JP3597378B2 - Pressurization control method for electric spot welder - Google Patents

Pressurization control method for electric spot welder Download PDF

Info

Publication number
JP3597378B2
JP3597378B2 JP8660298A JP8660298A JP3597378B2 JP 3597378 B2 JP3597378 B2 JP 3597378B2 JP 8660298 A JP8660298 A JP 8660298A JP 8660298 A JP8660298 A JP 8660298A JP 3597378 B2 JP3597378 B2 JP 3597378B2
Authority
JP
Japan
Prior art keywords
current
motor
current value
control method
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8660298A
Other languages
Japanese (ja)
Other versions
JPH11285851A (en
Inventor
久也 大岩
信雄 小林
光隆 伊賀上
宏史 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8660298A priority Critical patent/JP3597378B2/en
Publication of JPH11285851A publication Critical patent/JPH11285851A/en
Application granted granted Critical
Publication of JP3597378B2 publication Critical patent/JP3597378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧源として電動モータを用いる電動式スポット溶接機における加圧制御方法に関する。
【0002】
【従来の技術】
電動式スポット溶接機は、電動モータの回転運動を直線運動に変換するボールねじ機構等の運動変換機構を備え、1対の電極チップを電動モータにより運動変換機構を介して開閉動作させるように構成されている。そして、両電極チップ間にその閉じ動作でワークを挟圧し、この状態で両電極チップ間に通電してワークのスポット溶接を行う。
【0003】
ここで、両電極チップ間にワークが挟まれると、電動モータの負荷が増加して、電動モータに流れるモータ電流が上昇する。そこで、従来は、所定の設定電流値でモータ電流のそれ以上の上昇を規制し、ワークに対する加圧力を設定電流値に対応する設定加圧力に制御している。
【0004】
【発明が解決しようとする課題】
加圧力を実測したところ、実際の加圧力は設定電流値に対応する設定加圧力に達していないことが判明した。これは、運動変換機構における摩擦損失によるものと考えられる。この摩擦損失は、電極チップがワークに接触後停止する直前の状態に左右され、ワークに接触するまでの電極チップの移動速度、ワークの弾性等によって変化する。摩擦損失が最小になるのは、停止直前において運動変換機構の各部が全て動摩擦状態に存するときであり、逆に、運動変換機構の殆んどの部分が静摩擦状態に存するときに最大になり、最大と最小との差はかなり大きくなる。そのため設定加圧力と実加圧力との偏差のばらつきもかなり大きくなる。この場合、加圧力を検出するロードセル等の加圧力センサを組込み、加圧力が設定加圧力になるようにモータ電流をフィードバック制御することも考えられるが、これではコスト、メンテナンス、耐久性の面で不利になる。
【0005】
本発明は、以上の点に鑑み、設定加圧力と実加圧力との偏差を加圧力センサを用いずに可及的に減少し得るようにした加圧制御方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
上記課題を解決すべく、本発明は、1対の電極チップを電動モータにより運動変換機構を介して開閉動作させる電動式スポット溶接機における加圧制御方法であって、1対の電極チップ間にワークが挟まれて、電動モータに流れるモータ電流が上昇したとき、所定の設定電流値でモータ電流のそれ以上の上昇を規制し、ワークに対する加圧力を設定電流値に対応する設定加圧力に制御するものにおいて、モータ電流が設定電流値に上昇したところで、電流値が波状に変化する波形電流をモータ電流に重畳している。
【0007】
波形電流を重畳すると、電動モータの出力トルクが波形電流に応じて波状に変化し、運動変換機構の静摩擦状態になっていた部分が出力トルクの変化で動摩擦状態に移行する。そして、運動変換機構の各部が全て動摩擦状態に存するときに波形電流の重畳終了で電極チップが停止することになる。従って、運動変換機構における摩擦損失は最小になり、設定加圧力と実加圧力との偏差が可及的に減少する。
【0008】
【発明の実施の形態】
図1を参照して、RはワークWの溶接を行うロボットであり、ロボットRの動作端の手首Raにスポット溶接機たるC形の溶接ガンGが取付けられている。
【0009】
溶接ガンGは、手首Raに固定されるガン支持ブラケット1にガイドバー1aを介して上下方向にイコライズ動作自在に支持されるガン本体2を備えている。ガン本体2には、下方にのびるC形ヨーク3が取付けられており、C形ヨーク3の下部先端に固定電極チップたる下チップ4が取付けられている。また、ガン本体2の上面にサーボモータから成る電動モータ5を搭載し、該モータ5により後記詳述するボールねじ機構6を介して上下動されるロッド7をガン本体2の下方に突出させ、ロッド7の下端に、下チップ4に対向させて可動電極チップたる上チップ8を取付けている。
【0010】
溶接ガンGはロボットRの動作でワークWの各打点位置に移動され、各打点位置に到着したときロボットコントローラ9からガンコントローラ10に加圧指令が送信され、ガンコントローラ10による電動モータ5の制御で上チップ8が所定の開放位置から下動される。上チップ8の下動でこれがワークWに当接すると、以後当接反力でガン本体2がガン支持ブラケット1に対し上動して下チップ4がワークWに当接し、ワークWが上下の両チップ4,8間に挟まれて加圧される。この状態で両チップ4,8間に通電してワークWの各打点部をスポット溶接する。
【0011】
電動モータ5は、図2に示す如く、ガン本体2に立設したモータハウジング5aと、モータハウジング5a内に固定したステータ5bと、モータハウジング5a内に軸支した中空のロータ5cとで構成されており、前記ロッド7をガン本体2内のガイドスリーブ2aを通してロータ5c内に挿入している。ロッド7の上部は中空に形成されており、ロッド7の中空部にロータ5cの上端部に固定した螺杆6aを挿入すると共に、ロッド7の上端部に螺杆6aに螺合する多数のボールを内蔵するナット6bを固定し、これら螺杆6aとナット6bとでロータ5cの回転をロッド7の上下動に変換する運動変換機構たるボールねじ機構6を構成している。
【0012】
モータハウジング5aの上端部には、ロータ5cに連結される入力軸11aを有するエンコーダ11がステー11bを介して取付けられており、エンコーダ11によりロータ5cの回転角度を検出し得るようにしている。そして、エンコーダ11の信号をガンコントローラ10に入力し、ロータ5cの回転角度とボールねじ機構6のピッチとから上チップ8の位置を割出し、スポット溶接後に上チップ8をその位置が所定の開放位置に合致するまで電動モータ5によって上動させるようにしている。
【0013】
電動モータ5による上チップ8の下動で上記の如くワークWが下チップ4と上チップ8との間に挟まれると、電動モータ5の負荷が増加して、電動モータ5に流れるモータ電流が上昇する。そして、所要の設定加圧力に合わせて設定した設定電流値にモータ電流が上昇したところで、ガンコントローラ10によりモータ電流のそれ以上の上昇を規制し、ワークWを設定加圧力で加圧するようにしている。
【0014】
然し、図3に示すように、モータ電流を設定電流値Isに維持しても、実加圧力は、ボールねじ機構6における摩擦損失により、設定電流値Isに対応する設定加圧力Psよりも低くなる。ここで、モータ電流に電流値が波状に変化する波状電流aを重畳すると、実加圧力が設定加圧力Psに近付く。これは、波形電流aの重畳で電動モータ5の出力トルクが波状に変化し、ボールねじ機構6の静摩擦状態になっていた部分(ボール)が出力トルクの変化で動摩擦状態に移行し、摩擦損失が減少するためである。ところで、図3では、効果の確認を容易にするため、波形電流aの重畳タイミングを意図的に遅らせているが、実際のスポット溶接に際しては、モータ電流が設定電流値Isに上昇したところで仮想線に示す如く直ちに波形電流aを重畳する。
【0015】
尚、波形電流aの周波数が小さ過ぎたり大き過ぎると、静摩擦状態から動摩擦状態にうまく移行しないため、周波数は5〜100Hz、好ましくは20〜60Hzとする。図3では周波数を40Hzとしている。
【0016】
また、波形電流aの振幅が小さ過ぎる場合も静摩擦状態から動摩擦状態にうまく移行せず、一方、振幅が大き過ぎると、ボールねじ機構6のボールや螺杆の摩耗による耐久性の悪化を生ずるため、波形電流aの振幅は、その半値が設定電流値Isの3〜50%、好ましくは10〜20%になるように設定する。図3では振幅の半値を設定電流値Isの15%としている。
【0017】
また、波形電流aの重畳サイクル数が小さ過ぎると、静摩擦状態から動摩擦状態への移行が完了する前に波形電流aの重畳が終了してしまう。一方、波形電流aの重畳サイクル数が大き過ぎると、ボールねじ機構6のボールのフレッチングコロージョン現象を引き起こし、ボールの部分摩耗を生ずる。そのため、波形電流aの重畳サイクル数は1/2〜10サイクル、好ましくは1〜4サイクルとする。図3では重畳サイクル数を1.5サイクルとしている。
【0018】
また、図3では波形電流aを正弦波としているが、三角波や矩形波であっても良い。また、波形電流aの重畳中に波形電流aの周波数や振幅や波形を可変することも可能であり、例えば、振幅を次第に減少させるようにしても良い。
【0019】
【発明の効果】
以上の説明から明らかなように、本発明によれば、設定加圧力と実加圧力との偏差を加圧力センサを用いたフィードバック制御を行わずに可及的に減少でき、コスト、メンテナンス、耐久性の面で有利である。
【図面の簡単な説明】
【図1】スポット溶接機を搭載したロボットの側面図
【図2】図1のII−II線拡大截断面図
【図3】モータ電流と実加圧力との関係を示すグラフ
【符号の説明】
G 溶接ガン(電動式スポット溶接機)
4,8 電極チップ 5 電動モータ
6 ボールねじ機構 a 波形電流
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressurization control method in an electric spot welder using an electric motor as a pressurization source.
[0002]
[Prior art]
The electric spot welder is provided with a motion conversion mechanism such as a ball screw mechanism that converts the rotary motion of the electric motor into a linear motion, and is configured to open and close a pair of electrode tips by the electric motor via the motion conversion mechanism. Have been. Then, the work is clamped between the two electrode tips by the closing operation, and in this state, a current is applied between the two electrode tips to perform spot welding of the work.
[0003]
Here, when a work is sandwiched between the two electrode chips, the load on the electric motor increases, and the motor current flowing through the electric motor increases. Therefore, conventionally, a further increase in the motor current is regulated at a predetermined set current value, and the pressure applied to the workpiece is controlled to a set pressure corresponding to the set current value.
[0004]
[Problems to be solved by the invention]
When the applied pressure was actually measured, it was found that the actual applied pressure did not reach the set applied pressure corresponding to the set current value. This is considered to be due to friction loss in the motion conversion mechanism. This friction loss depends on the state immediately before the electrode tip comes into contact with the workpiece and immediately before stopping, and varies depending on the moving speed of the electrode tip until it comes into contact with the workpiece, the elasticity of the workpiece, and the like. The friction loss is minimized when all parts of the motion conversion mechanism are in the kinetic friction state immediately before the stop, and conversely, it is maximized when most of the motion conversion mechanism is in the static friction state. The difference between and minimum is quite large. For this reason, the variation in the deviation between the set pressure and the actual pressure becomes considerably large. In this case, it is conceivable to incorporate a pressure sensor such as a load cell for detecting the pressure and perform feedback control of the motor current so that the pressure becomes the set pressure.However, in this case, cost, maintenance and durability are considered. Be disadvantaged.
[0005]
In view of the above, an object of the present invention is to provide a pressurization control method that can reduce a deviation between a set pressure and an actual pressure as much as possible without using a pressure sensor.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a pressurization control method in an electric spot welder that opens and closes a pair of electrode tips via a motion conversion mechanism using an electric motor, When the motor current flowing through the electric motor increases due to the work being sandwiched, the motor current is regulated to a predetermined set current value and the applied pressure on the work is controlled to the set applied pressure corresponding to the set current value. When the motor current rises to a set current value, a waveform current in which the current value changes in a wave shape is superimposed on the motor current.
[0007]
When the waveform current is superimposed, the output torque of the electric motor changes in a wave-like manner in accordance with the waveform current, and the portion of the motion conversion mechanism which has been in the static friction state shifts to the dynamic friction state due to the change in the output torque. Then, when all parts of the motion conversion mechanism are in the dynamic friction state, the electrode tip stops at the end of the superposition of the waveform current. Therefore, the friction loss in the motion conversion mechanism is minimized, and the deviation between the set pressure and the actual pressure is reduced as much as possible.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, R is a robot for welding a workpiece W, and a C-shaped welding gun G as a spot welding machine is attached to a wrist Ra at an operating end of the robot R.
[0009]
The welding gun G includes a gun body 2 supported on a gun support bracket 1 fixed to a wrist Ra via a guide bar 1a so as to be capable of performing an equalizing operation in a vertical direction. A C-shaped yoke 3 extending downward is attached to the gun body 2, and a lower tip 4 as a fixed electrode tip is attached to a lower end of the C-shaped yoke 3. Also, an electric motor 5 composed of a servomotor is mounted on the upper surface of the gun body 2, and a rod 7 vertically moved by a motor 5 via a ball screw mechanism 6 described later protrudes below the gun body 2, At the lower end of the rod 7, an upper chip 8, which is a movable electrode tip, is attached to face the lower chip 4.
[0010]
The welding gun G is moved to each hitting position of the workpiece W by the operation of the robot R, and when it arrives at each hitting position, a pressurizing command is transmitted from the robot controller 9 to the gun controller 10, and the gun controller 10 controls the electric motor 5. , The upper chip 8 is moved downward from a predetermined open position. When this comes into contact with the work W by the downward movement of the upper chip 8, the gun body 2 moves up with respect to the gun support bracket 1 by the contact reaction force thereafter, and the lower chip 4 comes into contact with the work W, and the work W is moved up and down. Pressure is applied between the chips 4 and 8. In this state, a current is applied between the two chips 4 and 8 to spot-weld each spot of the work W.
[0011]
As shown in FIG. 2, the electric motor 5 includes a motor housing 5a erected on the gun body 2, a stator 5b fixed in the motor housing 5a, and a hollow rotor 5c pivotally supported in the motor housing 5a. The rod 7 is inserted into the rotor 5c through the guide sleeve 2a in the gun body 2. The upper part of the rod 7 is formed hollow, and a screw 6a fixed to the upper end of the rotor 5c is inserted into the hollow part of the rod 7, and a number of balls screwed to the screw 6a are built into the upper end of the rod 7. The nut 6b is fixed, and the screw 6a and the nut 6b constitute a ball screw mechanism 6 as a motion converting mechanism for converting the rotation of the rotor 5c into the vertical movement of the rod 7.
[0012]
At the upper end of the motor housing 5a, an encoder 11 having an input shaft 11a connected to the rotor 5c is mounted via a stay 11b so that the rotation angle of the rotor 5c can be detected by the encoder 11. Then, a signal from the encoder 11 is input to the gun controller 10, the position of the upper chip 8 is determined from the rotation angle of the rotor 5c and the pitch of the ball screw mechanism 6, and after the spot welding, the position of the upper chip 8 is set to a predetermined value. The electric motor 5 is moved upward until the position is matched.
[0013]
When the work W is sandwiched between the lower chip 4 and the upper chip 8 as described above due to the downward movement of the upper chip 8 by the electric motor 5, the load on the electric motor 5 increases, and the motor current flowing through the electric motor 5 decreases. To rise. Then, when the motor current rises to the set current value set in accordance with the required set pressure, the gun controller 10 regulates the further increase in the motor current, and presses the work W with the set pressure. I have.
[0014]
However, as shown in FIG. 3, even if the motor current is maintained at the set current value Is, the actual applied pressure becomes lower than the set applied pressure Ps corresponding to the set current value Is due to friction loss in the ball screw mechanism 6. . Here, when a wave-like current a whose current value changes in a wave-like manner is superimposed on the motor current, the actual pressing force approaches the set pressing force Ps. This is because the output torque of the electric motor 5 changes in a wave-like manner due to the superposition of the waveform current a, and the portion (ball) of the ball screw mechanism 6 in the static friction state shifts to the dynamic friction state due to the change in the output torque, and the friction loss Is to decrease. In FIG. 3, the superimposition timing of the waveform current a is intentionally delayed in order to easily confirm the effect. However, in actual spot welding, when the motor current rises to the set current value Is, a virtual line The waveform current a is immediately superimposed as shown in FIG.
[0015]
Note that if the frequency of the waveform current a is too small or too large, the transition from the static friction state to the dynamic friction state does not work well, so the frequency is set to 5 to 100 Hz, preferably 20 to 60 Hz. In FIG. 3, the frequency is 40 Hz.
[0016]
Also, when the amplitude of the waveform current a is too small, the transition from the static friction state to the kinetic friction state does not work well. On the other hand, when the amplitude is too large, the durability of the ball or screw of the ball screw mechanism 6 is deteriorated due to wear. The amplitude of the waveform current a is set so that its half value is 3 to 50%, preferably 10 to 20% of the set current value Is. In FIG. 3, the half value of the amplitude is set to 15% of the set current value Is.
[0017]
If the number of superimposed cycles of the waveform current a is too small, the superposition of the waveform current a ends before the transition from the static friction state to the dynamic friction state is completed. On the other hand, if the number of superimposed cycles of the waveform current a is too large, a fretting corrosion phenomenon of the ball of the ball screw mechanism 6 is caused, and partial wear of the ball occurs. Therefore, the number of superimposed cycles of the waveform current a is 〜10 to 10 cycles, preferably 1 to 4 cycles. In FIG. 3, the number of superposition cycles is set to 1.5.
[0018]
Although the waveform current a is a sine wave in FIG. 3, it may be a triangular wave or a rectangular wave. It is also possible to change the frequency, amplitude and waveform of the waveform current a during the superposition of the waveform current a. For example, the amplitude may be gradually reduced.
[0019]
【The invention's effect】
As is apparent from the above description, according to the present invention, the deviation between the set pressure and the actual pressure can be reduced as much as possible without performing the feedback control using the pressure sensor, and the cost, maintenance, and durability can be reduced. It is advantageous in terms of.
[Brief description of the drawings]
FIG. 1 is a side view of a robot equipped with a spot welding machine. FIG. 2 is an enlarged sectional view taken along the line II-II of FIG. 1. FIG. 3 is a graph showing a relationship between a motor current and an actual pressing force.
G welding gun (electric spot welding machine)
4,8 Electrode tip 5 Electric motor 6 Ball screw mechanism a Wave current

Claims (1)

1対の電極チップを電動モータにより運動変換機構を介して開閉動作させる電動式スポット溶接機における加圧制御方法であって、
1対の電極チップ間にワークが挟まれて、電動モータに流れるモータ電流が上昇したとき、所定の設定電流値でモータ電流のそれ以上の上昇を規制し、ワークに対する加圧力を設定電流値に対応する設定加圧力に制御するものにおいて、
モータ電流が設定電流値に上昇したところで、電流値が波状に変化する波形電流をモータ電流に重畳する、
ことを特徴とする電動式スポット溶接機における加圧制御方法。
A pressurization control method in an electric spot welder in which a pair of electrode tips is opened and closed by an electric motor via a motion conversion mechanism,
When the work is sandwiched between a pair of electrode tips and the motor current flowing through the electric motor rises, the motor current is regulated to a predetermined set current value to further prevent the increase of the motor current, and the pressure applied to the work is reduced to the set current value. For controlling to the corresponding set pressure,
When the motor current rises to the set current value, a waveform current whose current value changes in a wave shape is superimposed on the motor current,
A pressurization control method in an electric spot welder, characterized in that:
JP8660298A 1998-03-31 1998-03-31 Pressurization control method for electric spot welder Expired - Fee Related JP3597378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8660298A JP3597378B2 (en) 1998-03-31 1998-03-31 Pressurization control method for electric spot welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8660298A JP3597378B2 (en) 1998-03-31 1998-03-31 Pressurization control method for electric spot welder

Publications (2)

Publication Number Publication Date
JPH11285851A JPH11285851A (en) 1999-10-19
JP3597378B2 true JP3597378B2 (en) 2004-12-08

Family

ID=13891571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8660298A Expired - Fee Related JP3597378B2 (en) 1998-03-31 1998-03-31 Pressurization control method for electric spot welder

Country Status (1)

Country Link
JP (1) JP3597378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707484B2 (en) * 2005-07-13 2011-06-22 Obara株式会社 Friction stir welding equipment
JP5057217B2 (en) * 2007-05-29 2012-10-24 株式会社安川電機 Control device and control method for spot welding robot

Also Published As

Publication number Publication date
JPH11285851A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US20090025444A1 (en) Die cushion control device
US5988486A (en) Method of controlling electrode force of spot welding gun
US5750953A (en) Motor-driven X-type resistance spot welding gun
KR20200125928A (en) Rotation speed control in robot-assisted polishing
JP3597378B2 (en) Pressurization control method for electric spot welder
JPH11197843A (en) Motor driven spot welding gun
JP2943731B2 (en) Welding equipment
JP5525372B2 (en) Welding gun
CN107097008B (en) Welding clamping device
CN101247918B (en) Spot welding tongs with a balancing unit comprising a curved connector element
JP5129731B2 (en) Die cushion equipped with NC drive and hydraulic pad
JP2957557B1 (en) Bonding tool support mechanism of bonding apparatus and method of controlling vertical movement of bonding tool
JP3755843B2 (en) Control method of pressure resistance welding machine
JPH09285870A (en) Electrode pressing device of resistance welding machine
JP2827097B2 (en) Teach position teaching method of robot welding gun
JP2009148830A (en) Device for processing workpiece
JPH0731900Y2 (en) Electric pressure type spot welding gun
JP2000271754A (en) Resistance spot welding gun
JP2001096370A (en) Resistance welder
JP2002028788A (en) Motor-driven spot welding gun
JP2000061650A (en) Pressurization control method for motor driven welding gun
JP2018187715A (en) Robot device
JP4222890B2 (en) Control method of electric welding gun
CN207900585U (en) A kind of precision bearing Horizontal assembling press
JPH0731899Y2 (en) Electric pressure type C type spot welding gun

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees