JP3596541B2 - Electric water heater - Google Patents

Electric water heater Download PDF

Info

Publication number
JP3596541B2
JP3596541B2 JP2002182495A JP2002182495A JP3596541B2 JP 3596541 B2 JP3596541 B2 JP 3596541B2 JP 2002182495 A JP2002182495 A JP 2002182495A JP 2002182495 A JP2002182495 A JP 2002182495A JP 3596541 B2 JP3596541 B2 JP 3596541B2
Authority
JP
Japan
Prior art keywords
power supply
backup power
boosting
predetermined level
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002182495A
Other languages
Japanese (ja)
Other versions
JP2004024380A (en
Inventor
雅道 駒田
尚 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002182495A priority Critical patent/JP3596541B2/en
Publication of JP2004024380A publication Critical patent/JP2004024380A/en
Application granted granted Critical
Publication of JP3596541B2 publication Critical patent/JP3596541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cookers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、商用電源が入力されない時、バックアップ電源で電源供給を行なう電気湯沸かし器に関するものである。
【0002】
【従来の技術】
従来、この種の電気湯沸かし器において、商用電源が入力されないとき、バックアップ電源によりお湯の吐出動作や計時動作等を行なうものが提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の技術では、バックアップ電源を昇圧せず直接機器に電源供給するためバックアップ電源の使用電圧範囲が狭かったり、バックアップ電源を常時昇圧して機器に電源供給するため使用効率が悪かったりし、バックアップ電源の有効活用に問題があった。
【0004】
本発明は、バックアップ電源の使用効率を格段に向上させた電気湯沸かし器を提供することを課題とする。
【0005】
【課題を解決するための手段】
前記従来の課題を解決するために本発明は、液体を収容する容器と、容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、バックアップ電源を昇圧する昇圧手段と、出湯手段と計時手段の動作を制御する制御手段を備え、バックアップ電源より電源供給されている時、バックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに前記制御手段に電源供給し、第1所定レベル以下であれば、前記昇圧手段が動作し前記バックアップ電源を昇圧して前記制御手段に電源供給することようにしたものである。
【0006】
バックアップ電源の残存エネルギレベルが大きい時は昇圧なしで電源供給し、残存エネルギレベルが、昇圧なしの供給で制御手段の最低動作電圧を下回る直前のレベルとなった時、昇圧して電源供給することで、バックアップ電源の使用効率を向上することができる。
【0007】
【発明の実施の形態】
請求項1に記載の発明は、液体を収容する容器と、容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、バックアップ電源を昇圧する昇圧手段と、出湯手段と計時手段の動作を制御する制御手段を備え、バックアップ電源より電源供給されている時、バックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに前記制御手段に電源供給し、第1所定レベル以下であれば、昇圧手段が動作し前記バックアップ電源を昇圧して前記制御手段に電源供給することでバックアップ電源の使用効率を向上することができる。
【0008】
請求項2に記載の発明は、液体を収容する容器と、容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、バックアップ電源を昇圧する昇圧手段と、出湯手段と計時手段の動作を制御する制御手段を備え、バックアップ電源より電源供給されている時、バックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに制御手段に電源供給し、第1所定レベル以下であれば、昇圧手段が動作しバックアップ電源を所定時間毎に昇圧して制御手段に電源供給することでバックアップ電源の使用効率を向上することができる。
【0009】
請求項3に記載の発明は、液体を収容する容器と、容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、バックアップ電源を昇圧する昇圧手段と、出湯手段と計時手段の動作を制御する制御手段を備え、バックアップ電源より電源供給されている時、出湯手段により液体を吐出する時は前記昇圧手段が前記バックアップ電源を第1所定電圧に昇圧して出湯手段と制御手段に電源供給し、出湯手段による液体の吐出がなく且つバックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに制御手段に電源供給し、出湯手段による液体の吐出がなく且つバックアップ電源の残存エネルギが第1所定レベル以下であれば、昇圧手段が前記バックアップ電源を第1所定電圧より低い第2所定電圧に昇圧して制御手段に電源供給することで、バックアップ電源の使用効率を向上することができる。
【0010】
請求項4に記載の発明は、請求項1〜3のいずれか1項の発明において、バックアップ電源の残存エネルギが第1所定レベルより低い第2所定レベル以下となると出湯手段による液体の吐出を禁止することで、バックアップ電源の使用効率を向上することができ且つ昇圧手段が過負荷となることのない高信頼性構成となる。
【0011】
請求項5に記載の発明は、請求項1〜4のいずれか1項の発明において、バックアップ電源の残存エネルギが第1所定レベルもしくは第2所定レベルより低い第3所定レベル以下となると昇圧動作を停止することすることで、バックアップ電源の使用効率を向上することができ且つ昇圧手段が過負荷となることのない高信頼性構成となる。
【0012】
請求項6に記載の発明は、請求項1〜5のいずれか1項の発明におけるバックアップ電源の残存エネルギ検知を所定時間毎に行なうことで、検知動作に要する消費電力を軽減でき、更にバックアップ電源の使用効率を向上できる。
【0013】
請求項7に記載の発明は、液体を収容する容器と、容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、バックアップ電源を昇圧する昇圧手段と、出湯手段と計時手段の動作を制御する制御手段を備え、バックアップ電源より電源供給されている時、出湯手段により液体を吐出する時は、昇圧手段がバックアップ電源を第1所定電圧に昇圧して出湯手段と制御手段に電源供給し、出湯手段による液体の吐出がない時は、前記昇圧手段が前記バックアップ電源を第1所定電圧より低い第2所定電圧に昇圧して前記制御手段に電源供給することするで、バックアップ電源の使用効率を向上することができる。
【0014】
請求項8に記載の発明は、請求項7の発明において、バックアップ電源の残存エネルギが第2所定レベル以下となると出湯手段による液体の吐出を禁止することで、バックアップ電源の使用効率を向上することができ且つ昇圧手段が過負荷となることのない高信頼性構成となる。
【0015】
請求項9に記載の発明は、請求項7または8の発明において、バックアップ電源の残存エネルギが第2所定レベルより低い第3所定レベル以下となると昇圧動作を停止することすることで、バックアップ電源の使用効率を向上することができ且つ昇圧手段が過負荷となることのない高信頼性構成となる。
【0016】
請求項10に記載の発明は、請求項8または9の発明における、バックアップ電源の残存エネルギ検知を所定時間毎に行なうことで、検知動作に要する消費電力を軽減でき、更にバックアップ電源の使用効率を向上できる。
【0017】
請求項11に記載の発明は、請求項3〜10のいずれか1項の発明における第1昇圧電圧もしくは第2昇圧電圧への昇圧動作を、所定時間毎に行なうことで、昇圧動作に要する電力損失を軽減でき、更にバックアップ電源の使用効率を向上できる。
【0018】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0019】
(実施例1)
図1は本実施例における構成図である。
【0020】
図1において、本体1内に上面開口の水を収容する容器2があり、容器の上部を覆う蓋3が配置されている。また、容器2内の水を加熱する加熱手段4と、容器2内の水温を検知する温度検知手段5と、容器2内のお湯を、吐出口20から外部に導くための電動ポンプ7と、電動ポンプ7の駆動源となる出湯手段であるモータ6が下方に、商用電源が供給されない時、機器に電源を供給するバックアップ電源14と、商用電源を入力する電源コンセント19が側方に、使用者が容易に操作できる操作部8が上方に配置されている。ここで、操作部8は、お湯を出湯するための出湯スイッチ9と出湯動作の動作を許可するための出湯ロック解除スイッチ10と、保温状態にあるお湯を再度沸き上がらせるための再沸騰スイッチ11と、保温温度を設定するための保温温度設定選択スイッチ12と、湯温と保温温度設定を表示する表示素子13(図1では湯温98℃、98保温設定の状態を表示(図1の▲は設定された保温温度を示している))から構成されており、また、加熱手段4は、容器2内の水を沸騰させる大きな出力をもつもの、例えば1000Wの主ヒータと、容器2内の水を保温する比較的小さな出力をもつもの、例えば75Wの補助ヒータとで構成されている。
【0021】
次に、15はバックアップ電源14と制御手段16からの信号を入力とし、制御手段16とモータ6に信号出力する昇圧手段であり、17は制御手段との間で信号の入出力を行なう計時手段であり、18は制御手段との間で信号の入出力を行なう記憶手段であり、16は温度検知手段5とバックアップ電源14と昇圧手段15と操作部8と計時手段17と記憶手段18からの信号を入力とし、加熱手段4とモータ6と操作部8と昇圧手段15と計時手段17と記憶手段18に信号出力する制御手段である。
【0022】
図2は、図1の構成を有する本実施例の制御回路図であり、図2を用いて本実施例の詳細な説明を行なう。
【0023】
図2において、商用電源21は電源コンセント19を介して制御回路に電源を供給しており、加熱手段である主ヒータ4aが主ヒータ駆動用リレー22を介して、補助ヒータ4bが補助ヒータ駆動用リレー24を介して接続されている。
【0024】
また、商用電源21は整流回路26、変圧回路27、逆流阻止用ダイオード29、レギュレータ30(ここでは入力電圧5V以上の時は出力5V、入力が5Vより小さいときは、入力電圧から0.1Vを減じた出力を行なうレギュレータとする)を通してマイクロコンピュータ33に入力(以降VDD電源とする)されており、ダイオード29の出力(以降VU2電源とする)は出湯スイッチ9、モータ駆動用トランジスタ35を通してモータ6に、変圧回路27の出力(以降VU1電源とし、ここでは8Vとする)は充電回路37、逆流阻止用ダイオード38を通してバックアップ電源14に接続されている。
【0025】
また更に、バックアップ電源14は昇圧回路15を介してVU2電源に電源供給している。VU2電源は、商用電源21からもバックアップ電源14からも電源供給できる構成であるが、変圧回路18からの出力電圧は昇圧回路15の出力電圧より大きくなるよう設定しており、商用電源21とバックアップ電源14の両方接続されている時は、商用電源21より電源供給される。
【0026】
また、昇圧回路15は逆流阻止用のショットキーバリアダイオードが内臓されており、VU2電源からバックアップ電源14の方向には電流が流れない構成となっており、制御手段である中央制御装置16が昇圧回路15に昇圧オフ信号を出力している時の昇圧回路15の出力は、入力すなわちバックアップ電源14の電圧(以降VBK電源とする)から前述したショットキーバリアダイオードの電圧(ここでは0.3V一定とする)を減じた値となる。
【0027】
また、28、30、32はそれぞれ、VU1電源、VU2電源、VDD電源の平滑用コンデンサである。
【0028】
電源コンセント19から商用電源21が供給されると、制御手段である中央制御装置16は、温度検知手段である温度センサ5と抵抗器34の分圧電圧から得られる検知温度(以降θとする)に基づいて主ヒータ4aと補助ヒータ4bのオンオフ制御を、リレー駆動回路23、25と主ヒータ駆動用リレー22、補助ヒータ駆動用リレー24を介して行なう。検知温度θが、あらかじめ設定された所定温度θ1(例えば約90℃)より低ければ、主ヒータ4a及び補助ヒータ4bをオンし表示素子であるLCD13に温度表示する。その後、温度検知と温度表示を繰り返し、温度上昇(以降Δθとする)があらかじめ設定された温度上昇値(Δθ)より小さくなると、容器内のお湯が沸騰したと判断し主ヒータ4a及び補助ヒータ4bをオフする。
【0029】
その後は、やはり温度検知と温度表示を繰り返し、検知温度に基づいて、あらかじめ設定された所定温度θ2(例えば約98℃)を維持するよう、中央制御装置16が補助ヒータ4bをオンオフ制御する。主ヒータ4a及び補助ヒータ4bをオンしお湯を温度上昇している状態を沸騰モード、所定温度θ2を維持するよう補助ヒータ4bをオンオフしている状態を保温モードとして以降説明する。
【0030】
機器が沸騰モード、保温モードのいずれにある場合にも、温度検知は繰り返し、保温モード中に水等が追加され検知温度θがθ1より低くなると機器は再度沸騰モードとなる。また、保温モード中に再沸騰スイッチ11が押され中央制御装置16に信号入力されると機器は沸騰モードへと移行する。
【0031】
保温温度設定選択スイッチ12が押され中央制御装置16に信号入力されると、中央制御装置16は所定温度θ1、θ2の値を切り替える(θ1を例えば約85℃、θ2を例えば約80℃)とともに設定が切り替わったことをLCD13に表示する。保温モードにおいては、保温温度設定選択スイッチ12が押されると約85℃を維持する動作となる。
【0032】
また、商用電源21が供給されると、中央制御装置16は充電回路37と逆流阻止用ダイオード38を介してVU1電源からバックアップ電源14を充電させる。バックアップ電源14の充電量は、抵抗器39と抵抗器40の分圧電圧として中央制御装置16に入力され、あらかじめ設定された電圧値(ここでは4Vとする)となると中央制御装置16はバックアップ電源14への充電を停止させる。4V到達後、自己放電等で所定電圧(例えば3.8V)まで電圧降下すると、再度4Vまでの充電動作を行なう。前記の通り、VBK電源は時間経過で3.8V〜4Vとなるよう充電制御される。
【0033】
一方、商用電源21からの発生するVU1電源は8Vとしており、逆流阻止用ダイオード29の電圧降下分(ここでは0.7Vとする)を考慮しても、VU2電源はVU1電源より供給され、7.3Vとなる。商用電源21が供給されている時は昇圧回路15の昇圧動作はオフしており、昇圧回路15に内臓のショットキーバリアダイオードにより、VU2電源からVBK電源への電流逆流を防いでいる。
【0034】
また更に、商用電源21が供給されると、出湯ロック解除スイッチ10からの信号入力で中央制御装置16が、抵抗器36を介してモータ駆動用トランジスタ35を駆動する。9は使用者が用意に操作できる出湯スイッチであり、トランジスタ35がオンした状態で出湯スイッチ9をオンするとモータ6が駆動しモータに直結したポンプによって容器内のお湯を吐出できる。
【0035】
ここで、記憶手段であるRAM18は、機器の動作状態、例えば保温温度設定や動作モード、出湯動作の有無等を記憶するメモリであり,中央制御装置16の制御で書き込み及び読み出しが行なわれ、計時手段であるタイマ17は温度検知タイミング、RAM18への書き込み、読み出しタイミング等の基本時間を中央制御装置16の制御で生成している。
【0036】
次に、VBK電源が4Vに充電された時点で、商用電源がオフすると、VU2電源はVBK電源より電源供給され、抵抗器39と抵抗器40の分圧電圧として検知したバックアップ電源14の残存エネルギが第1所定レベル(ここではVBKが2.5V)より大きい時、VBK電源からVU2電源電源への電源供給は、昇圧回路15の昇圧動作をオフして行なわれ、時間経過で残存エネルギが第1所定レベル(ここではVBKが2.5V)以下となった時、VBK電源からVU2電源電源への電源供給は、昇圧回路15の昇圧動作をオンし、昇圧回路の出力すなわちVU2電源を第2昇圧電圧(ここでは3V)とする。
【0037】
そして、更に時間経過し、残存エネルギが第3所定レベル(ここではVBKが0.5V)以下となると、昇圧動作は停止する。残存エネルギが、最大充電レベル(VBKが4V相当のエネルギ)から第3所定レベルまでの間は、制御手段である中央制御装置16を含むマイクロコンピュータ33(以降マイコンと称する)に有効な電源を供給し続けられ、温度検知、LCD表示、RAM17の動作とデータ保持、タイマの動作が可能となる。
【0038】
図3はバックアップ電源14から電源供給されている時の電源電圧特性である。図3を用いて更に詳細に説明する。商用電源オフのタイミングを時間0とすると、VBK電源が、出湯動作がなく、4Vから第1所定レベル2.5V、第3所定レベル0.5Vを経て図示の通り減衰した場合、商用電源オフ直後は、VU2電源は中央制御装置16の制御で昇圧動作がオフであるため、VBK電源から昇圧回路15内のショットキーバリアダイオードの電圧損失分だけ電圧降下(ここでは0.3Vとする)した3.7Vに、VDD電源は前述したレギュレータ31の特性により、VU2電源から0.1V減じた3.6Vとなる。
【0039】
その後、バックアップ電源14の残存エネルギを抵抗器39と抵抗器40の分圧電圧の形で、中央制御装置16は常時モニタし続け、VBK電源が第1所定レベル2.5Vとなった地点で、中央制御装置16は昇圧回路15を制御し、VBK電源を昇圧してVU2電源とVDD電源に電源供給する。VBK電源が第1所定レベル2.5Vとなる直前は、商用電源オフ直後と同様に昇圧動作オフであるため、VU2電源はVBK電源より0.3V減じた電圧2.2Vに、VDD電源はVU2電源より0.1V減じた2.1Vとなる。ここで、例えばマイコン33の最小動作電圧2.0Vとすると、VDD電源は2.1Vとなった以降は昇圧されるため継続してマイコン動作が行える。
【0040】
VBK電源が第1所定レベル2.5Vとなると、VU2電源は昇圧回路15により、VBK電源が第2昇圧電圧(ここでは3.0Vとする)まで昇圧される。この時、VDD電源はVU2電源より0.1V減じた2.9Vとなる。VU2電源の3.0V、VDD電源の2.9Vへの昇圧動作は、VBK電源が第1所定レベルより低い第3所定レベル0.5Vとなるまで継続され、第3所定レベル0.5Vとなると、昇圧回路15の昇圧動作を停止させる。
【0041】
以上のように、本実施例によると、バックアップ電源の残存エネルギが、制御手段、計時手段、記憶手段を含むマイコンに昇圧なく電源供給できる直上レベルすなわち第1所定レベルまでは、バックアップ電源が昇圧なしでマイコンに電源供給し、第1所定レベル以下となると、バックアップ電源が昇圧してマイコンに電源供給することで、商用電源がない時も、計時動作や温度検知動作や温度表示動作等が行え、且つバックアップ電源を高効率で使用することができる。
【0042】
例えば、図3の電源電圧制御に対して、バックアップ電源を常時昇圧してVU2電源を得る場合と比較すると、昇圧回路の電力変換効率分は最低でもエネルギ損失は少なく、バックアップ電源を昇圧せずにVU2電源を得た場合と比較すると、バックアップ電源の使用電圧範囲が大きく有効利用できる。
【0043】
また、図3の電源電圧制御での、第3所定レベル0.5Vは、昇圧出力3Vを得るときに、昇圧回路の過負荷となる限界レベルであり、第3所定レベルで昇圧動作を停止することで昇圧回路の信頼性を確保できるものである。
【0044】
尚、図3の電源電圧制御では、第1所定レベルを2.5V(VDD電源で2.1V)、第2昇圧電圧を3.0V(VDD電源で2.9V)として説明したが、いずれも制御手段である中央制御装置を含むマイコンに最小動作電圧以上を供給できるレベルないしは電圧であれば同等の効果が得られる。
【0045】
また、マイコンによっては、計時動作や記憶手段のデータ保持動作を行うための最小動作電圧より、温度検知を行なうためのAD変換動作の最小動作電圧が高い場合があり、例えば計時動作や記憶手段のデータ保持動作の最小動作電圧が2.0Vであり、AD変換動作の最小動作電圧が2.9Vであったとすると図3におけるVBK電源が3.3Vから2.5Vの範囲にある時は、温度検知を行う時のみVU2を3.0V、VDDを2.9Vとすることで、温度検知動作とバックアップ電源の高効率使用を両立することができる。
【0046】
また尚、図3の電源電圧制御では、VBK電源が第1所定レベルまで減衰し第3所定レベルに達するまでは常時昇圧動作を行うとしているが、この昇圧動作を所定時間毎に行うものとし、間欠昇圧動作の間の昇圧オフ期間は、VU2電源に接続したコンデンサ30もしくはVDD電源に接続したコンデンサ33でVDD電源がマイコンの最小動作電圧以下となるのを抑制することで、更にバックアップ電源の高効率使用が行なえる。
【0047】
また尚、図3の電源電圧制御では、バックアップ電源の残存エネルギ検知は常時行うとしているが、これをVBK電源の減衰特性に対して支障の無い所定時間毎に行なうものとすれば更にバックアップ電源の高効率使用が行なえる。例えば、VBKが5分で0.1V電圧低下するとすれば、マイコン最小動作電圧2.0Vに対して0.1V高い2.1VのVDD電源となると昇圧を開始するよう第1所定レベルを設定し、昇圧停止の第3所定レベルを昇圧回路の過負荷限界の0.5Vより0.1V高い0.6Vと設定すれば、5分毎に残存エネルギ検知するとしても問題ない。
【0048】
図4はバックアップ電源14から電源供給され、出湯操作があった場合の電源電圧特性である。図4は出湯操作の無い箇所は図3の説明で前述したものと同様であり、特に出湯操作のあった箇所に着目して以後説明する。
【0049】
商用電源オフ直後は、VU2電源は中央制御装置16の制御で昇圧動作がオフであるため、VBK電源から昇圧回路15内のショットキーバリアダイオードの電圧損失分だけ電圧降下(0.3V)した3.7Vに、VDD電源は前述したレギュレータ31の特性により、VU2電源から0.1V減じた3.6Vとなる。バックアップ電源14の残存エネルギは図3での説明と同様に、抵抗器39と抵抗器40の分圧電圧の形で、中央制御装置で常時モニタし続ける。
【0050】
その後、VBK電源が第1所定レベル2.5Vに減衰する前に出湯ロック解除スイッチ10が押され、中央制御装置16に信号入力されると、中央制御装置16は昇圧回路15の昇圧動作をオンし、バックアップ電源14を第1昇圧電圧(ここでは6.0V)に昇圧してVU2電源を供給する。VDD電源はこの時、前述したレギュレータ31の特性により5.0Vとなる。出湯ロック解除スイッチ10が押されると、中央制御装置16は抵抗器36を介して、出湯駆動用トランジジスタ35もオンし、この状態で出湯スイッチ9が押されるとモータ6にVU2電源6.0Vが印可され、容器内の液体を吐出することができる。出湯スイッチ9がオフされ所定時間経過すると出湯ロック状態となり、昇圧動作は再度オフし、VBK電源が第1所定レベル(2.5V)となるまでは、バックアップ電源14は昇圧なしでVU2電源、VDD電源に電源供給する。(図3の説明と同様に、VBK電源が第1所定レベル(2.5V)となる直前は、VU2は電源2.2V、VDD電源は2.1Vとなる)
VBK電源が第1所定レベル2.5Vとなると、VU2電源は昇圧回路15により、VBK電源が第1昇圧電圧6.0Vより低い第2昇圧電圧(ここでは3.0Vとする)まで昇圧される。この時、VDD電源はVU2電源より0.1V減じた2.9Vとなる。
【0051】
そして、VBK電源が第2所定レベル1.5Vまで減衰する前に出湯ロック解除スイッチ10が押され、中央制御装置16に信号入力されると、中央制御装置16は昇圧回路15の昇圧動作をオンし、バックアップ電源14を第1昇圧電圧(ここでは6.0V)に昇圧してVU2電源を供給する。VDD電源はこの時、前述したレギュレータ31の特性により5.0Vとなる。出湯ロック解除スイッチ10が押されると、中央制御装置16は抵抗器36を介して、出湯駆動用トランジジスタ35もオンし、この状態で出湯スイッチ9が押されるとモータ6にVU2電源6.0Vが印可され、容器内の液体を吐出することができる。出湯スイッチ9がオフされ所定時間経過すると出湯ロック状態となり、VU2電源は第2昇圧電圧3.0Vに、VDD電源は2.9Vに昇圧された状態に戻る。
【0052】
VBK電源が第2所定レベル1.5V以下となると、出湯ロック解除スイッチ10は受け付けず、第1昇圧電圧への昇圧動作は行わず、VBK電源が第3所定レベル0.5Vとなるまでは、VU2電源は第2昇圧電圧3.0Vに、VDD電源は2.9Vに昇圧された状態を維持する。
【0053】
そして、VBK電源が時間経過で第3所定レベル0.5Vとなると、昇圧回路15の昇圧動作を停止させる。
【0054】
以上のように、本実施例によれば、出湯ロック解除時及び出湯動作時はバックアップ電源を第1昇圧電圧に昇圧してモータ及びマイコンに電源供給し、出湯ロック解除動作を含む出湯動作がない時は、バックアップ電源の残存エネルギが、制御手段、計時手段、記憶手段を含むマイコンに昇圧なく電源供給できる直上レベルすなわち第1所定レベルまでは、バックアップ電源が昇圧なしでマイコンに電源供給し、第1所定レベル以下となると、バックアップ電源を第1昇圧電圧より低い第2昇圧電圧に昇圧してマイコンに電源供給することで、商用電源がない時も、計時動作や温度検知動作や温度表示動作等や安定した出湯動作が行え、且つバックアップ電源を高効率で使用することができる。
【0055】
例えば、図4の電源電圧制御の電源電圧制御に対して、バックアップ電源を常時昇圧してVU2電源を得る場合と比較すると、昇圧回路の電力変換効率分は最低エネルギ損失は少なく、バックアップ電源を昇圧せずにVU2電源を得た場合と比較すると、バックアップ電源の使用電圧範囲が大きく有効利用できる。
【0056】
また、バックアップ電源から出湯動作を行なう時の昇圧電圧は、出湯動作を行なわない時の昇圧電圧とは異なるモータ効率の大きい電圧(本実施例では6.0V)とすることで、出湯動作時もバックアップ電源を高効率で使用することができる。
【0057】
また、図4の電源電圧制御での、第2所定レベル1.5Vは、第1昇圧電圧6Vを得るときの昇圧回路の過負荷となる限界レベルであり、第3所定レベル0.5Vは、第2昇圧電圧3Vを得るときの昇圧回路の過負荷となる限界レベルであり、第2所定レベル1.5V以下で出湯ロック解除を非受付とする、すなわち第1昇圧電圧への昇圧動作を停止し、第3所定レベルで昇圧動作を停止することで昇圧回路の信頼性を確保でき、且つ計時動作や温度検知動作や温度表示動作等の動作範囲と出湯動作の動作範囲を切り替えることでバックアップ電源を有効活用できる。
【0058】
尚、図4の電源電圧制御では、第1所定レベルを2.5V(VDD電源で2.1V)、第2昇圧電圧を3.0V(VDD電源で2.9V)として説明したが、いずれも制御手段である中央制御装置を含むマイコンに最小動作電圧以上を供給できるレベルないしは電圧であれば同等の効果が得られる。
【0059】
また、マイコンによっては、計時動作や記憶手段のデータ保持動作を行うための最小動作電圧より、温度検知を行なうためのAD変換動作の最小動作電圧が高い場合があり、例えば計時動作や記憶手段のデータ保持動作の最小動作電圧が2.0Vであり、AD変換動作の最小動作電圧が2.9Vであったとすると図3におけるVBK電源が3.3Vから2.5Vの範囲にある時は、温度検知を行う時のみVU2を3.0V、VDDを2.9Vとすることで、温度検知動作とバックアップ電源の高効率使用を両立することができる。
【0060】
また、図4の電源電圧制御では、VGC電源が第1所定レベル2.5V以上では出湯動作がなければ昇圧しないとしているが、出湯動作がなくVGC電源が第3所定レベル0.5V以上であれば、第2昇圧電圧に昇圧するとしても、バックアップ電源の使用効率はVGC電源が第1所定レベル2.5V以下では同等であり、且つ制御動作を簡素化でき安価な構成となる。
【0061】
また尚、図4の電源電圧制御では、出湯操作がなく且つVBK電源が第1所定レベルまで減衰してから第3所定レベルに達するまでは常時昇圧動作を行うとしているが、この昇圧動作を所定時間毎に行うものとし、間欠昇圧動作の間の昇圧オフ期間は、VU2電源に接続したコンデンサ30もしくはVDD電源に接続したコンデンサ33でVDD電源がマイコンの最小動作電圧以下となるのを抑制することで、更にバックアップ電源の高効率使用が行なえる。
【0062】
また尚、図4の電源電圧制御では、バックアップ電源の残存エネルギ検知は常時行うとしているが、これをVBK電源の減衰特性に対して支障の無い所定時間毎に行なうものとすれば更にバックアップ電源の高効率使用が行なえる。例えば、VBKが5分で0.1V電圧低下するとすれば、マイコン最小動作電圧2.0Vに対して0.1V高い2.1VのVDD電源となると昇圧を開始するよう第1所定レベルを設定し、昇圧停止の第3所定レベルを昇圧回路の過負荷限界の0.5Vより0.1V高い0.6Vと設定すれば、5分毎に残存エネルギ検知するとしても問題ない。
【0063】
また、本実施例ではバックアップ電源の具体例は特筆していないが、電気2重層コンデンサであっても2次電池であっても同等の効果が得られる。また、バックアップ電源に1次電池を使用した場合も、本実施例の充電回路37とダイオード38を除し、充電完了の電圧3.8〜4Vを、1次電池の初期電圧として置き換えれば同等の効果が得られる。
【0064】
【発明の効果】
以上のように、本発明によれば、バックアップ電源の残存エネルギレベルが大きい時は昇圧なしで電源供給し、残存エネルギレベルが、昇圧なしの供給で制御手段の最低動作電圧を下回る直前のレベルとなった時、昇圧して電源供給することで、バックアップ電源の使用効率を向上することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す構成図
【図2】本発明の実施例の回路図
【図3】本発明の実施例のバックアップ時の電源電圧特性図(出湯操作のない場合)
【図4】本発明の実施例のバックアップ時の電源電圧特性図(出湯操作がある場合)
【符号の説明】
2 容器
14 バックアップ電源
15 昇圧手段
16 制御手段
17 計時手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric water heater that supplies power with a backup power supply when commercial power is not input.
[0002]
[Prior art]
Heretofore, there has been proposed an electric water heater of this type which performs a hot water discharge operation, a timing operation, and the like by a backup power supply when commercial power is not input.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional technology, the supply voltage is directly supplied to the device without boosting the backup power supply, so that the operating voltage range of the backup power supply is narrow, or the backup power supply is constantly boosted and the power is supplied to the device. However, there was a problem in the effective use of the backup power supply.
[0004]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electric water heater in which the use efficiency of a backup power supply is significantly improved.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, the present invention provides a container for storing a liquid, a tapping means for discharging the liquid in the container, a backup power supply for supplying power to the device when commercial power is not input, and a timer for measuring time. And a control means for controlling the operations of the tapping means and the timekeeping means. When power is supplied from the backup power supply, the residual energy of the backup power supply is lower than a first predetermined level. If it is larger, power is supplied to the control means without boosting the backup power supply, and if it is equal to or lower than a first predetermined level, the boosting means operates to boost the backup power supply and supply power to the control means. It was made.
[0006]
When the residual energy level of the backup power supply is high, power is supplied without boosting, and when the residual energy level becomes a level just before the minimum operating voltage of the control means falls below the minimum operating voltage of the supply without boosting, power is supplied by boosting. Thus, the use efficiency of the backup power supply can be improved.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, there is provided a container for storing a liquid, a tapping means for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, and a timing unit for timing time. A boosting means for boosting the backup power supply, and a control means for controlling the operations of the tapping means and the time keeping means. When the remaining power of the backup power supply is larger than the first predetermined level when the power is supplied from the backup power supply, The backup power supply is supplied to the control means without boosting, and if the backup power supply is not higher than the first predetermined level, the boosting means operates to boost the backup power supply and supply power to the control means, thereby increasing the efficiency of use of the backup power supply. Can be improved.
[0008]
According to a second aspect of the present invention, there is provided a container for storing a liquid, a tapping unit for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, and a timing unit for counting time. A boosting means for boosting the backup power supply, and a control means for controlling the operations of the tapping means and the time keeping means. When the remaining power of the backup power supply is larger than the first predetermined level when the power is supplied from the backup power supply, The backup power supply is supplied to the control means without boosting, and if the backup power supply is not higher than the first predetermined level, the boosting means operates to boost the backup power supply at predetermined time intervals and supply power to the control means, thereby using the backup power supply. Efficiency can be improved.
[0009]
According to a third aspect of the present invention, there is provided a container for storing a liquid, a tapping unit for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, and a timing unit for counting time. A boosting means for boosting the backup power supply, and a control means for controlling operations of the tapping means and the timer means. When power is supplied from the backup power supply, and when the liquid is discharged by the tapping means, the boosting means is connected to the backup means. The power supply is boosted to a first predetermined voltage to supply power to the tapping means and the control means. If no liquid is discharged by the tapping means and the remaining energy of the backup power supply is larger than the first predetermined level, the backup power supply is not boosted. Power is supplied to the control means, and if there is no discharge of liquid by the tapping means and the remaining energy of the backup power supply is equal to or lower than the first predetermined level, Means that is the power supply to the control means to boost the backup power lower than the first predetermined voltage a second predetermined voltage, it is possible to improve the use efficiency of the backup power supply.
[0010]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, when the remaining energy of the backup power supply is equal to or lower than a second predetermined level lower than the first predetermined level, the discharge of the liquid by the tapping means is prohibited. By doing so, the use efficiency of the backup power supply can be improved, and a highly reliable configuration in which the booster is not overloaded.
[0011]
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the boosting operation is performed when the remaining energy of the backup power supply becomes equal to or lower than a third predetermined level lower than the first predetermined level or the second predetermined level. By stopping the power supply, the use efficiency of the backup power supply can be improved, and a highly reliable configuration in which the booster is not overloaded can be provided.
[0012]
According to a sixth aspect of the present invention, by detecting the residual energy of the backup power supply according to any one of the first to fifth aspects of the present invention at predetermined time intervals, power consumption required for the detection operation can be reduced. Use efficiency can be improved.
[0013]
According to a seventh aspect of the present invention, there is provided a container for storing a liquid, a tapping unit for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, and a timing unit for counting time. A boosting means for boosting the backup power supply, and a control means for controlling the operation of the tapping means and the time measuring means. When power is supplied from the backup power supply, and when the liquid is discharged by the tapping means, the boosting means is connected to the backup power supply. Is raised to a first predetermined voltage to supply power to the tapping means and the control means, and when the tapping means does not discharge liquid, the boosting means raises the backup power supply to a second predetermined voltage lower than the first predetermined voltage. Then, by supplying power to the control means, it is possible to improve the use efficiency of the backup power supply.
[0014]
According to an eighth aspect of the present invention, in the invention of the seventh aspect, when the remaining energy of the backup power supply falls below the second predetermined level, the discharge of the liquid by the tapping means is prohibited, thereby improving the use efficiency of the backup power supply. And a highly reliable configuration in which the booster is not overloaded.
[0015]
According to a ninth aspect of the present invention, in the invention of the seventh or eighth aspect, the boosting operation is stopped when the remaining energy of the backup power supply becomes equal to or lower than a third predetermined level lower than the second predetermined level. It is possible to improve the use efficiency and to obtain a highly reliable configuration in which the booster is not overloaded.
[0016]
According to a tenth aspect of the present invention, the power consumption required for the detection operation can be reduced by detecting the remaining energy of the backup power supply at predetermined time intervals according to the invention of the eighth or ninth aspect, and the use efficiency of the backup power supply can be further reduced. Can be improved.
[0017]
According to an eleventh aspect of the present invention, the power required for the boosting operation is obtained by performing the boosting operation to the first boosted voltage or the second boosted voltage according to any one of the third to tenth aspects at predetermined time intervals. Loss can be reduced, and the efficiency of using the backup power supply can be improved.
[0018]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
(Example 1)
FIG. 1 is a configuration diagram in the present embodiment.
[0020]
In FIG. 1, there is a container 2 for accommodating water having an upper surface opening in a main body 1, and a lid 3 for covering an upper portion of the container is arranged. A heating means 4 for heating the water in the container 2; a temperature detecting means 5 for detecting the temperature of the water in the container 2; an electric pump 7 for guiding the hot water in the container 2 from the discharge port 20 to the outside; The motor 6 serving as a hot water supply means serving as a drive source of the electric pump 7 is used at a lower side. When a commercial power is not supplied, a backup power supply 14 for supplying power to the apparatus and a power outlet 19 for inputting the commercial power are used laterally. An operation unit 8 that can be easily operated by a user is disposed above. Here, the operation unit 8 includes a tapping switch 9 for tapping hot water, a tapping lock release switch 10 for permitting operation of tapping operation, and a reboiler switch 11 for boiling hot water in a heat-retaining state again. 1, a heat retention temperature setting selection switch 12 for setting the heat retention temperature, and a display element 13 for displaying the hot water temperature and the heat retention temperature setting (FIG. Indicates a set heat retention temperature)), and the heating means 4 has a large output for boiling water in the container 2, for example, a main heater of 1000 W, and a heater in the container 2. It has a relatively small output that keeps water warm, for example, an auxiliary heater of 75 W.
[0021]
Next, reference numeral 15 denotes a booster which receives a signal from the backup power supply 14 and the control means 16 and outputs a signal to the control means 16 and the motor 6. Reference numeral 17 denotes a timing means for inputting and outputting signals to and from the control means. Reference numeral 18 denotes storage means for inputting and outputting signals to and from the control means. Reference numeral 16 denotes a storage means from the temperature detection means 5, the backup power supply 14, the boosting means 15, the operation unit 8, the time measuring means 17, and the storage means 18. This is a control unit that receives a signal and outputs a signal to the heating unit 4, the motor 6, the operation unit 8, the step-up unit 15, the timer unit 17, and the storage unit 18.
[0022]
FIG. 2 is a control circuit diagram of the present embodiment having the configuration of FIG. 1, and the present embodiment will be described in detail with reference to FIG.
[0023]
In FIG. 2, a commercial power supply 21 supplies power to a control circuit via a power outlet 19, and a main heater 4a serving as a heating unit is connected via a main heater driving relay 22, and an auxiliary heater 4b is used for driving an auxiliary heater. It is connected via a relay 24.
[0024]
The commercial power supply 21 includes a rectifier circuit 26, a transformer circuit 27, a backflow preventing diode 29, and a regulator 30 (here, when the input voltage is 5 V or more, the output is 5 V, and when the input is less than 5 V, the input voltage is 0.1 V from the input voltage. The power is supplied to the microcomputer 33 (hereinafter referred to as VDD power supply) through a reduced output regulator (hereinafter referred to as a VDD power supply), and the output of the diode 29 (hereinafter referred to as VU2 power supply) is supplied through the tap switch 9 and the motor driving transistor 35 to the motor 6. The output of the transformer circuit 27 (hereinafter referred to as VU1 power supply, here 8 V) is connected to the backup power supply 14 through the charging circuit 37 and the backflow prevention diode 38.
[0025]
Further, the backup power supply 14 supplies power to the VU2 power supply via the booster circuit 15. The VU2 power supply is configured to be able to supply power from both the commercial power supply 21 and the backup power supply 14, but the output voltage from the transformer circuit 18 is set to be higher than the output voltage from the booster circuit 15, and When both power supplies 14 are connected, power is supplied from the commercial power supply 21.
[0026]
The booster circuit 15 has a built-in Schottky barrier diode for preventing backflow, and has a configuration in which no current flows from the VU2 power supply to the backup power supply 14. When the boosting off signal is output to the circuit 15, the output of the boosting circuit 15 is changed from the input, that is, the voltage of the backup power supply 14 (hereinafter referred to as VBK power supply) to the voltage of the above-mentioned Schottky barrier diode (here 0.3 V constant). ) Is subtracted.
[0027]
Reference numerals 28, 30, and 32 denote smoothing capacitors for the VU1, VU2, and VDD power sources, respectively.
[0028]
When the commercial power supply 21 is supplied from the power outlet 19, the central control device 16 as the control means detects the temperature (hereinafter referred to as θ) obtained from the divided voltage of the temperature sensor 5 as the temperature detection means and the resistor 34. On / off control of the main heater 4a and the auxiliary heater 4b is performed via the relay driving circuits 23 and 25, the main heater driving relay 22, and the auxiliary heater driving relay 24 based on the above. If the detected temperature θ is lower than the predetermined temperature θ1 (for example, about 90 ° C.), the main heater 4a and the auxiliary heater 4b are turned on, and the temperature is displayed on the LCD 13 as a display element. Thereafter, the temperature detection and the temperature display are repeated, and when the temperature rise (hereinafter referred to as Δθ) becomes smaller than a preset temperature rise value (Δθ), it is determined that the hot water in the container has boiled and the main heater 4a and the auxiliary heater 4b Turn off.
[0029]
After that, the temperature detection and the temperature display are repeated again, and the central control device 16 controls the auxiliary heater 4b on and off based on the detected temperature so as to maintain a predetermined temperature θ2 (for example, about 98 ° C.). A state in which the main heater 4a and the auxiliary heater 4b are turned on to raise the temperature of hot water will be described as a boiling mode, and a state in which the auxiliary heater 4b is turned on and off so as to maintain the predetermined temperature θ2 will be described as a heat retention mode.
[0030]
Temperature detection is repeated regardless of whether the device is in the boiling mode or the heat retention mode. When water or the like is added during the heat retention mode and the detected temperature θ becomes lower than θ1, the device again enters the boiling mode. When the reboil switch 11 is pressed during the warming mode and a signal is input to the central control unit 16, the apparatus shifts to the boiling mode.
[0031]
When the heat retaining temperature setting selection switch 12 is pressed and a signal is input to the central controller 16, the central controller 16 switches the values of the predetermined temperatures θ1 and θ2 (θ1 is, for example, about 85 ° C., θ2 is, for example, about 80 ° C.), and The setting change is displayed on the LCD 13. In the warming mode, when the warming temperature setting selection switch 12 is pressed, the operation is to maintain about 85 ° C.
[0032]
When the commercial power supply 21 is supplied, the central control device 16 charges the backup power supply 14 from the VU1 power supply via the charging circuit 37 and the backflow prevention diode 38. The amount of charge of the backup power supply 14 is input to the central control device 16 as a divided voltage of the resistor 39 and the resistor 40, and when the voltage reaches a preset voltage value (here, 4V), the central control device 16 supplies the backup power. 14 is stopped. After reaching 4V, if the voltage drops to a predetermined voltage (for example, 3.8V) due to self-discharge or the like, the charging operation to 4V is performed again. As described above, the charge of the VBK power supply is controlled to be 3.8 V to 4 V over time.
[0033]
On the other hand, the VU1 power generated from the commercial power supply 21 is 8 V, and the VU2 power is supplied from the VU1 power supply even if the voltage drop (0.7 V in this case) of the backflow prevention diode 29 is considered. .3V. When the commercial power supply 21 is supplied, the boosting operation of the booster circuit 15 is off, and a reverse current from the VU2 power supply to the VBK power supply is prevented by the Schottky barrier diode built in the booster circuit 15.
[0034]
Further, when the commercial power supply 21 is supplied, the central control device 16 drives the motor driving transistor 35 via the resistor 36 in response to a signal input from the tapping lock release switch 10. Reference numeral 9 denotes a tapping switch which can be easily operated by the user. When the tapping switch 9 is turned on with the transistor 35 turned on, the motor 6 is driven and the hot water in the container can be discharged by a pump directly connected to the motor.
[0035]
Here, the RAM 18 as a storage means is a memory for storing an operation state of the equipment, for example, a heat retention temperature setting, an operation mode, the presence or absence of a tapping operation, and the like, in which writing and reading are performed under the control of the central controller 16, and The timer 17, which is a means, generates basic times such as temperature detection timing, writing to the RAM 18, and reading timing under the control of the central controller 16.
[0036]
Next, when the VBK power supply is charged to 4 V and the commercial power supply is turned off, the VU2 power supply is supplied from the VBK power supply, and the remaining energy of the backup power supply 14 detected as a divided voltage of the resistor 39 and the resistor 40 is detected. Is higher than the first predetermined level (here, VBK is 2.5 V), the power supply from the VBK power supply to the VU2 power supply is performed by turning off the boosting operation of the booster circuit 15, and the remaining energy is reduced by the elapse of time. When the voltage becomes equal to or lower than 1 predetermined level (here, VBK is 2.5 V), the power supply from the VBK power supply to the VU2 power supply turns on the boosting operation of the boosting circuit 15, and the output of the boosting circuit, that is, the VU2 power supply is switched to the second The boost voltage (here, 3V) is set.
[0037]
When the remaining energy becomes equal to or lower than the third predetermined level (here, VBK is 0.5 V), the boosting operation is stopped. While the remaining energy is between the maximum charge level (energy corresponding to VBK of 4 V) and a third predetermined level, an effective power source is supplied to the microcomputer 33 (hereinafter, referred to as a microcomputer) including the central control device 16 as control means. Then, temperature detection, LCD display, RAM 17 operation and data holding, and timer operation become possible.
[0038]
FIG. 3 shows power supply voltage characteristics when power is supplied from the backup power supply 14. This will be described in more detail with reference to FIG. Assuming that the timing of turning off the commercial power supply is time 0, if the VBK power supply is not a tapping operation and attenuates from 4 V through the first predetermined level 2.5 V and the third predetermined level 0.5 V as shown in the figure, immediately after the commercial power supply is turned off Since the boosting operation of the VU2 power supply is off under the control of the central controller 16, the voltage drops from the VBK power supply by the voltage loss of the Schottky barrier diode in the booster circuit 15 (here, 0.3V). At 0.7 V, the VDD power becomes 3.6 V, which is 0.1 V less than the VU2 power supply due to the characteristics of the regulator 31 described above.
[0039]
Thereafter, the central controller 16 continuously monitors the remaining energy of the backup power supply 14 in the form of a divided voltage of the resistors 39 and 40, and at the point where the VBK power supply reaches the first predetermined level of 2.5 V, The central controller 16 controls the booster circuit 15 to boost the VBK power and supply the power to the VU2 power supply and the VDD power supply. Immediately before the VBK power supply reaches the first predetermined level of 2.5 V, the boosting operation is off as in the case immediately after the commercial power supply is turned off. Therefore, the VU2 power supply is reduced to 0.3 V from the VBK power supply to 2.2 V, and the VDD power supply to VU2. It becomes 2.1V which is 0.1V less than the power supply. Here, for example, when the minimum operating voltage of the microcomputer 33 is 2.0 V, the voltage of the VDD power supply is increased after 2.1 V, so that the microcomputer can be continuously operated.
[0040]
When the VBK power supply reaches the first predetermined level of 2.5 V, the VU2 power supply is boosted by the booster circuit 15 to the second boosted voltage (here, 3.0 V). At this time, the VDD power supply is 2.9 V, which is 0.1 V less than the VU2 power supply. The step-up operation of the VU2 power supply to 3.0 V and the VDD power supply to 2.9 V is continued until the VBK power supply reaches the third predetermined level 0.5 V lower than the first predetermined level, and when the VBK power supply reaches the third predetermined level 0.5 V. Then, the boosting operation of the booster circuit 15 is stopped.
[0041]
As described above, according to the present embodiment, the backup power supply is not boosted until the remaining energy of the backup power supply reaches a level immediately above the level at which power can be supplied to the microcomputer including the control means, the timing means, and the storage means without being boosted, that is, the first predetermined level. When the power is supplied to the microcomputer and the voltage falls below the first predetermined level, the backup power is boosted and the power is supplied to the microcomputer, so that the timekeeping operation, the temperature detection operation, the temperature display operation, etc. can be performed even when there is no commercial power supply. In addition, the backup power supply can be used with high efficiency.
[0042]
For example, as compared to the case where the backup power supply is constantly boosted to obtain the VU2 power supply, the power supply voltage control of FIG. Compared with the case where the VU2 power supply is obtained, the working voltage range of the backup power supply is large and can be used effectively.
[0043]
Further, the third predetermined level 0.5 V in the power supply voltage control of FIG. 3 is a limit level at which the booster circuit becomes overloaded when obtaining the boosted output 3 V, and the boosting operation is stopped at the third predetermined level. This can ensure the reliability of the booster circuit.
[0044]
In the power supply voltage control of FIG. 3, the first predetermined level is described as 2.5 V (2.1 V with the VDD power supply) and the second boosted voltage is set at 3.0 V (2.9 V with the VDD power supply). The same effect can be obtained as long as the level or the voltage can supply the minimum operating voltage or more to the microcomputer including the central control device as the control means.
[0045]
Also, depending on the microcomputer, the minimum operating voltage of the AD conversion operation for performing temperature detection may be higher than the minimum operating voltage for performing the timekeeping operation or the data holding operation of the storage unit. Assuming that the minimum operation voltage of the data holding operation is 2.0 V and the minimum operation voltage of the AD conversion operation is 2.9 V, when the VBK power supply in FIG. By setting VU2 to 3.0 V and VDD to 2.9 V only when the detection is performed, both the temperature detection operation and the efficient use of the backup power supply can be achieved.
[0046]
In addition, in the power supply voltage control of FIG. 3, the VBK power supply attenuates to the first predetermined level and always performs the boosting operation until the VBK power supply reaches the third predetermined level. However, this boosting operation is performed every predetermined time. During the boosting off period during the intermittent boosting operation, the capacitor 30 connected to the VU2 power supply or the capacitor 33 connected to the VDD power supply suppresses the VDD power supply from falling below the minimum operating voltage of the microcomputer, thereby further increasing the backup power supply. Efficient use is possible.
[0047]
In the power supply voltage control shown in FIG. 3, the residual energy of the backup power supply is always detected. However, if this is performed at predetermined time intervals that does not hinder the attenuation characteristic of the VBK power supply, the backup power supply can be further controlled. Highly efficient use is possible. For example, assuming that VBK drops by 0.1 V in 5 minutes, the first predetermined level is set to start boosting when a VDD power supply of 2.1 V, which is 0.1 V higher than the microcomputer minimum operating voltage of 2.0 V, is started. If the third predetermined level of the boost stop is set to 0.6 V, which is 0.1 V higher than the overload limit of 0.5 V of the boost circuit, there is no problem even if the remaining energy is detected every 5 minutes.
[0048]
FIG. 4 shows power supply voltage characteristics when power is supplied from the backup power supply 14 and a tapping operation is performed. FIG. 4 is the same as that described in the description of FIG. 3 for the portion where the tapping operation is not performed.
[0049]
Immediately after the commercial power supply is turned off, the boosting operation of the VU2 power supply is off under the control of the central control unit 16, so that the voltage drops (0.3 V) from the VBK power supply by the voltage loss of the Schottky barrier diode in the booster circuit 15. At 0.7 V, the VDD power becomes 3.6 V, which is 0.1 V less than the VU2 power supply due to the characteristics of the regulator 31 described above. The remaining energy of the backup power supply 14 is continuously monitored by the central control device in the form of the divided voltage of the resistor 39 and the resistor 40, as described with reference to FIG.
[0050]
Thereafter, before the VBK power supply is attenuated to the first predetermined level of 2.5 V, when the tapping lock release switch 10 is pressed and a signal is input to the central control device 16, the central control device 16 turns on the boosting operation of the booster circuit 15. Then, the backup power supply 14 is boosted to the first boosted voltage (here, 6.0 V) to supply the VU2 power supply. At this time, the VDD power becomes 5.0 V due to the characteristics of the regulator 31 described above. When the tapping lock release switch 10 is pressed, the central control device 16 also turns on the tapping drive transistor 35 via the resistor 36. In this state, when the tapping switch 9 is pressed, the VU2 power supply 6.0V is supplied to the motor 6. Is applied, and the liquid in the container can be discharged. When the hot water switch 9 is turned off and a predetermined time has elapsed, the hot water is locked, the boosting operation is turned off again, and the backup power supply 14 is not boosted until the VBK power supply reaches the first predetermined level (2.5 V). Supply power to the power supply. (Similar to the description of FIG. 3, immediately before the VBK power supply reaches the first predetermined level (2.5 V), VU2 becomes 2.2V power supply and VDD power supply becomes 2.1V).
When the VBK power supply reaches the first predetermined level of 2.5 V, the VU2 power supply is boosted by the booster circuit 15 to a second boosted voltage (here, 3.0 V) lower than the first boosted voltage of 6.0 V. . At this time, the VDD power supply is 2.9 V, which is 0.1 V less than the VU2 power supply.
[0051]
Then, when the tapping lock release switch 10 is pressed and the signal is input to the central control device 16 before the VBK power supply attenuates to the second predetermined level 1.5 V, the central control device 16 turns on the boosting operation of the booster circuit 15. Then, the backup power supply 14 is boosted to the first boosted voltage (here, 6.0 V) to supply the VU2 power supply. At this time, the VDD power becomes 5.0 V due to the characteristics of the regulator 31 described above. When the tapping lock release switch 10 is pressed, the central control device 16 also turns on the tapping drive transistor 35 via the resistor 36. In this state, when the tapping switch 9 is pressed, the VU2 power supply 6.0V is supplied to the motor 6. Is applied, and the liquid in the container can be discharged. When a predetermined time elapses after the tapping switch 9 is turned off, the tapping lock state is established, and the VU2 power supply returns to the second boosted voltage of 3.0 V and the VDD power supply returns to the state of being boosted to 2.9 V.
[0052]
When the VBK power supply falls to or below the second predetermined level 1.5V, the tapping lock release switch 10 does not accept, the boosting operation to the first boosted voltage is not performed, and until the VBK power supply reaches the third predetermined level 0.5V. The VU2 power supply is maintained at a second boosted voltage of 3.0V, and the VDD power supply is maintained at a voltage of 2.9V.
[0053]
Then, when the voltage of the VBK power supply reaches the third predetermined level of 0.5 V over time, the boosting operation of the booster circuit 15 is stopped.
[0054]
As described above, according to the present embodiment, at the time of tapping lock and tapping operation, the backup power supply is boosted to the first boosted voltage to supply power to the motor and the microcomputer, and there is no tapping operation including tapping unlocking operation. At this time, until the residual energy of the backup power supply reaches a level immediately above a level at which the microcomputer including the control means, the timekeeping means, and the storage means can be supplied with power without being boosted, that is, a first predetermined level, the backup power supply supplies power to the microcomputer without being boosted. When the voltage falls below a predetermined level, the backup power supply is boosted to a second boosted voltage lower than the first boosted voltage and is supplied to the microcomputer, so that the clocking operation, the temperature detection operation, the temperature display operation, etc. can be performed even when there is no commercial power supply. And a stable tapping operation can be performed, and the backup power supply can be used with high efficiency.
[0055]
For example, as compared with the power supply voltage control of the power supply voltage control in FIG. 4, when compared with the case where the backup power supply is constantly boosted to obtain the VU2 power supply, the power conversion efficiency of the booster circuit has the lowest minimum energy loss and the backup power supply is boosted. As compared with the case where the VU2 power supply is obtained without performing the above, the operating voltage range of the backup power supply is large and can be effectively used.
[0056]
Further, the boosted voltage when the tapping operation is performed from the backup power supply is set to a voltage (6.0 V in the present embodiment) having a high motor efficiency different from the boosted voltage when the tapping operation is not performed. The backup power supply can be used with high efficiency.
[0057]
Further, the second predetermined level 1.5V in the power supply voltage control of FIG. 4 is a limit level at which the booster circuit is overloaded when obtaining the first boosted voltage 6V, and the third predetermined level 0.5V is This is the limit level at which the booster circuit overloads when obtaining the second boosted voltage 3V. When the second predetermined level is 1.5V or less, the tapping lock release is not accepted, that is, the boosting operation to the first boosted voltage is stopped. By stopping the boosting operation at the third predetermined level, the reliability of the boosting circuit can be ensured, and the backup power supply is switched by switching between the operation range of the timekeeping operation, the temperature detection operation, the temperature display operation, and the like and the operation range of the tapping operation. Can be used effectively.
[0058]
In the power supply voltage control of FIG. 4, the first predetermined level is described as 2.5V (2.1V with VDD power supply) and the second boosted voltage is set at 3.0V (2.9V with VDD power supply). The same effect can be obtained as long as the level or the voltage can supply the minimum operating voltage or more to the microcomputer including the central control device as the control means.
[0059]
Also, depending on the microcomputer, the minimum operating voltage of the AD conversion operation for performing temperature detection may be higher than the minimum operating voltage for performing the timekeeping operation or the data holding operation of the storage unit. Assuming that the minimum operation voltage of the data holding operation is 2.0 V and the minimum operation voltage of the AD conversion operation is 2.9 V, when the VBK power supply in FIG. By setting VU2 to 3.0 V and VDD to 2.9 V only when the detection is performed, both the temperature detection operation and the efficient use of the backup power supply can be achieved.
[0060]
Further, in the power supply voltage control of FIG. 4, it is assumed that if the VGC power supply is not higher than the first predetermined level 2.5 V and there is no tapping operation, the voltage is not boosted. For example, even if the backup voltage is boosted to the second boosted voltage, the use efficiency of the backup power supply is the same when the VGC power supply is equal to or lower than the first predetermined level of 2.5 V, and the control operation can be simplified and the configuration is inexpensive.
[0061]
In addition, in the power supply voltage control of FIG. 4, although there is no tapping operation and the VBK power supply attenuates to the first predetermined level and continuously performs the boosting operation until the VBK power supply reaches the third predetermined level, the boosting operation is performed at a predetermined level. During the step-up off period during the intermittent step-up operation, the capacitor 30 connected to the VU2 power supply or the capacitor 33 connected to the VDD power supply suppresses the VDD power supply from falling below the minimum operating voltage of the microcomputer. Thus, the backup power supply can be used more efficiently.
[0062]
In addition, in the power supply voltage control of FIG. 4, the residual energy of the backup power supply is always detected. However, if this is performed at predetermined time intervals that does not hinder the attenuation characteristic of the VBK power supply, the backup power supply can be further controlled. Highly efficient use is possible. For example, assuming that VBK drops by 0.1 V in 5 minutes, the first predetermined level is set to start boosting when a VDD power supply of 2.1 V, which is 0.1 V higher than the microcomputer minimum operating voltage of 2.0 V, is started. If the third predetermined level of the boost stop is set to 0.6 V, which is 0.1 V higher than the overload limit of 0.5 V of the boost circuit, there is no problem even if the remaining energy is detected every 5 minutes.
[0063]
In this embodiment, a specific example of the backup power supply is not particularly described, but the same effect can be obtained regardless of whether it is an electric double layer capacitor or a secondary battery. In the case where a primary battery is used as the backup power source, the equivalent circuit can be obtained by removing the charging circuit 37 and the diode 38 of this embodiment and replacing the voltage of 3.8 to 4 V at the completion of charging with the initial voltage of the primary battery. The effect is obtained.
[0064]
【The invention's effect】
As described above, according to the present invention, when the residual energy level of the backup power supply is large, the power is supplied without boosting, and the residual energy level is set to the level immediately before the voltage drops below the minimum operating voltage of the control means by the supply without boosting. In this case, the efficiency of the backup power supply can be improved by boosting the power supply.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a circuit diagram of an embodiment of the present invention.
FIG. 3 is a power supply voltage characteristic diagram at the time of backup according to the embodiment of the present invention (when there is no tapping operation).
FIG. 4 is a power supply voltage characteristic diagram at the time of backup according to the embodiment of the present invention (when there is a tapping operation).
[Explanation of symbols]
2 containers
14 Backup power supply
15 Boost means
16 control means
17 Timekeeping means

Claims (11)

液体を収容する容器と、前記容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、前記バックアップ電源を昇圧する昇圧手段と、前記出湯手段と前記計時手段の動作を制御する制御手段を備え、前記バックアップ電源より電源供給されている時、バックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに前記制御手段に電源供給し、第1所定レベル以下であれば、前記昇圧手段が動作し前記バックアップ電源を昇圧して前記制御手段に電源供給することを特徴とする電気湯沸かし器。A container for accommodating a liquid, a tapping means for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, a timer for measuring time, and a booster for boosting the backup power supply Means for controlling the operation of the tapping means and the time keeping means. When the power is supplied from the backup power supply, if the remaining energy of the backup power supply is greater than a first predetermined level, the backup power supply is boosted. An electric water heater, wherein the power is supplied to the control means without performing the operation, and if the power supply is equal to or lower than a first predetermined level, the boosting means operates to boost the backup power supply and supply the power to the control means. 液体を収容する容器と、前記容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、前記バックアップ電源を昇圧する昇圧手段と、前記出湯手段と前記計時手段の動作を制御する制御手段を備え、前記バックアップ電源より電源供給されている時、バックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに前記制御手段に電源供給し、第1所定レベル以下であれば、前記昇圧手段が動作し前記バックアップ電源を所定時間毎に昇圧して前記制御手段に電源供給することを特徴とする電気湯沸かし器。A container for accommodating a liquid, a tapping means for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, a timer for measuring time, and a booster for boosting the backup power supply Means for controlling the operation of the tapping means and the time keeping means. When the power is supplied from the backup power supply, if the remaining energy of the backup power supply is greater than a first predetermined level, the backup power supply is boosted. The power is supplied to the control unit without performing the operation, and if the power supply is equal to or lower than a first predetermined level, the boosting unit operates to boost the backup power supply at predetermined time intervals and supply the power to the control unit. Water heater. 液体を収容する容器と、前記容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、前記バックアップ電源を昇圧する昇圧手段と、前記出湯手段と前記計時手段の動作を制御する制御手段を備え、前記バックアップ電源より電源供給されている時、出湯手段により液体を吐出する時は前記昇圧手段が前記バックアップ電源を第1所定電圧に昇圧して前記出湯手段と前記制御手段に電源供給し、出湯手段による液体の吐出がなく且つバックアップ電源の残存エネルギが第1所定レベルより大きいければ、バックアップ電源を昇圧せずに前記制御手段に電源供給し、出湯手段による液体の吐出がなく且つバックアップ電源の残存エネルギが第1所定レベル以下であれば、前記昇圧手段が前記バックアップ電源を第1所定電圧より低い第2所定電圧に昇圧して前記制御手段に電源供給することを特徴とする電気湯沸かし器。A container for accommodating a liquid, a tapping means for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, a timer for measuring time, and a booster for boosting the backup power supply Means for controlling the operation of the tapping means and the timing means. When the power is supplied from the backup power supply, and when the liquid is discharged by the tapping means, the boosting means switches the backup power supply to the first position. The voltage is raised to a predetermined voltage and power is supplied to the tapping means and the control means. If no liquid is discharged by the tapping means and the residual energy of the backup power supply is higher than a first predetermined level, the backup power supply is not boosted and Power is supplied to the control means, and no liquid is discharged by the hot water supply means, and the remaining energy of the backup power supply is equal to or lower than the first predetermined level. If, electric kettle, characterized in that said boosting means is supplying power to said control means to boost the backup power lower than the first predetermined voltage a second predetermined voltage. バックアップ電源の残存エネルギが第1所定レベルより低い第2所定レベル以下となると出湯手段による液体の吐出を禁止することを特徴とする請求項1〜3のいずれか1項に記載の電気湯沸かし器。The electric water heater according to any one of claims 1 to 3, wherein the discharge of the liquid by the tapping means is prohibited when the remaining energy of the backup power supply falls below a second predetermined level lower than the first predetermined level. バックアップ電源の残存エネルギが第1所定レベルもしくは第2所定レベルより低い第3所定レベル以下となると昇圧動作を停止することを特徴とする請求項1〜4のいずれか1項に記載の電気湯沸かし器。The electric water heater according to any one of claims 1 to 4, wherein the boosting operation is stopped when the remaining energy of the backup power supply falls below a third predetermined level lower than the first predetermined level or the second predetermined level. バックアップ電源の残存エネルギ検知を所定時間毎に行なうことを特徴とする請求項1〜5のいずれか1項に記載の電気湯沸かし器。The electric water heater according to any one of claims 1 to 5, wherein the detection of the remaining energy of the backup power supply is performed at predetermined time intervals. 液体を収容する容器と、前記容器内の液体を吐出する出湯手段と、商用電源が入力されない時、機器に電源供給するバックアップ電源と、時間を計時する計時手段と、前記バックアップ電源を昇圧する昇圧手段と、前記出湯手段と前記計時手段の動作を制御する制御手段を備え、前記バックアップ電源より電源供給されている時、出湯手段により液体を吐出する時は、前記昇圧手段が前記バックアップ電源を第1所定電圧に昇圧して前記出湯手段と前記制御手段に電源供給し、出湯手段による液体の吐出がない時は、前記昇圧手段が前記バックアップ電源を第1所定電圧より低い第2所定電圧に昇圧して前記制御手段に電源供給することを特徴とする電気湯沸かし器。A container for accommodating a liquid, a tapping means for discharging the liquid in the container, a backup power supply for supplying power to the apparatus when commercial power is not input, a timer for measuring time, and a booster for boosting the backup power supply Means, and control means for controlling the operation of the tapping means and the timing means. When power is supplied from the backup power supply, and when the liquid is discharged by the tapping means, the boosting means switches the backup power supply to the (1) A power source is supplied to the tapping means and the control means after being boosted to a predetermined voltage, and when no liquid is discharged by the tapping means, the boosting means boosts the backup power supply to a second predetermined voltage lower than the first predetermined voltage. And supplying electric power to the control means. バックアップ電源の残存エネルギが第2所定レベル以下となると出湯手段による液体の吐出を禁止することを特徴とする請求項7記載の電気湯沸かし器。8. The electric water heater according to claim 7, wherein the discharge of the liquid by the tapping means is prohibited when the remaining energy of the backup power supply falls below the second predetermined level. バックアップ電源の残存エネルギが第2所定レベルより低い第3所定レベル以下となると昇圧動作を停止することを特徴とする請求項8記載の電気湯沸かし器。9. The electric water heater according to claim 8, wherein the boosting operation is stopped when the remaining energy of the backup power supply falls below a third predetermined level lower than the second predetermined level. バックアップ電源の残存エネルギ検知を所定時間毎に行なうことを特徴とする請求項8または9に記載の電気湯沸かし器。The electric water heater according to claim 8 or 9, wherein the detection of the remaining energy of the backup power supply is performed at predetermined time intervals. 第1昇圧電圧もしくは第2昇圧電圧への昇圧動作を所定時間毎に行なうことを特徴とする請求項3〜10のいずれか1項に記載の電気湯沸かし器。The electric water heater according to any one of claims 3 to 10, wherein a boosting operation to the first boosted voltage or the second boosted voltage is performed every predetermined time.
JP2002182495A 2002-06-24 2002-06-24 Electric water heater Expired - Fee Related JP3596541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182495A JP3596541B2 (en) 2002-06-24 2002-06-24 Electric water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182495A JP3596541B2 (en) 2002-06-24 2002-06-24 Electric water heater

Publications (2)

Publication Number Publication Date
JP2004024380A JP2004024380A (en) 2004-01-29
JP3596541B2 true JP3596541B2 (en) 2004-12-02

Family

ID=31178978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182495A Expired - Fee Related JP3596541B2 (en) 2002-06-24 2002-06-24 Electric water heater

Country Status (1)

Country Link
JP (1) JP3596541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893484B2 (en) * 2007-06-05 2012-03-07 パナソニック株式会社 Beverage extractor

Also Published As

Publication number Publication date
JP2004024380A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP3596541B2 (en) Electric water heater
JP2007000331A (en) Electric water heater
JP3525902B2 (en) Electric water heater
JP4962191B2 (en) Beverage extractor
JP4591239B2 (en) Electric water heater
JP3551566B2 (en) Electric water heater
JP2007229216A (en) Electric water heater
JP4059280B2 (en) Electric water heater
JP2002306337A (en) Electric water heater
JP2024087536A (en) Control device
JPH08317860A (en) Electric water boiler
JP3578104B2 (en) Electric water heater
JP2798000B2 (en) Electric heating appliances
JP2002209748A (en) Electric water heater
JP5098532B2 (en) Beverage extractor
JP3876529B2 (en) Electric water heater
JP3632639B2 (en) Electric water heater
JP3589140B2 (en) Electric water heater
JP3656621B2 (en) Electric water heater
JP2002272617A (en) Electric water heater
JPH0754761Y2 (en) Hot water storage type electric water heater
JP3448434B2 (en) Cordless iron
JP2879243B2 (en) Rechargeable battery charge control circuit
JP3180641B2 (en) Electric water heater
JP4685710B2 (en) Electric water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees