亜液を生成するに際しては、先ず各電極ユニット17の電極板37間に直流電圧を印加し、且つ冷却手段16に冷却水を供給しておき、その状態で希釈塩水供給源から濃度3〜4%程度の希釈塩水を電解槽1 に供給し,この希釈塩水を電解槽1 内の各電極ユニット17で電解する。
【0027】
即ち、電解槽1 の流入口25から槽本体5 内に希釈塩水が供給されると、この槽本体5 内に入った塩水は、先ず第1番目の潜り板34により下方に案内され、第1の下向流路7 内を下向きに流れる。そして、この第1の下向流路7 の下端まで到達した希釈塩水は、第1番目の溢流板35に沿って上向きに案内され、第1の上向流路12内を上向きに流れて行く。
【0028】
第1番目の上向流路12内を上昇した希釈塩水は、第1番目の溢流板35の上端から第2番目の下向流路8 側へと溢流し、この第2番目の下向流路8 の下端を経て第2上向流路13内へと流れ、この第2番目の溢流板35の上端から第3番目の下向流路9 側へと溢流する。以下、同様にして第3番目の上向流路14、第4番目の下向流路10、第4番目の上向流路15、第5番目の下向流路11を経て流出口26側へと流れて行く。
なお、電解槽1 内での希釈塩水のレベルは、第1番目の下向流路7 側が最も高く、下手側に移るに従って次第にレベルが低くなっている。
【0029】
電解槽1 内の希釈塩水は、各下向流路7 〜11及び上向流路12〜15を順次上下にジグザグ状に屈曲しながら上手側から下手側へと流れて行く。このため、電解槽1 の流入口25から流出口26へと直線的に希釈塩水が流れる場合に比較して、電解槽1 を小型化しながら流路の長さを長くできる。
電解槽1 内の希釈塩水は、各下向流路7 〜11の下端から各上向流路12〜15へと流れる時に整流板39によって整流されるので、この下向流路7 〜11と上向流路12〜15との間で希釈塩水の流れが乱れることがない。
【0030】
各上向流路12〜15内に入った希釈塩水は、上下方向に配置された複数枚の電極板37を備えた電極ユニット17がその上向流路12〜15内にあるため、その電極ユニット17の各電極板37によって希釈塩水が案内され、希釈塩水は各電極板37間を整然と円滑に上向きに流れて行く。
【0031】
各電極ユニット17にはそのターミナル51を介して直流電圧が印加され、各電極板37間に希釈塩水を介して直流電流が流れているので、希釈塩水が各上向流路12〜15内を上昇する時に、その電極ユニット17の各電極板37間に流れる電流によって希釈塩水が電解される。
【0032】
この電解時に、水素ガス等のガスが発生するが、その電解ガスは電極ユニット17の各電極板37間を上昇する希釈塩水と同一方向に流れることになり、電解ガスの上昇方向と希釈塩水の流れ方向とが同じ順方向になるので、電解ガスによって希釈塩水の流れが乱されることがなく、各電極板37間を整然と上向き方向に流れる。
従って、前述の希釈塩水の流れが整然且つ円滑であることと相俟って、電極板37の陰極側にスケーリングが局部的に発生することがなくなり、長期間に亘って安定的に運転することができる。
【0033】
電解ガスは希釈塩水の流れに従って各上向流路12〜15内を速やかに上昇する。そして、各上向流路12〜15内を上昇した希釈塩水は、その各溢流板35の上端から下手側の下向流路7 〜11側へと溢流すると共に、その溢流時に、希釈塩水内の電解ガスが希釈塩水から分離して電解槽1 内の上部側のガスゾーン36に溜まって行く。このため、溢流時の自由水面で電解後の希釈塩水中に含まれる電解ガスを殆ど完全にスムーズに分離でき、その分離した電解ガスをガスゾーン36に溜めることができる。
【0034】
一方、各電極ユニット17での電解時に希釈塩水の温度が上昇するので、各下向流路7 〜11内を下向きに流れる時に、冷却手段16により希釈塩水を冷却してその温度上昇を抑える。各下向流路7 〜11は、その流路面積が他の上向流路12〜15等に比較して大になっているため、その内部に冷却手段16があるにも拘わらず、この下向流路7 〜11内での希釈塩水の流速を遅くできる。従って、冷却手段16によって希釈塩水を十分に冷却することができ、希釈塩水を冷却手段16によって効率的に冷却できる利点がある。
【0035】
各電極ユニット17で電解する毎に次亜液の濃度が高くなって行き、第5番目の下向流路11まで達した時には、所定濃度の次亜液が生成されている。そして、この次亜液を流出口26から電解槽1 の外部に取り出した後、気液分離器3 でその次亜液内の電解ガスを除去し分離して、電解ガスを含まない状態の次亜液を後段に送る。
【0036】
気液分離器3 では、流出口26から取り出した次亜液内の電解ガスを分離する働きの他に、電解槽1 の上部のガスゾーン36に集まった電解ガスをガス放出筒2 から外部に取り出して、その電解ガス中の次亜液分を除去する働きがある。そして、分離器本体54内のガス圧力が上昇すると、フロート56が下降してガス排気弁55からガスを大気に放出する。そして、ガス中にミスト状態で含まれる次亜液があれば、そのミストをミスト分離器4 で凝集させて分離する。
【0037】
ガスゾーン36はガス排出筒2 、気液分離期3 を介してミスト分離器4 に接続されており、電解ガスを外気から遮断しているので、雷等の外部要因による電解槽1 内の残留ガスへの引火も防止できる。更に運転停止時には、電解槽1 内に希釈塩水を充満させて、その水位をガスゾーン36まで上げることにより、電解槽1 内に残留する電解ガスを容易に抜くことができる。
【0038】
なお、電解槽1 は密閉型であり、この電解槽1 内の上部のガスゾーン36に溜まった電解ガスを気液分離器3 を介して大気に排気するため、ガス排気弁55の制御等により電解ガス圧を制御することによって、次亜液の供給先が高くなっている場合でも、電解槽1 のガスゾーン36まで希釈塩水のレベルが上昇することはない。このため、電解槽1 内で気液分離を完全に行うことが可能である。
また各電極ユニット17のターミナル51、冷却手段16の冷却水供給管42及び冷却水排出管43等が蓋体6 の上側にあるため、槽本体5 側の加工が少なくなり、電解槽1 の信頼性が向上する。
【0039】
図8は本発明の第2の実施形態を例示し、電解槽1 内の電極ユニット17と冷却手段16との数を同じにすると共に、電解槽1 内の上部に阻流板61を設けたものである。
即ち、第1の実施形態では、電極ユニット17を4個とし、冷却手段16を3個としていたが、この第2の実施形態では電極ユニット17及び冷却手段16の個数を共に3個としている。従って、本発明では、電極ユニット17及び冷却手段16の個数等は別段問題ではなく、次亜液の濃度、温度等に従って適宜決定すれば良い。
【0040】
また槽本体5 内の上部に孔62付きの阻流板61があり、この阻流板61で電解槽1 内をガスゾーン36とその下側とに区画し分離するように構成している。この場合には、阻流板61によってガスゾーン36側への希釈塩水の流れを阻止できる。
なお、阻流板61を装着する場合、各潜り板34の上端を阻流板61に当接させて、この潜り板34によって阻流板61を支持する構造を採用すれば、電解槽1 内に阻流板61を容易に設けることが可能である。
以上、本発明の各実施形態を説明したが、本発明は各実施形態に限定されるものではない。例えば、電極ユニット17にはバイポーラ構造以外のものを用いても良い。
【0041】
【発明の効果】
発明によれば、電解槽1 内に複数枚の電極板37からなる電極ユニット17を設け、希釈塩水を電極板37間で電解して次亜液を生成するようにした次亜液生成用の塩水電解装置において、電解槽1 内に、希釈塩水を下向きに案内する潜り板 34 と、希釈塩水を上向きに案内し且つその上端から希釈塩水を下流側に溢流させる溢流板 35 とを交互に配置して、潜り板 34 と溢流板 35 とにより、希釈塩水が下向きに流れる下向流路7 〜11と上向きに流れる上向流路12〜15とをその上手側から下手側に向かってジグザグ状に交互に形成し、上向流路12〜15に、電極板37が希釈塩水の流れ方向に沿って上下方向となる電極ユニット17を配置し、下向流路 8 10 に、希釈塩水を冷却する冷却手段 16 を配置し、電解槽 1 内に、幅方向の両側に希釈塩水の流れ方向に沿って配置された保持板 38 と、電解槽 1 内の下部で保持板 38 間に略平行に配置された整流板 39 とを備え、潜り板 34 、溢流板 35 、電極板 37 を保持板 38 、整流板 39 のスリット 40,41 に挿入しているので、希釈塩水及び電解ガスの乱れを防止できると共に、電解ガスを次亜液からスムーズに分離でき、しかもコンパクトで長期間に亘って高能率で安定的に運転できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す次亜液生成用の塩水電解装置の構成図である。
【図2】本発明の第1実施形態を示す電解槽の断面図である。
【図3】本発明の第1実施形態を示す電解槽の横断面である。
【図4】図2のA−A線断面図である。
【図5】本発明の第1実施形態を示す電解槽の側面図である。
【図6】本発明の第1実施形態を示す電解槽の正面図である。
【図7】本発明の第1実施形態を示す電解槽の平面図である。
【図8】本発明の第2実施形態を示す電解槽の断面図である。
【符合の説明】
1 電解槽
5 槽本体
6 蓋体
7 〜11 下向流路
12〜15 上向流路
17 電極ユニット
34 潜り板
35 溢流板
36 ガスゾーン
37 電極板
38 保持板
39 整流板
40,41 スリット
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a saline solution electrolysis apparatus for generating a hypochlorite containing sodium hypochlorite by electrolyzing diluted brine.
[0002]
[Prior art]
Conventionally, as described in Japanese Patent Publication No. 57-8192, an electrode unit composed of a plurality of electrode plates is provided in a salt water electrolysis apparatus for producing a hypochlorite used for sterilization and disinfection of waterworks. In addition, there is an apparatus in which diluted saline is electrolyzed between electrode plates of an electrode unit to generate a hypochlorite.
[0003]
In this conventional salt water electrolysis apparatus, a plurality of electrode plates protruding from both left and right sides are alternately arranged from the upper side to the lower side in an electrolytic cell, and these electrode plates form a zigzag shape in the electrolytic cell in a horizontal direction. A horizontal flow path is formed that bends in a horizontal direction, and the diluted saline flowing in the horizontal flow path is electrolyzed between the electrode plates to generate a hypochlorite.
[0004]
[Problems to be solved by the invention]
In this conventional salt water electrolysis apparatus, since a plurality of electrode plates are alternately combined to form a horizontal flow path, the flow of the diluted salt water is meandering, and a relatively efficient and compact electrolytic cell is formed. On the other hand, there is a disadvantage that the diluted salt water and the electrolytic gas are easily disturbed between the electrode plates, and scaling is locally generated on the electrode plates, so that it is difficult to operate stably for a long period of time.
[0005]
That is, since the horizontal flow path method is conventionally used, the flow direction of the electrolytic gas generated when the diluted salt water is electrolyzed between the electrode plates and the flow direction of the diluted salt water intersect at right angles. As a result, the turbulence of the diluted salt water and the electrolytic gas easily occurs between the electrode plates, and the electrolysis efficiency between the electrode plates decreases, and local scaling occurs on the cathode of the electrode plates and the electrodes grow. Therefore, there is a disadvantage that it is difficult to stably operate in a high efficiency state for a long period of time.
[0006]
In addition, in the horizontal flow channel method, if hydrogen gas (a main component of the electrolytic gas) is entrained in the hypochlorite flowing out of the electrolytic cell, there is a danger of ignition and explosion due to static electricity at the outlet side of the electrolytic cell and the storage tank. Even if it is fully anticipated, and even if the equipment for preventing this is provided, if the equipment is malfunctioning and the troubles are repeated, there is a risk of causing serious personal injury.
In view of the conventional problems, the present invention can prevent the disturbance of the diluted salt water and the electrolytic gas, can smoothly separate the electrolytic gas from the hypochlorite, and can operate stably with high efficiency over a long period of time in a compact manner. It is an object of the present invention to provide a saltwater electrolysis apparatus for generating a hypochlorite.
[0007]
[Means for Solving the Problems]
The present invention, an electrode unit 17 composed of a plurality of electrode plates 37 in the electrolytic cell 1 is provided, the following sub-solution for Generation electrolysis so as to generate the next sub liquid diluted brine between the electrode plates 37 in brine electrolysis apparatus, the electrolytic cell 1, a submerged plate 34 for guiding the diluted salt water downwards, the overflow plate 35 to overflow the diluted brine downstream from upwardly guided by and its upper end a dilute brine The diversion plate 34 and the overflow plate 35 alternately arrange the downward flow channels 7 to 11 through which the diluted salt water flows downward and the upward flow channels 12 to 15 through which the diluted salt water flows upward from the upper side to the lower side. toward the side formed alternately in a zigzag manner, the upward flow path 12 to 15, placing the electrode unit 17 in which the electrode plate 37 is vertically along the flow direction of the dilution water, the downward the flow path 8-10, placing a cooling means 16 for cooling the dilute brine in the electrolytic cell 1, diluted to both sides in the width direction A holding plate 38 disposed along the flow direction of the water, and a said electrolytic cell (1) the holding plate at the bottom of the (38) rectifying plate 39 substantially arranged in parallel between the submerged plate 34 The overflow plate 35 and the electrode plate 37 are inserted into the holding plate 38 and the slits 40 and 41 of the rectifying plate 39 .
[0008]
Also to larger than the flow passage area of the downward flow path 8 to 10 of the flow path area the upward flow path 12-15 a. A gas zone 36 is provided in the upper part of the electrolytic cell 1 .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 7 illustrate a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an electrolytic cell for electrolyzing dilute saline to generate a hypochlorite containing 1% sodium hypochlorite. Reference numeral 2 denotes a gas discharge tube which is fixed above the electrolytic cell 1 so as to extract an electrolytic gas such as hydrogen gas generated during electrolysis of the diluted salt water from the electrolytic cell 1. Reference numeral 3 denotes a gas-liquid separator for separating the hypochlorite and the electrolytic gas to release the electrolytic gas to the atmosphere. Reference numeral 4 denotes a mist separator, which condenses water in the gas discharged from the gas-liquid separator 3 into the atmosphere and removes the water.
[0011]
As shown in FIGS. 2 to 7, the electrolytic cell 1 includes a tank main body 5 having an open upper side, and a lid 6 detachably attached to the opening side of the tank main body 5. Downward channels 7 to 11 and upward channels 12 to 15 are formed, and cooling means 16 is provided in the downward channels 8 to 10, and an electrode unit 17 is provided in the upward channels 12 to 15. Each is arranged. The lid 6 includes an inner lid 18 and an outer lid 19.
[0012]
The tank body 5 includes a bottom wall 21, a pair of side walls 22 on both sides in the width direction of the bottom wall 21, and a pair of end walls 23 on the upper and lower sides of the side wall 22. , 24, with an inlet 25 for dilute salt water on the upper end wall 23, and an outlet for hypochlorite containing sodium hypochlorite on the lower end wall 24. 26 are fixed one by one.
[0013]
The inner lid 18 is attached to and detached from the upper ends of the side walls 22 and the end walls 23 and 24 via a sealing material 27 such as an O-ring while being fitted in the outer shell 20 so as to close the upper end opening side of the tank body 5. It is mounted freely and is pressed and fixed to the tank body 5 side by the outer lid 19.
[0014]
The outer lid 19 has cutouts 28 formed at regular intervals on the peripheral edge side, and is fixed to the tank main body 5 by fastening means 29 which is detachably engaged with the cutouts 28. Each of the fastening means 29 has a lower end pivotally supported by a bracket 30 of the tank body 5 via a pivot 31 and is detachable from a notch 28, and is screwed to the fastening bolt 32; Is formed of a nut 33 and the like for tightening the lower part.
The bottom wall 21, the side walls 22, the end walls 23 and 24, and the inner lid 18 are made of an insulating synthetic resin plate or the like. The outer lid 19 may be made of a synthetic resin or stainless steel.
[0015]
As shown in FIGS. 2 to 5, a dive plate 34 for guiding the diluted salt water downward and an overflow for guiding the diluted salt water upward and overflowing the diluted salt water downstream from the upper end thereof are provided in the electrolytic cell 1. A flow plate 35 is alternately arranged four by four at a predetermined interval from the upper side to the lower side, and the submerged plate 34 and the overflow plate 35 allow the saltwater or the hypochlorite to flow downward. The passages 7 to 11 and the upward flow passages 12 to 15 through which the salt water or the hypochlorite flows upward are formed in a zigzag shape so as to be bent alternately up and down, and a gas zone 36 is provided on the upper side thereof. I have.
[0016]
There are five downward flow paths 7 to 11 in the tank body 5, and the flow area of the two downward flow paths 7 to 11 at both ends thereof is approximately the same width as the upward flow paths 12 to 15. On the other hand, the flow path area of the middle three downward flow paths 7 to 11 is larger than the flow path area of the upward flow paths 12 to 15, and the three downward flow paths 7 to 11 Cooling means 16 is arranged in 11. There are four upward channels 12 to 15 in the tank body 5, and each of the upward channels 12 to 15 is provided with an electrode unit 17 including a plurality of electrode plates 37.
[0017]
The dive plate 34, the overflow plate 35, and the electrode plate 37 are provided on the inner surface of the side wall 22 on both sides in the width direction in the electrolytic cell 1 along the flow direction, and at the center between the holding plates 38. In addition, they are supported in parallel with each other by a rectifying plate 39 disposed substantially in parallel with the holding plate 38 at a lower portion in the electrolytic cell 1. That is, the holding plate 38 has substantially the same height as each side wall 22 of the tank body 5, and the current plate 39 has a low band shape. Slits 40 and 41 are formed in correspondence with 35 and the electrode plate 37, and the dive plate 34, the overflow plate 35 and the electrode plate 37 are inserted into each of the slits 40 and 41.
[0018]
The rectifier plate 39 rectifies the diluted salt water flowing from the lower ends of the downward flow channels 7 to 11 to the upward flow channels 12 to 15 and supports each of the dive plates 34, the overflow plate 35, the electrode plate 37, and the like. In order to obtain a sufficient rectifying action with respect to the diluted salt water, a chevron 39a is formed on the upper end side in the longitudinal direction.
[0019]
The dive plate 34 and the overflow plate 35 are both made of an insulating material such as a synthetic resin plate. A predetermined gap is provided below the dive plate 34 between the bottom wall 21 so that the downward flow channels 7 to 11 and the upward flow channels 12 to 15 communicate with each other. A predetermined gap is provided above the inner cover 18 so as to form a gas passage 41 that connects the upper side and the lower side of the dive plate 34 to each other. Each overflow plate 35 is provided with its lower end in contact with the bottom wall 21 such that the lower overflow plate 35 has a lower height.
[0020]
Each cooling means 16 is for cooling the diluted salt water flowing in the downward flow paths 7 to 11, and is provided with a spirally wound cooling pipe or a cooling pipe having a large number of fins. Are supported by the lid 6 via the cooling water supply pipe 42 and the cooling water discharge pipe 43. The cooling water supply pipe 42 and the cooling water discharge pipe 43 penetrate vertically through the inner lid 18 and the outer lid of the lid 6 and are detachably fixed to the lid 6 by upper and lower stopper rings 44 and nuts 45. ing. The cooling water supply pipe 42 is connected to a cooling water supply joint 46, and the cooling water discharge pipe 43 is connected to a cooling water discharge joint 47, and supplies cooling water from the cooling water supply pipe 42 to each cooling means 16. The water is discharged from the cooling water discharge pipe 43.
[0021]
Each of the electrode units 17 is of a bipolar type and includes a plurality of, for example, four, electrode plates 37 arranged in parallel at equal intervals. Power supply rods are provided on the upper and lower electrode plates 37. 48 are connected. Each power supply rod 48 penetrates vertically through the inner lid 18 and the outer lid 19 of the lid 6 and is detachably fixed to the lid 6 by upper and lower stopper rings 49 and nuts 50. It has become. Each terminal 51 is connected by a cable 52 such that the electrode units 17 are connected in series as shown in FIGS.
[0022]
The gas discharge tube 2 is erected on the lid 6 so that the lower end communicates with the gas zone 36 in the electrolytic cell 1. At the upper end of the gas discharge tube 2, the internal pressure in the electrolytic cell 1 is constant. The relief valve 53 that operates when the ascending is performed is mounted.
[0023]
The gas-liquid separator 3 includes a cylindrical separator main body 54, a gas exhaust valve 55 mounted on an upper end of the separator main body 54, and a float 56 for opening and closing a valve body 55 a of the gas exhaust valve 55 up and down. And a gas discharge pipe 57 for releasing gas from the separator body 54 to the atmosphere when the gas exhaust valve 55 is opened. The separator body 54 has a lower end connected to the outlet 26 via a pipe joint 58 and an upper end connected to the gas discharge tube 2 via a pipe 59.
Reference numeral 64 denotes a spacer for the electrode plate 37.
[0024]
When assembling the electrolytic cell 1 in the salt water electrolysis apparatus having the above configuration, the cooling means 16 is attached to the lid 6 via the cooling water supply pipe 42 and the cooling water discharge pipe 43 of the cooling means 16, and the holding plate The dive plate 34, the overflow plate 35 and the electrode plate 37 are inserted into the slits 40 and 41 of the rectifying plate 38 and the rectifying plate 39, and the electrode unit 17 is mounted on the lid 6 via the power supply rod 48 and the like. As a result, the electrode unit 17, the cooling means 16, and the like can be mounted on the lid 6 side in a unit shape. Next, the holding plate 38 and the rectifying plate 39 are inserted into the tank main body 5, and a seal is provided on the opening side of the tank main body 5. What is necessary is just to mount the lid 6 via the material 27. Therefore, handling of the electrode unit 17, the cooling means 16, and the like is easy, and workability during assembly is significantly improved.
[0025]
After the electrode unit 17, the cooling means 16, etc. are inserted into the tank body 5 and the lid 6 is placed on the tank body 5, the lid 6 is fastened to the tank body 5 by fastening means 29 and fixed. When the cooling water supply pipe 42 and the cooling water discharge pipe 43 of the cooling means 16 and the power supply rod 48 of the electrode unit 17 are fixed to the lid 6, these are inserted into the holes of the lid 6, and the stopper ring 44, 49 is brought into contact with the lid 6 from below through an O-ring, and the nuts 45 and 50 are tightened and fixed from above. As a result, gas leakage of the electrolytic gas from the electrolytic cell 1 can be reliably prevented in spite of the internal pressure type electrolytic cell 1.
[0026]
When the hypochlorite is generated, first, a DC voltage is applied between the electrode plates 37 of each electrode unit 17 and cooling water is supplied to the cooling means 16, and in this state, a concentration of 3 to 3 is supplied from the diluted salt water supply source. About 4% of the diluted salt water is supplied to the electrolytic cell 1, and the diluted salt water is electrolyzed by each electrode unit 17 in the electrolytic cell 1.
[0027]
That is, when the diluted salt water is supplied from the inflow port 25 of the electrolytic cell 1 into the tank body 5, the salt water that has entered the tank body 5 is first guided downward by the first dive plate 34, Flows downward in the downward flow path 7. Then, the diluted salt water reaching the lower end of the first downward flow path 7 is guided upward along the first overflow plate 35, and flows upward in the first upward flow path 12. go.
[0028]
The diluted salt water that has risen in the first upward flow path 12 overflows from the upper end of the first overflow plate 35 to the second downward flow path 8 side, and this second downward flow. It flows into the second upward flow path 13 via the lower end of the flow path 8 and overflows from the upper end of the second overflow plate 35 to the third downward flow path 9 side. Hereinafter, in the same manner, the outlet 26 side through the third upward flow path 14, the fourth downward flow path 10, the fourth upward flow path 15, and the fifth downward flow path 11 It flows to.
The level of the diluted salt water in the electrolytic cell 1 is highest on the first downward flow path 7 side, and gradually decreases as it moves to the lower side.
[0029]
The diluted salt water in the electrolytic cell 1 flows from the upper side to the lower side while sequentially bending the downward flow paths 7 to 11 and the upward flow paths 12 to 15 in a zigzag manner. For this reason, compared with the case where the diluted salt water flows linearly from the inlet 25 to the outlet 26 of the electrolytic cell 1, the length of the flow path can be increased while the size of the electrolytic cell 1 is reduced.
The diluted salt water in the electrolytic cell 1 is rectified by the rectifying plate 39 when flowing from the lower end of each of the downward flow paths 7 to 11 to each of the upward flow paths 12 to 15, so that the downward flow paths 7 to 11 The flow of the diluted salt water between the upward flow paths 12 to 15 is not disturbed.
[0030]
The diluted salt water that has entered each of the upward flow paths 12 to 15 has its electrode unit 17 provided with a plurality of electrode plates 37 vertically arranged in the upward flow paths 12 to 15. The diluted salt water is guided by the respective electrode plates 37 of the unit 17, and the diluted salt water flows between the respective electrode plates 37 in an orderly and smoothly upward direction.
[0031]
Since a DC voltage is applied to each electrode unit 17 via its terminal 51 and a DC current flows between the electrode plates 37 via the diluted salt water, the diluted salt water flows through each of the upward flow paths 12 to 15. When ascending, the diluted salt water is electrolyzed by a current flowing between the electrode plates 37 of the electrode unit 17.
[0032]
At the time of this electrolysis, a gas such as hydrogen gas is generated, and the electrolysis gas flows in the same direction as the dilute salt water rising between the electrode plates 37 of the electrode unit 17, and the rising direction of the electrolysis gas and the dilute salt water Since the flow direction is the same as the forward direction, the flow of the diluted salt water is not disturbed by the electrolytic gas, and the flow of the diluted salt water flows between the respective electrode plates 37 in an orderly upward direction.
Therefore, in combination with the above-mentioned orderly and smooth flow of the diluted salt water, scaling does not occur locally on the cathode side of the electrode plate 37, and stable operation can be performed for a long period of time. Can be.
[0033]
The electrolytic gas rapidly rises in the upward flow paths 12 to 15 according to the flow of the diluted salt water. The diluted salt water that has risen in each of the upward flow paths 12 to 15 overflows from the upper end of each overflow plate 35 to the downward flow paths 7 to 11 on the lower side, and at the time of overflow, The electrolytic gas in the diluted salt water separates from the diluted salt water and accumulates in the gas zone 36 on the upper side in the electrolytic cell 1. Therefore, the electrolytic gas contained in the diluted salt water after the electrolysis can be almost completely and smoothly separated on the free water surface at the time of overflow, and the separated electrolytic gas can be stored in the gas zone 36.
[0034]
On the other hand, since the temperature of the diluted salt water rises during electrolysis in each electrode unit 17, when flowing downward in each of the downward flow paths 7 to 11, the diluted salt water is cooled by the cooling means 16 to suppress the temperature rise. Each of the downward flow paths 7 to 11 has a larger flow area than the other upward flow paths 12 to 15 and the like. The flow rate of the diluted salt water in the downward flow paths 7 to 11 can be reduced. Therefore, there is an advantage that the diluted salt water can be sufficiently cooled by the cooling means 16 and the diluted salt water can be efficiently cooled by the cooling means 16.
[0035]
Each time the electrode unit 17 performs electrolysis, the concentration of the hypochlorite increases, and when the hypochlorite reaches the fifth downward flow path 11, hypochlorite having a predetermined concentration is generated. Then, after taking out the hypochlorite from the outlet 26 to the outside of the electrolytic cell 1, the electrolytic gas in the hypochlorite is removed and separated by the gas-liquid separator 3, and the next hydrolyzate containing no electrolytic gas is removed. Sub-liquid is sent to the subsequent stage.
[0036]
In the gas-liquid separator 3, in addition to the function of separating the electrolytic gas in the hypochlorite taken out from the outlet 26, the electrolytic gas collected in the gas zone 36 in the upper part of the electrolytic cell 1 is discharged from the gas discharge tube 2 to the outside. It has a function of removing the sub-liquid in the electrolytic gas. When the gas pressure in the separator main body 54 rises, the float 56 descends and discharges gas from the gas exhaust valve 55 to the atmosphere. Then, if there is a sub-sub liquid contained in the gas in a mist state, the mist is aggregated and separated by the mist separator 4.
[0037]
The gas zone 36 is connected to the mist separator 4 via the gas discharge cylinder 2 and the gas-liquid separation stage 3 and shuts off the electrolytic gas from the outside air, so that the residual gas in the electrolytic cell 1 due to external factors such as lightning. Gas ignition can also be prevented. Further, when the operation is stopped, the electrolytic cell 1 is filled with the diluted salt water and the level is raised to the gas zone 36, so that the electrolytic gas remaining in the electrolytic cell 1 can be easily removed.
[0038]
The electrolytic cell 1 is a closed type, and the electrolytic gas accumulated in the upper gas zone 36 in the electrolytic cell 1 is exhausted to the atmosphere through the gas-liquid separator 3. By controlling the electrolytic gas pressure, the level of the diluted salt water does not increase to the gas zone 36 of the electrolytic cell 1 even when the supply destination of the hypochlorite is high. Therefore, it is possible to completely perform gas-liquid separation in the electrolytic cell 1.
Further, since the terminal 51 of each electrode unit 17, the cooling water supply pipe 42 and the cooling water discharge pipe 43 of the cooling means 16 are located above the lid 6, processing on the tank body 5 side is reduced, and the reliability of the electrolytic cell 1 is reduced. The performance is improved.
[0039]
FIG. 8 illustrates a second embodiment of the present invention, in which the number of electrode units 17 and the number of cooling means 16 in the electrolytic cell 1 are the same, and a baffle plate 61 is provided in the upper part of the electrolytic cell 1. Things.
That is, in the first embodiment, the number of the electrode units 17 is four and the number of the cooling units 16 is three. However, in the second embodiment, the number of the electrode units 17 and the number of the cooling units 16 are both three. Therefore, in the present invention, the numbers and the like of the electrode units 17 and the cooling means 16 do not have any particular problem, and may be determined as appropriate according to the concentration, temperature and the like of the hypochlorite.
[0040]
A baffle plate 61 with a hole 62 is provided in the upper part of the tank body 5, and the baffle plate 61 partitions the inside of the electrolytic cell 1 into a gas zone 36 and a lower side thereof. In this case, the baffle plate 61 can prevent the flow of the diluted salt water to the gas zone 36 side.
When the baffle plate 61 is mounted, if the upper end of each dive plate 34 is brought into contact with the baffle plate 61 and the dive plate 34 is used to support the baffle plate 61, the inside of the electrolytic cell 1 The baffle 61 can be easily provided at the bottom.
The embodiments of the present invention have been described above, but the present invention is not limited to the embodiments. For example, the electrode unit 17 may have a structure other than the bipolar structure.
[0041]
【The invention's effect】
According to the present invention, the electrode unit 17 composed of a plurality of electrode plates 37 in the electrolytic cell 1 is provided, the following sub-liquid product which is adapted to generate the next sub liquid by electrolyzing between dilute brine electrostatic electrode plate 37 in brine electrolysis device use, to the electrolytic cell 1, a submerged plate 34 for guiding the diluted salt water downwards, the overflow plate 35 to overflow the diluted brine downstream from upwardly guided by and its upper end a dilute brine The diversion plate 34 and the overflow plate 35 alternately arrange the downward flow paths 7 to 11 through which the diluted salt water flows downward and the upward flow paths 12 to 15 through which the diluted salt water flows upward from the upper side to the lower side. formed alternately in a zigzag shape toward the, the upward flow path 12 to 15, arranged electrode unit 17 in which the electrode plate 37 is vertically along the flow direction of the dilution water, downflow path 8-10 to, to place the cooling unit 16 for cooling the dilute brine in the electrolytic cell 1, it is arranged along the flow direction of the dilution water to both sides in the width direction A holding plate 38, and a rectifying plate 39 substantially arranged parallel to between the holding plate 38 at the bottom of the electrolytic cell 1, dive plate 34, overflow plate 35, holding plate 38 of the electrode plate 37, the rectifier plate 39 The slits 40 , 41 are inserted into the slits to prevent disturbance of the diluted saline solution and the electrolytic gas, and to smoothly separate the electrolytic gas from the hypochlorite, and to be compact, highly efficient and stable over a long period of time. Can drive.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a saltwater electrolysis apparatus for generating a hypochlorite according to a first embodiment of the present invention.
FIG. 2 is a sectional view of the electrolytic cell according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of the electrolytic cell according to the first embodiment of the present invention.
FIG. 4 is a sectional view taken along line AA of FIG. 2;
FIG. 5 is a side view of the electrolytic cell showing the first embodiment of the present invention.
FIG. 6 is a front view of the electrolytic cell showing the first embodiment of the present invention.
FIG. 7 is a plan view of an electrolytic cell showing the first embodiment of the present invention.
FIG. 8 is a sectional view of an electrolytic cell showing a second embodiment of the present invention.
[Description of sign]
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 5 Tank main body 6 Lids 7 to 11 Downward channels 12 to 15 Upward channels 17 Electrode unit 34 Dive plate 35 Overflow plate 36 Gas zone 37 Electrode plate 38 Holding plate 39 Rectifying plates 40, 41 Slit

Claims (3)

電解槽(1) 内に複数枚の電極板(37)からなる電極ユニット(17)を設け、希釈塩水を前記電極板(37)間で電解して次亜液を生成するようにした次亜液生成用の塩水電解装置において、前記電解槽(1) 内に、希釈塩水を下向きに案内する潜り板 (34) と、希釈塩水を上向きに案内し且つその上端から希釈塩水を下流側に溢流させる溢流板 (35) とを交互に配置して、前記潜り板 (34) と前記溢流板 (35) とにより、希釈塩水が下向きに流れる下向流路(7) 〜(11)と上向きに流れる上向流路(12)〜(15)とをその上手側から下手側に向かってジグザグ状に交互に形成し、前記上向流路(12)〜(15)に、前記電極板(37)が希釈塩水の流れ方向に沿って上下方向となる前記電極ユニット(17)を配置し、前記下向流路 (8) (10) に、希釈塩水を冷却する冷却手段 (16) を配置し、前記電解槽 (1) 内に、幅方向の両側に希釈塩水の流れ方向に沿って配置された保持板 (38) と、前記電解槽 (1) 内の下部で前記保持板 (38) 間に略平行に配置された整流板 (39) とを備え、前記潜り板 (34) 、前記溢流板 (35) 、前記電極板 (37) を前記保持板 (38) 、前記整流板 (39) のスリット (40)(41) に挿入したことを特徴とする次亜液生成用の塩水電解装置。A plurality of electrode plates of the electrode unit comprising (37) (17) provided in the electrolytic cell (1) in and by electrolyzing the diluted brine between the electrode plate (37) so as to generate the next sub liquid hypophosphorous overflowing the water electrolysis device for the liquid product, said electrolytic cell (1) in a submerged plate for guiding the diluted brine down (34), the diluted salt water downstream from upwardly guided by and its upper end a dilute brine The overflow plates (35) to be flown are alternately arranged, and the diving plate (34) and the overflow plate (35) allow the downward flow of the diluted salt water to flow downward (7) to (11). and toward upward flow path flowing upward and (12) to (15) on the downstream side from the upstream side are alternately formed in a zigzag shape, wherein the upward flow passage (12) to (15), the electrode plate (37) placing the electrode unit to be vertically along the flow direction of the dilution water (17), said downflow channel (8) to (10), cooling means (16 for cooling the dilute brine ) was placed in the electrolytic cell (1) in, Holding plate disposed along the flow direction of the dilution water on either side of the direction (38), said electrolytic cell (1) the holding plate at the bottom of the (38) arranged substantially parallel to commutation plate between (39 ), And the diving plate (34) , the overflow plate (35) , and the electrode plate (37) are inserted into the holding plate (38) and the slits (40) (41) of the rectifying plate (39). brine electrolysis apparatus for hypochlorite solution produced, characterized in that the. 前記下向流路(8) 〜(10)の流路面積を前記上向流路(12)〜(15)の流路面積よりも大にしたことを特徴とする請求項1に記載の次亜液生成用の塩水電解装置。The following claim 1, characterized in that the flow passage area of the downward flow path (8) - (10) larger than the flow passage area of the upflow channel (12) to (15) Brine electrolysis device for sub-liquid generation. 前記電解槽(1) 内の上部にガスゾーン (36) を設けたことを特徴とする請求項1又は2に記載の次亜液生成用の塩水電解装置。3. A brine electrolysis apparatus according to claim 1 or 2, wherein a gas zone (36) is provided in an upper part of the electrolyzer (1).
JP35355495A 1995-12-28 1995-12-28 Brine electrolysis equipment for hypochlorite generation Expired - Fee Related JP3597619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35355495A JP3597619B2 (en) 1995-12-28 1995-12-28 Brine electrolysis equipment for hypochlorite generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35355495A JP3597619B2 (en) 1995-12-28 1995-12-28 Brine electrolysis equipment for hypochlorite generation

Publications (2)

Publication Number Publication Date
JPH09174057A JPH09174057A (en) 1997-07-08
JP3597619B2 true JP3597619B2 (en) 2004-12-08

Family

ID=18431633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35355495A Expired - Fee Related JP3597619B2 (en) 1995-12-28 1995-12-28 Brine electrolysis equipment for hypochlorite generation

Country Status (1)

Country Link
JP (1) JP3597619B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921300B2 (en) * 1998-06-30 2007-05-30 ペルメレック電極株式会社 Hydrogen generator
US7005075B2 (en) * 2001-07-16 2006-02-28 Miox Corporation Gas drive electrolytic cell
JP2006035159A (en) * 2004-07-29 2006-02-09 Japan Organo Co Ltd Electrochemical water treatment method and apparatus
JP2007181839A (en) * 2007-04-09 2007-07-19 Sanyo Electric Co Ltd Water treatment device
JP5569511B2 (en) * 2011-12-07 2014-08-13 ダイキン工業株式会社 Electrolysis apparatus and heat pump water heater provided with the same
JP2015192968A (en) * 2014-03-31 2015-11-05 Toto株式会社 Sterilizing water generator
BG111782A (en) * 2014-06-27 2016-01-29 "Хидродженика Корпорейшън" Оод OXIDIZED GENERATOR AND METHOD FOR OBTAINING OXYGEN GAS

Also Published As

Publication number Publication date
JPH09174057A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
ES2199557T3 (en) METHOD AND APPARATUS FOR THE ELECTROCOAGULATION OF LIQUIDS.
FI68266C (en) APPARATUS FOER TILLVERKNING AV SODIUM HYPOCHLORITE
JP2008013821A (en) Combustion gas generator and on-board combustion gas generator utilizing electrolysis
TW201923153A (en) Electrolytic biocide generating system for use on-board a watercraft
JP3597619B2 (en) Brine electrolysis equipment for hypochlorite generation
CN110484928A (en) A kind of vertical sodium hypochlorite electrolytic cell
JP5069292B2 (en) Equipment for electrochemical water treatment
CN101932755B (en) A hydrogen generator
JPH0673587A (en) Preparation of fluorine and electrolytic cell for fluorine manufacturing
US4005014A (en) Water treatment system with prolonged aeration
CZ20002186A3 (en) Water treatment plant
US7955481B2 (en) Internal flow control in electrolytic cells
CN218306740U (en) Gas-water separation device
JP2011099165A (en) Electrolyzer using electrolysis
US20240167180A1 (en) Method for Treating Process Fluids, and Filter Device for Carrying Out the Method
KR101782356B1 (en) Electrode module for water treatment and system for water treatment using the same
KR101762904B1 (en) Electrolytic cell and device for supplying hydrogen-oxygen using the electrolytic cell and electrolytic solution rotation unit
US4107020A (en) Vertical elecrolytic cells
JP2013128890A (en) Oil-water separator and drain water purification system
US20100133097A1 (en) Hydrogen rich gas generator
JPH0157469B2 (en)
JP2794651B2 (en) Direct electrolysis type electrolysis tank
CN216192755U (en) Electrolysis trough gas-liquid divides to guiding device for sodium hypochlorite generator
KR20020017734A (en) Apparatus for generating a hydrogen gas and oxygen gas
CN212810972U (en) Photovoltaic box transformer substation of water floating platform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees