JP3597440B2 - Electron beam drawing method and apparatus - Google Patents

Electron beam drawing method and apparatus Download PDF

Info

Publication number
JP3597440B2
JP3597440B2 JP2000078574A JP2000078574A JP3597440B2 JP 3597440 B2 JP3597440 B2 JP 3597440B2 JP 2000078574 A JP2000078574 A JP 2000078574A JP 2000078574 A JP2000078574 A JP 2000078574A JP 3597440 B2 JP3597440 B2 JP 3597440B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
pattern
focusing
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000078574A
Other languages
Japanese (ja)
Other versions
JP2001267231A (en
Inventor
光二 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000078574A priority Critical patent/JP3597440B2/en
Publication of JP2001267231A publication Critical patent/JP2001267231A/en
Application granted granted Critical
Publication of JP3597440B2 publication Critical patent/JP3597440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、電子線描画方法、特に微細な線を広い面積にわたり描画するのに適した電子線描画方法およびこの方法を実施する装置に関する。
【0002】
【従来の技術】
多くの電子デバイスは、半導体、音響機能材料の基板の表面に微細なパターンを作製して形成される。このパターンの所望位置に金属、絶縁物、不純物を注入、拡散、被覆等の処理を行う。このような微細加工技術は近年作製できるパターンが著しく微細になり、電子の振る舞いが量子効果を呈する量子井戸構造を取り扱うところまでになっている。このような数十ナノメータの領域での微細パターンの作製は電子線描画でしか達成することができない。
【0003】
周知のように、電子線描画では電子線で非常に微細なスポットを形成し、これを基板もしくは所定のレジスト膜に当てる所謂電子線露光を行って必要なマスクパターンを形成する。しかし、この微細なビームを試料面上で広い範囲に掃引して位置的に精密なパターンを形成する場合、最大掃引範囲に制限がある。特に、電子線の位置が電子線集束レンズ系や電子線偏向系の光軸を外れると、所謂軸外収差が発生し、この光軸からの偏差が大きくなるに従い収差は急激に大きくなる。この収差は試料面の照射位置に歪みを与えるだけでなく、電子線の集束点の大きさも歪め、電子線が光軸を外れに従い集束点が大きくぼけ、作製すべきパターンに使用に耐えないぼけも与える。
【0004】
それ故、電子線描画では比較的広い範囲のパターンを作製する場合、ラスター走査であれ、ベクトル走査であれ、一回の照射範囲(以下フィールドと称する)を、例えば特定な広さの正方形とし、このフィールドを順繋ぎ合わせて所要な広さのパターンを形成する(例えば、徳山巍編、「超微細加工技術」(応用物理学シリーズ),オーム社、平成9年2月25日発行を参照)。ここで、一般的に採用されている繋ぎ合わせ方式によるパターン形成を図1に基づき説明する。
【0005】
図1aに示すように、試料10にn×m個のフィールドAij(i = 1, 2, ..., n ; j = 1, 2, ..., m)を隙間なく配置する。それには、隣接するフィールドが互いに丁度接するように、試料10を載せた試料台(図示せず)を逐次移動させる。このような二つのフィールドの境界αを通過するパターンは、例えば図1bに示すよう、フィールドA22,A23の中心C22とC23を結ぶ線上でフィールドA22側の線分軌跡L20とフィールドA23側の線分軌跡L21は垂直方向(境界線BCの方向)に生じるずれが極度に少ないか殆どないため、点Bで合体して一本の線として描画できる。しかし、境界線BCの上部では軸外収差が完全に光軸の中心(C23,C22)に対称でないため、線分L10とL11は点BとB′で示す位置に形成され、垂直方向にずれB′が生じる。
【0006】
現在市販されている最高性能の電子線描画装置には軸外収差を補償する補助装置が設けてあり、現在主流になっているサブミクロンの領域でのパターン形成では、隣接するフィールドの境界上でパターンに目立つ不一致を与えていない。もっとも、試料台を移動する場合、照射系や移動台の駆動部の予備調整、例えば識別マーク位置の計測と位置設定の準備作業には相当な時間を要する。
【0007】
これに反して、量子細線のような幅が 10 nm程度の線分を試料面上の広い範囲で描画する場合には、上に述べたように、サブミクロン領域の軸外収差の影響を補償したとしても、ナノメータの範囲のずれを除去できる程度に補償装置が完成されていない。ずれの影響を無視できる程度にするには少なくとも 1 nm 程度のずれまで低減させる必要がある。その外、集束点の形状も通常円形でなく、流星状とか不規則な形状になる。このような電子線の集束点の「ぼけ」も境界線の近くで充分に修正できない。
【0008】
細線構造内の電子の一次元的な振る舞いを知るために作製されるパターンの典型的な例を図2aに示す。試料表面に電極E,E,Eを設け、電極EとEまたはEの間に幅が 10 nm程度の直線状の細線LとLを形成する。更に、類似の細線構造は図2bに示すような電極G,G,Gの間で曲線Lを呈するものや、細線L,L,Lの間に結合点(ノード)Kを含むものも考えられる。電極自体は大体 500μm × 500μm 程度の大きさであるが、細線の長さは数 mm から十数 mm にする。使用するフィールドは通常の電子線描画装置の場合 10 μm × 10 μm 〜 1000 μm × 1000 μm であるから、上記の長さの細線を作製するため前記の繋ぎ合わせ方式を採用すると、数十回または 100回程度フィールドを繋ぎ合わせる必要がある。しかし、上で詳しく説明したように、一回の繋ぎ合わせ時に既にフィールドの境界で大きなずれ(横ずれ)やぼけ(電子線の集束点の拡がり)が生じるので、このような多数回の繋ぎ合わせを行うと使用に耐えないパターンとなる。
【0009】
なお、電子線とレジストの電子露光反応は常時一定に維持する必要がある。描画時に細線上を移動する電子線の速度は比較的遅い。例えば、レジスト材として日本ゼオン製のZEP 520を 0.15 μm の厚さで塗布した基板の場合、電子線の加速電圧が 20 kVで、ビーム電流が 10 pAであると、レジストを電子露光するのに適した電子線の速度は試料面上で 1.5 mm/s である。そのような一定速度をどのような図形の場合でも、つまり図形のパターンが直線の場合でも曲線の場合でも常時維持できる必要がある。
【0010】
【発明が解決しようとする課題】
この発明の課題は、フィールド繋ぎ合わせ方式で生じる線分のずれや集束点のずれが生じない、極度に細い線分を描画できる電子線描画方法およびこの方法を実施できる装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題は、この発明により、電子線の集束系および偏向系を含む電子線集束掃引装置を用いて試料の表面に電子線を当てて所定の図形パターンを描く電子線描画方法にあって、以下の過程、
・試料が静止している状態で電子線が試料台上の試料表面の特定な個所に常時集束するように集束系を制御し、
・集束系の上記制御状態の下で電子線が試料の表面上を移動して前記図形パターンを描くよう試料台を移動させ、
・その時の試料台の実際の位置を測定し、
・前記図形パターンに対応する試料台の目標位置と前記実際の位置の偏差を求め、
・上記偏差が常時零となるように偏向系を用いて試料表面上の電子線を偏向させる、
を実施することにより解決されている。
【0012】
更に、上記の課題は、この発明により、電子線の集束系及び偏向系を含む電子線集束掃引装置を用いて試料の表面に電子線を当てて所定の図形パターンを描く電子線描画装置にあって、
・試料を載せる試料台20と、
・前記試料台20を直交する2つの方向X,Yに移動させる送り装置MX ,MY と、
・請求項1又は2の方法を実施するため電子線及び試料台(20)を制御する制御プログラムを保管する記憶器32と、
・前記プログラムにしたがって電子線描画処理を実施するための演算処理部30とを備えていることにより解決されている。
【0013】
この発明による他の有利な構成は特許請求の範囲の従属請求項に記載されている。
【0014】
【発明の実施の形態】
以下、図面に基づきこの発明による電子線描画方法とその装置を詳しく説明する。
【0015】
図3にこの発明による装置の主要機能要素の配置を示す。例えば電子線レジストを塗布した基板の試料10は試料移動台20の上に固定されている。この試料移動台20には基台(図示せず)に対して試料移動台20を互いに直交する二つの方向X,Yにそれぞれ相対移動させる二つの送り装置MX,と、その時の相対移動量を計測するための二つの位置検出器SX,とが装備されている。
【0016】
距離信号発生回路50は位置検出器SX,の検出信号からその時の相対移動量を算出して、数値演算機能を持つ中央演算部30に受け渡す。この中央演算部30にはパターン図形を予めプログラムして保管する記憶部32が内蔵されている。更に、中央演算部30にはパターン軌道の数値、制御信号等を入力でき、結果を印字もしくはディスプレーに表示できる入出力・表示ユニットが接続している。記憶部32に保管されている目標軌道に従い中央演算部30は送り装置MX,用の駆動回路DRX,DRへ駆動信号を送り、送り装置MX,の動作に応じて移動台20を指定された位置へ移動させる。その場合、位置検出器SX,および距離信号発生回路50により求まった実際軌道と目標軌道を一致させるような帰還回路が中央演算部30により形成されている。
【0017】
更に、中央演算部30には電子線を発生させて掃引するため、走査電子顕微鏡の機能を有する電子線掃引装置80が付属している。この装置自体の説明は省くが、この発明で重要となる偏向コイルSCとブランキングユニットBLKのみを模式的に示す。中央演算部30中の記憶部32に保管されている描画すべき目標軌跡の図形プログラムに従い、中央演算部30は偏向駆動回路60を介して電子線を偏向させる駆動信号を偏向コイルSCへ送り、ブランキング駆動回路70を介して電子線を試料に照射させるかさせないかを決めるブランキング駆動信号をブランキングユニットBLKへ送る。
【0018】
この発明では、図形パターンが比較的単純であって、走査領域が比較的広い場合、先に詳しく説明したフィールド繰り返し方式の難点を避けるため、図4aに示すように電子線を対物レンズLNで絞り込み試料10の表面の位置Pに定在させたまま、試料10の載っている試料台20を例えば矢印AAの所要方向に移動させる。この時の状況を図4bに従って説明する。送り装置MX,を用いて中央演算部30で指定された目標軌跡TRに沿って試料10を矢印AAの方向に移動させると、電子線照射により試料10の表面にハッチングを付けたパターンLが生じる。今照射している時点をtとすると、右にあるパターンLはこの時点t以前の例えば時点t(t>t)に照射されたものである。
【0019】
実際には、中央演算部30が送り装置MX,を目標軌跡プログラム通りに駆動しても、種々の事情により実際の移動位置と指定位置の間に偏差δが生じる。実際の位置TRは位置検出器SX,で検知され、検出信号に基づき距離信号発生回路50で系の基準位置(例えば集束レンズ系の光軸)に対する絶対位置として算出される。中央演算部30は目標位置TRと実際の位置TRの偏差δを算出して、掃引中この偏差δを常時零とするように偏向コイルSCに偏向駆動信号を送って電子線の照射位置を補正する。電子線偏向系と位置検出系の応答速度は送り装置MX,の応答速度より早いので、上に述べた帰還制御により実用上常時偏差δ=0とする軌跡を描画することができる。なお、説明の都合上偏差δは目標軌跡TRの接線方向に垂直な成分のみで説明したが、実際には接線方向の成分も含む。
【0020】
送り装置MX,は機械的な動きを電気的に微調整できる電動機、例えば汎用されているステッピングモータ、あるいは機械的な共振を使用する共振型超音波モータ(例えば特開平11−15530号公報)あるいは圧電素子で電気的な応力を発生させて移動量に変換する非共振型超音波モータ(例えば特公平3−81119号公報)を使用して実現できる。
【0021】
位置検出器SX,は必要とするパターンの微細さに依存し、10 nm の範囲のパターンを描画する場合には、少なくとも 1 nm の位置分解能を保証するレーザー干渉計を使用すべきである。また、サブミクロンの範囲の描画であれば、光電増分式リニヤエンコーダ等も使用できる。
【0022】
この発明の方法は、走査顕微鏡の機能を犠牲にしないように、通常の描画処理を行う電子線描画装置に付加する装置として導入すれば、電子線を目標軌道に追従させる演算処理のプログラム処理により大幅な改造もしくは変更なしに実現できる。何れにしても、ナノメータ領域の描画に加えて、通常のパターンをフィールド繋ぎ合わせ方式を利用する描画処理も必要な時に実行できるからである。
【0023】
10 nm の領域の電子線描画を目指せば、試料のレジストの材質、厚さ、レジストを塗布する下地(基板)の材料に関する選定や電子の加速電圧、照射電流密度、電子銃の輝度等にも充分な配慮が必要である。この発明によれば、電子線を 10 nmまたはそれ以下に絞って試料面に照射する必要がある。それには、試料面上の電子線の集束位置が対物レンズLNの光軸上となるように照射位置を選定し、作動距離(working distance) をできる限り短くして電子線を照射する。このような集束偏向条件では、フィールドAの許容範囲は必然的に狭くなる。それ故、仮に従来のフィールド繋ぎ合わせ方式を踏襲すれば、繋ぎ合わせ回数が著しく増加し、処理時間が増大する。しかし、この発明ではフィールドの繋ぎ合わせを採用していないので、作動距離、言い換えれば対物レンズLNと試料表面の間の距離を充分短くすることができる。このような処置は、対物レンズLNと試料面の間での電子線の外部電磁場による影響を少なめ、同時に対物レンズLNの漏れ磁場によるシールド作用により電子線の振れ(実質上電子線の集束点のぼけとなる)を著しく低減するという利点もある。
【0024】
【発明の効果】
以上、説明したように、この発明の電子線描画方法およびその装置により、フィールド繋ぎ合わせ方式で生じる線分のずれや集束点のずれが生じない、極度に細い線分を描画できる。特に、送り装置と位置検出装置が既に装備されている電子線描画装置では中央演算処理部のプログラム対応にこの発明を簡単に実現できる。
【図面の簡単な説明】
【図1】フィールド継ぎ合わせ方式による電子線描画を説明する模式図、(a)全体配置を示す図面、(b)境界を拡大した図面、
【図2】電子線描画における代表的な二つの図形を示す図面、
【図3】電子線描画装置の主要機能構成を示すブロック図、
【図4】電子線を照射する配置を示す模式図(a)と掃引軌跡の修正を説明する模式図(b)である。
【符号の説明】
10 試料
20 試料台
30 中央演算部
32 記憶部
80 電子線掃引装置
A フィールド
B 接続点
C フィールドの中心
L 描画軌跡
E,G 電極
X, 位置検出器
X, 送り装置
[0001]
[Industrial applications]
The present invention relates to an electron beam lithography method, and more particularly to an electron beam lithography method suitable for drawing a fine line over a large area and an apparatus for implementing the method.
[0002]
[Prior art]
Many electronic devices are formed by forming a fine pattern on the surface of a substrate made of a semiconductor or an acoustic functional material. Processing such as injection, diffusion, and coating of a metal, an insulator, or an impurity is performed at a desired position of the pattern. In recent years, such microfabrication techniques have made patterns that can be produced extremely fine, and the behavior of electrons has reached the point of handling a quantum well structure exhibiting a quantum effect. Fabrication of a fine pattern in such a region of several tens of nanometers can be achieved only by electron beam drawing.
[0003]
As is well known, in electron beam lithography, a very fine spot is formed with an electron beam, and a necessary mask pattern is formed by performing so-called electron beam exposure in which the spot is applied to a substrate or a predetermined resist film. However, in the case where the fine beam is swept over a wide range on the sample surface to form a positionally precise pattern, the maximum sweep range is limited. In particular, when the position of the electron beam deviates from the optical axis of the electron beam focusing lens system or the electron beam deflecting system, a so-called off-axis aberration occurs, and the aberration increases rapidly as the deviation from the optical axis increases. This aberration not only distorts the irradiation position on the sample surface, but also distorts the size of the electron beam focusing point.The electron beam deviates from the optical axis, and the focusing point is greatly blurred. Also give.
[0004]
Therefore, in the case of producing a relatively wide range of patterns in electron beam lithography, one irradiation range (hereinafter, referred to as a field) is set to, for example, a square of a specific size, whether raster scanning or vector scanning. These fields are connected in order to form a pattern of the required size (for example, see Wei Tokuyama, "Ultra-fine processing technology" (Applied Physics Series), Ohmsha, published February 25, 1997) . Here, pattern formation by a generally adopted joining method will be described with reference to FIG.
[0005]
As shown in FIG. 1a, n × m fields A ij (i = 1, 2,..., N; j = 1, 2,..., M) are arranged on the sample 10 without gaps. To do this, the sample stage (not shown) on which the sample 10 is placed is sequentially moved so that the adjacent fields just touch each other. Pattern passes through the boundary α of such two fields, for example as shown in 1b, the field A22, A23 line trajectory L 20 and field A23 side on a line connecting the centers C22 and C23 of the field A22 side of the line since partial path L 21 has little or extremely small shift caused in the vertical direction (direction of the border line BC), it can be drawn as a single line coalesce at point B 0. However, since the off-axis aberration is not completely symmetrical with respect to the center of the optical axis (C 23 , C 22 ) above the boundary line BC, the line segments L 10 and L 11 are formed at the positions indicated by the points B 1 and B 1 ′. And a shift B 1 B 1 ′ occurs in the vertical direction.
[0006]
The highest-performance electron beam lithography systems currently on the market are equipped with auxiliary devices that compensate for off-axis aberrations. Does not give any noticeable mismatch in the pattern. However, when the sample stage is moved, a considerable amount of time is required for preliminary adjustment of the irradiation system and the drive unit of the movable stage, for example, the preparation of the identification mark position measurement and position setting.
[0007]
On the other hand, when a line segment having a width of about 10 nm, such as a quantum wire, is drawn over a wide area on the sample surface, as described above, the influence of off-axis aberration in the submicron region is compensated for. Even so, a compensator has not been completed to such an extent that a displacement in the nanometer range can be removed. In order to make the influence of the shift negligible, it is necessary to reduce the shift to at least about 1 nm. In addition, the shape of the convergence point is not usually circular, but becomes a meteor or irregular shape. Such "blur" of the focal point of the electron beam cannot be sufficiently corrected near the boundary.
[0008]
A typical example of a pattern created to know the one-dimensional behavior of electrons in a fine wire structure is shown in FIG. 2a. Electrodes E 1 , E 2 , E 3 are provided on the sample surface, and linear thin lines L 1 and L 2 having a width of about 10 nm are formed between the electrodes E 1 and E 2 or E 3 . Further, a similar fine wire structure has a curve L 3 between the electrodes G 1 , G 2 , G 3 as shown in FIG. 2B, and a connection point (node) between the fine wires L 4 , L 5 , L 6. Those containing K are also conceivable. The electrode itself has a size of about 500 μm × 500 μm, and the length of the fine wire is set to several mm to several tens of mm. Since the field to be used is 10 μm × 10 μm to 1000 μm × 1000 μm in the case of a normal electron beam lithography apparatus, if the above-described joining method is used to produce a thin line having the above length, it takes several tens of times or It is necessary to join the fields about 100 times. However, as described in detail above, a large shift (lateral shift) or blur (expansion of the focusing point of the electron beam) already occurs at the boundary of the field at the time of one connection. Doing so results in a pattern that cannot be used.
[0009]
It is necessary to keep the electron exposure reaction between the electron beam and the resist constant at all times. The speed of an electron beam moving on a fine line during drawing is relatively slow. For example, in the case of a substrate coated with Zeon 520 manufactured by Zeon as a resist material at a thickness of 0.15 μm, if the acceleration voltage of the electron beam is 20 kV and the beam current is 10 pA, the resist is electronically exposed. The speed of the electron beam suitable for this is 1.5 mm / s on the sample surface. It is necessary to be able to maintain such a constant speed regardless of the shape of the figure, that is, whether the figure pattern is a straight line or a curve.
[0010]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an electron beam drawing method capable of drawing an extremely thin line segment without causing a shift of a line segment or a shift of a focal point caused by a field joining method, and an apparatus capable of performing the method. .
[0011]
[Means for Solving the Problems]
According to the present invention, there is provided an electron beam drawing method for drawing a predetermined figure pattern by applying an electron beam to a surface of a sample using an electron beam focusing and sweeping apparatus including an electron beam focusing system and a deflection system, The following process,
-Control the focusing system so that the electron beam is always focused on a specific location on the sample surface on the sample stage while the sample is stationary,
Moving the sample stage so that the electron beam moves on the surface of the sample under the control state of the focusing system and draws the figure pattern,
・ Measure the actual position of the sample stage at that time,
Calculating a deviation between the target position of the sample table corresponding to the graphic pattern and the actual position,
Deflecting the electron beam on the sample surface using a deflecting system so that the above deviation is always zero,
Has been solved.
[0012]
Further, according to the present invention, there is provided an electron beam writing apparatus which draws a predetermined figure pattern by applying an electron beam to a surface of a sample using an electron beam focusing and sweeping apparatus including an electron beam focusing system and a deflection system. hand,
A sample stage 20 on which a sample is placed;
· Two directions X perpendicular to the sample stage 20, feeder M X moved in Y, and M Y,
A storage 32 for storing a control program for controlling the electron beam and the sample stage (20) for performing the method of claim 1 or 2;
The problem is solved by including the arithmetic processing unit 30 for performing the electron beam drawing processing according to the program.
[0013]
Other advantageous configurations according to the invention are set out in the dependent claims.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an electron beam drawing method and apparatus according to the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 3 shows the arrangement of the main functional elements of the device according to the invention. For example, a sample 10 of a substrate coated with an electron beam resist is fixed on a sample moving table 20. Two directions X this is the sample moving stage 20 which are perpendicular to each other the sample moving stage 20 relative to the base (not shown), two feeder respectively are moved relative to the Y M X, and M Y, relative at that time two position detector S X for measuring the amount of movement, and the S Y is equipped.
[0016]
Distance signal generating circuit 50 is a position detector S X, calculates the amount of relative movement at that time from the detection signal of S Y, delivered to the central processing unit 30 with a math function. The central processing unit 30 has a built-in storage unit 32 for pre-programming and storing pattern figures. Further, the central processing unit 30 is connected to an input / output / display unit capable of inputting a numerical value of a pattern trajectory, a control signal, and the like, and printing or displaying the result on a display. The central processing unit 30 in accordance with the desired trajectory that is stored in the storage unit 32 sends apparatus M X, the drive circuit DR X for M Y, sends a drive signal to the DR Y, according to the operation of the feed device M X, M Y The mobile platform 20 is moved to a designated position. In that case, the position detector S X, a feedback circuit such as to match the actual trajectory and the target trajectory Motoma' by S Y and the distance signal generator circuit 50 is formed by the central processing unit 30.
[0017]
Further, the central processing unit 30 is provided with an electron beam sweeping device 80 having a function of a scanning electron microscope for generating and sweeping an electron beam. Although the description of the device itself is omitted, only the deflection coil SC and the blanking unit BLK, which are important in the present invention, are schematically shown. The central processing unit 30 sends a drive signal for deflecting the electron beam to the deflection coil SC via the deflection drive circuit 60 in accordance with the graphic program of the target trajectory to be drawn stored in the storage unit 32 in the central processing unit 30, A blanking drive signal is sent to the blanking unit BLK via the blanking drive circuit 70 to determine whether the sample is irradiated with an electron beam.
[0018]
According to the present invention, when the graphic pattern is relatively simple and the scanning area is relatively large, the electron beam is narrowed by the objective lens LN as shown in FIG. while keeping standing at the position P B of the surface of the sample 10, to move the sample stage 20 resting the sample 10, for example, in the required direction of arrow AA. The situation at this time will be described with reference to FIG. Feeder M X, moving the sample 10 along the target locus TR 0 specified by the central processing unit 30 in the direction of arrow AA by using the M Y, and hatching the surface of the sample 10 by electron beam irradiation pattern L a occurs. When the time of irradiating now to t 0, the pattern L a on the right are those irradiated to the point t 0 previous example time t 1 (t 1> t 0 ).
[0019]
In practice, device M X central processing unit 30 sends, be driven M Y to the target locus as programmed, deviation δ is generated between the actual moving position and the position specified by various circumstances. The actual position TR 1 is position detector S X, is detected by the S Y, is calculated as an absolute position relative to a reference position of the system at a distance signal generation circuit 50 based on the detection signal (e.g., the optical axis of the focusing lens system). The central processing unit 30 calculates a deviation δ between the target position TR 0 and the actual position TR 1 , and sends a deflection drive signal to the deflection coil SC so that the deviation δ is always zero during the sweeping, and sends an electron beam irradiation position. Is corrected. Since the response speed of the position detection system and an electron beam deflection system is faster than the response speed of the feed device M X, M Y, it is possible to draw a trajectory and practically always deviation [delta] = 0 by the feedback control described above. Although convenience deviation δ description has been given only by component perpendicular to the tangential direction of the target locus TR 0, in practice also includes tangential component.
[0020]
Feeder M X, M Y a mechanical motor capable of electrically tweak the motion, for example, a stepping motor has been widely or resonant to use mechanical resonance ultrasonic motor (for example, Japanese Unexamined Patent Publication No. 11-15530, Publication) or a non-resonant ultrasonic motor (for example, Japanese Patent Publication No. 3-81119) that generates an electric stress by a piezoelectric element and converts it into a movement amount.
[0021]
The position detectors S X and S Y depend on the required fineness of the pattern. When writing a pattern in the range of 10 nm, a laser interferometer that guarantees a position resolution of at least 1 nm should be used. is there. For writing in the submicron range, a photoelectric incremental linear encoder or the like can be used.
[0022]
If the method of the present invention is introduced as a device to be added to an electron beam lithography device that performs a normal drawing process so as not to sacrifice the function of a scanning microscope, it can be implemented by a program process of an arithmetic process for causing an electron beam to follow a target trajectory. It can be realized without major modifications or changes. In any case, in addition to drawing in the nanometer region, a drawing process using a field joining method of a normal pattern can be executed when necessary.
[0023]
Aiming to draw an electron beam in the 10 nm area, the selection of the material and thickness of the resist of the sample, the material of the base (substrate) on which the resist is applied, the acceleration voltage of electrons, the irradiation current density, the brightness of the electron gun, etc. Careful consideration is needed. According to the present invention, it is necessary to irradiate the sample surface with the electron beam focused to 10 nm or less. For this purpose, the irradiation position is selected so that the focused position of the electron beam on the sample surface is on the optical axis of the objective lens LN, and the working beam is irradiated with the working distance as short as possible. Under such focusing and deflection conditions, the allowable range of the field A is necessarily narrowed. Therefore, if the conventional field joining method is followed, the number of joining times increases significantly and the processing time increases. However, since the present invention does not employ the joining of fields, the working distance, in other words, the distance between the objective lens LN and the sample surface can be sufficiently reduced. Such a treatment reduces the influence of the external electromagnetic field of the electron beam between the objective lens LN and the sample surface, and at the same time, the deflection of the electron beam (substantially the focusing point of the electron beam due to the shielding action of the objective lens LN due to the leakage magnetic field). This also has the advantage of significantly reducing blurring).
[0024]
【The invention's effect】
As described above, the electron beam drawing method and apparatus according to the present invention can draw extremely thin line segments that do not cause line segment shift or focus point shift caused by the field joining method. In particular, in an electron beam lithography apparatus already equipped with a feeder and a position detector, the present invention can be easily realized in accordance with the program of the central processing unit.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating electron beam drawing by a field joining method, (a) a diagram showing an overall arrangement, (b) a diagram enlarging a boundary,
FIG. 2 is a drawing showing two typical figures in electron beam drawing;
FIG. 3 is a block diagram showing a main functional configuration of the electron beam drawing apparatus;
FIGS. 4A and 4B are a schematic diagram illustrating an arrangement for irradiating an electron beam and a schematic diagram illustrating correction of a sweep locus.
[Explanation of symbols]
Reference Signs List 10 Sample 20 Sample stage 30 Central processing unit 32 Storage unit 80 Electron beam sweeper A Field B Connection point C Center of field L Drawing trajectory E, G Electrode S X, S Y position detector M X, M Y feeder

Claims (7)

電子線の集束系および偏向系を含む電子線集束掃引装置を用いて試料の表面に電子線を当てて所定の図形パターンを描く電子線描画方法において、以下の過程、
・試料が静止している状態で電子線が試料台上の試料表面の特定な個所に常時集束するように集束系を制御し、
・集束系の上記制御状態の下で電子線が試料の表面上を移動して前記図形パターンを描くよう試料台を移動させ、
・その時の試料台の実際の位置を測定し、
・前記図形パターンに対応する試料台の目標位置と前記実際の位置の偏差を求め、
・上記偏差が常時零となるように偏向系を用いて試料表面上の電子線を偏向させる、
を実施することを特徴とする電子線描画方法。
In an electron beam drawing method of drawing a predetermined figure pattern by applying an electron beam to the surface of a sample using an electron beam focusing and sweeping apparatus including an electron beam focusing system and a deflection system, the following steps
-Control the focusing system so that the electron beam is always focused on a specific location on the sample surface on the sample stage while the sample is stationary,
Moving the sample stage so that the electron beam moves on the surface of the sample under the control state of the focusing system and draws the figure pattern,
・ Measure the actual position of the sample stage at that time,
Calculating a deviation between the target position of the sample table corresponding to the graphic pattern and the actual position,
Deflecting the electron beam on the sample surface using a deflecting system so that the above deviation is always zero,
Electron beam drawing method characterized by performing.
電子線の集束位置を対物レンズの光軸上に選び、試料台ができる限り短い作動距離となる位置で電子線描画を行うすることを特徴とする請求項1に記載の電子線描画方法。2. The electron beam drawing method according to claim 1, wherein the focusing position of the electron beam is selected on the optical axis of the objective lens, and the electron beam is drawn at a position where the working distance of the sample stage is as short as possible. 電子線の集束系及び偏向系を含む電子線集束掃引装置を用いて試料の表面に電子線を当てて所定の図形パターンを描く電子線描画装置において、
・試料(10)を載せる試料台(20)と、
・前記試料台(20)を直交する2つの方向X,Yに移動させる送り装置(MX ,MY )と、
・請求項1又は2の方法を実施するため電子線及び試料台(20)を制御する制御プログラムを保管する記憶器(32)と、
・前記プログラムにしたがって電子線描画処理を実施するための演算処理部(30)と、を備えていることを特徴とする電子線描画装置。
In an electron beam drawing apparatus that draws a predetermined figure pattern by applying an electron beam to the surface of a sample using an electron beam focusing and sweeping apparatus including an electron beam focusing system and a deflection system,
A sample stage (20) on which the sample (10) is placed;
A feed device (M X , M Y ) for moving the sample stage (20) in two orthogonal directions X and Y;
A storage (32) for storing a control program for controlling the electron beam and the sample stage (20) for performing the method of claim 1 or 2;
An electron beam lithography apparatus comprising: an arithmetic processing unit (30) for performing an electron beam lithography process according to the program.
送り装置(MX ,MY )は、ステッピングモータであることを特徴とする請求項3に記載の電子線描画装置。The electron beam lithography apparatus according to claim 3, wherein the feeding device (M X , M Y ) is a stepping motor. 送り装置(MX,)は共振型超音波モータあるいは非共振型超音波モータであることを特徴とする請求項3に記載の電子線描画装置。The electron beam lithography apparatus according to claim 3, wherein the feed device (MX , MY ) is a resonance type ultrasonic motor or a non-resonance type ultrasonic motor. 送り装置(MX,)は非共振型超音波モータであることを特徴とする請求項3に記載の電子線描画装置。The electron beam lithography apparatus according to claim 3, wherein the feeding device (MX , MY ) is a non-resonant ultrasonic motor. 位置検出器(SX,)はレーザー干渉計であることを特徴とする請求項3〜6の何れか1項に記載の電子線描画装置。The electron beam lithography apparatus according to any one of claims 3 to 6, wherein the position detector (SX , SY ) is a laser interferometer.
JP2000078574A 2000-03-21 2000-03-21 Electron beam drawing method and apparatus Expired - Fee Related JP3597440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078574A JP3597440B2 (en) 2000-03-21 2000-03-21 Electron beam drawing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078574A JP3597440B2 (en) 2000-03-21 2000-03-21 Electron beam drawing method and apparatus

Publications (2)

Publication Number Publication Date
JP2001267231A JP2001267231A (en) 2001-09-28
JP3597440B2 true JP3597440B2 (en) 2004-12-08

Family

ID=18595965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078574A Expired - Fee Related JP3597440B2 (en) 2000-03-21 2000-03-21 Electron beam drawing method and apparatus

Country Status (1)

Country Link
JP (1) JP3597440B2 (en)

Also Published As

Publication number Publication date
JP2001267231A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
US6864488B2 (en) Charged particle beam exposure method and apparatus
JP5090887B2 (en) Drawing method for electron beam drawing apparatus and electron beam drawing apparatus
JP2001273861A (en) Charged beam apparatus and pattern incline observation method
JP3932894B2 (en) Electron beam equipment
JPH10214779A (en) Electron beam exposure method and fabrication of device using that method
JP6013089B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
JP4092280B2 (en) Charged beam apparatus and charged particle detection method
JP3993334B2 (en) Charged beam lithography system
JP3862639B2 (en) Exposure equipment
JPS58190028A (en) Charged particle beam exposure device using variable line scanning
JP2013219085A (en) Lithography device, lithography method, and manufacturing method of article
US4393312A (en) Variable-spot scanning in an electron beam exposure system
US4891524A (en) Charged particle beam exposure system and method of compensating for eddy current effect on charged particle beam
JP2946537B2 (en) Electron optical column
JP3597440B2 (en) Electron beam drawing method and apparatus
JP4439038B2 (en) Electron beam exposure method and apparatus
JP2007048805A (en) Electron beam equipment
JP2003051435A (en) Electron beam lithography system and electron microscope
JP3357874B2 (en) Electron beam writing apparatus and electron beam writing method
JP3529997B2 (en) Charged particle beam optical element, charged particle beam exposure apparatus and adjustment method thereof
JP2007042514A (en) Stage and correction method of stage stop position
JP2712487B2 (en) Electron beam exposure apparatus and electron beam exposure method
JP7477364B2 (en) Multi-beam image generating device and multi-beam image generating method
JP2010135248A (en) Evaluation substrate of charged particle beam
JP3242481B2 (en) Charged particle beam exposure method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees