JP3596436B2 - Angular velocity sensor - Google Patents

Angular velocity sensor Download PDF

Info

Publication number
JP3596436B2
JP3596436B2 JP2000205428A JP2000205428A JP3596436B2 JP 3596436 B2 JP3596436 B2 JP 3596436B2 JP 2000205428 A JP2000205428 A JP 2000205428A JP 2000205428 A JP2000205428 A JP 2000205428A JP 3596436 B2 JP3596436 B2 JP 3596436B2
Authority
JP
Japan
Prior art keywords
vibrator
resonance frequency
angular velocity
vibration isolating
isolating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000205428A
Other languages
Japanese (ja)
Other versions
JP2002022447A (en
Inventor
義将 ▲広▼瀬
哲史 林
武宏 度▲会▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000205428A priority Critical patent/JP3596436B2/en
Publication of JP2002022447A publication Critical patent/JP2002022447A/en
Application granted granted Critical
Publication of JP3596436B2 publication Critical patent/JP3596436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、所定軸回りの角速度を電気的に検出する振動子を有する角速度センサに関するものであり、特にセンサの特性と防振構造に関するものである。
【0002】
【従来の技術】
従来の角速度センサとして示されたコリオリ力を利用した振動型の角速度センサにおいては、振動子の持っている固有振動モードのある固有共振周波数fで発振,駆動することで、速度Vを与える。この時、振動子の所定の軸回りに角速度Ωが入力されると、速度と角速度入力軸のそれぞれと直交する方向にコリオリ力Fcが発生する。このコリオリ力Fcを電気的信号により取出し、駆動周波数fと同一の周波数にて同期検波することで、角速度信号として出力する。
【0003】
【発明が解決しようとする課題】
このような角速度センサでは、駆動周波数f近傍に寄生する外部振動の周波数帯域のノイズ信号おいては、実際に角速度Ωが入力され発生したコリオリ力の信号との判別・分離が困難であり、センサの角速度検出精度を悪化させてしまう。
【0004】
この為、外部からのノイズ等の対策に関しては、例えば、特開平11−6736号公報に知られているように、防振部材の形状を工夫することが行われてきた。
【0005】
しかしながら、いまだ、十分なノイズ対策が見出されていなかった。
【0006】
本発明は、上記問題点に鑑みて、角速度センサにおいて、十分なノイズ対策がなされた構成を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、これらノイズ対策として、全く新しい着眼点から研究を行い、防振部材自身の振動に着目し、防振部材の特に基台保持部共振が振動子の振動状態に大きく影響させていることをはじめて見出したのである。
【0008】
すなわち、請求項1の発明においては、所定軸回りの角速度を検出する振動子と該振動子が固定された基台とを少なくとも有するセンサ部と、該センサ部に設けられ、前記振動子の共振周波数よりも3%以上離れている共振周波数を有する防振部材とからなることを特徴とする。
【0009】
このように、振動子の共振周波数よりも3%以上離れている共振周波数を有する防振部材とすることによって、振動子の振動によって共振する基台が、基台を保持する防振部材の共振により、必要以上にさらに大きく共振することがない。そのため、基台の振動を抑制することができ、しいては基台に固定された振動子へのノイズ振動を抑制させることができる。
【0010】
ここで、振動子の共振周波数よりも3%以上離れていない場合には、十分な効果を得ることができない。
【0011】
請求項4の発明では、前記振動子と前記基台との間には、前記振動子と前記基台とを固定する支持部を有している。このように、支持部を設けることにより、振動子を基台より離間させることが容易にでき、振動子の振動を基台に伝達させることを抑制させることができる。
【0012】
また、請求項5の発明では、前記センサ部をケースに収納しているので、さらに外部からの振動によるノイズ発生を抑制させることができる。
【0013】
さらにまた、請求項6の発明では、所定軸回りの角速度を検出する振動子と該振動子が固定された基台とを少なくとも有するセンサ部と、該センサ部を収納するケースと、前記センサ部を前記ケースより離間させ弾性に支持するバネ部と、前記基台の少なくとも一部を挿入穴により挿入させることにより前記センサ部を保持する保持部とからなる防振部材とからなる角速度センサであって、前記防振部材は、前記振動子の共振周波数よりも3%以上離れている共振周波数を有する角速度センサを提供する。
【0014】
このように、防振部材の構成として、バネ部及び保持部を形成させているので、さらに振動による振動子のノイズ発生を抑制させることができる。
【0015】
そして、請求項9の発明では、前記防振部材の前記保持部の共振周波数が前記振動子の共振周波数よりも3%以上離れるように、前記防振部材の前記保持部を構成する材料が選定することにより、容易に本発明を達成させることができる。
【0016】
また、請求項10の発明では、前記防振部材の前記保持部の共振周波数が前記振動子の共振周波数よりも3%以上離れるように、前記防振部材の基台側取付部板厚と同方向側の厚さが調整されることにすれば、正確に前記防振部材の前記保持部の共振周波数が前記振動子の共振周波数よりも3%以上離すことができる。
【0017】
また、請求項11の発明においては、所定軸回りの角速度を検出する振動子と該振動子が固定された基台とを少なくとも有するセンサ部と、該センサ部を収納するケースと、前記センサ部を前記ケース内に固定する防振部材と、前記防振部材が圧縮応力が印加されることによって、前記センサ部が前記ケース内に保持されるように、前記防振部材と前記ケースとの間に設けられるフレーム部材とからなる角速度センサであって、前記防振部材材は、前記振動子の共振周波数よりも3%以上離れている共振周波数を有する角速度センサを提供する。
【0018】
このような構成を採用することにより、さらに、ノイズの低減を達成することができる。
【0019】
【発明の実施の形態】
図1に基づき本発明の一実施形態を説明する。
【0020】
本実施形態は、例えば車両等の被検出物ににセンサを固定するケース10、振動子21および振動子21を固定する基台22とを有するセンサ部20、センサ部20をケース10内に収納及び保持し、振動子21に伝達される外部からの振動及び衝撃を減衰させる防振部材50、防振部材50をケース10内に固定するフレーム60、振動子21の駆動信号を発生させコリオリ力Fcを検出した信号を処理する回路基板80、基台22の例えばハーメチック端子pと回路基板80とを接続し、電気信号を伝達するフレキシブルケーブル70(以下、フレキと略す)、回路基板80への電源供給端子と回路基板80にて処理された角速度信号出力端子とを有し回路基板を外部ノイズからカバーするコネクタ90より、形成されている。又、防振部材50については、センサ部20を外部からの干渉を絶縁する為にケースより離間させて支持するバネ部52とセンサ部を弾性に保持する保持部51があり、この保持部51には基台側取付部に嵌めることの出来る様に挿入穴51aが形成されている。
【0021】
次に、角速度センサのセンサ部20について、図2,3を用いて説明する。センサ部20は、例えば圧電素子の表面に電極を形成してなる振動子21、振動子21とは略平行に配置された金属製で板状の基台22、振動子21と基台22を連結固定している例えば42アロイから成る支持部23、振動子21を覆う様に配置される金属製でドーム状のシェル27を備えた構成となっている。又、基台22おいては、防振部材を取り付けるための基台側取付部22aが設けられている。
【0022】
振動子21は、一対のアーム部24,25と各アーム部24,25の一端を連結する連結部26とを有する音叉形状有したいわゆる音叉型振動子を構成している。そして、振動子21は、支持部23に対して例えばエポキシ系接着剤にて接合されている。また、支持部23は基台22に例えば溶接により固定することにより、振動子21を基台22に固定している。振動子21には駆動用電極30,31、モニタ用電極32,33、基準電位に接地された仮GND電極34,35,40、角速度検出用電極41,42、角速度検出用電極41,42からの出力を取り出す為のパット電極36,37、角速度検出用電極41,42からの出力をパット電極36,37に引き出す為の引き出し用電極45,46、裏面の仮GND電極40と表面の仮GND電極34,35を短絡する為の仮GND短絡用電極43,44が形成されている。
【0023】
振動子21と回路基板等外部との信号の入出力は、例えば基台22に設けられているハーメチック端子pと振動子21上の各電極をワイヤボンディングSにて接続することで行う。
【0024】
また、室温における、上記振動子21の共振周波数は、3.2kHzであり、防振部材50の共振周波数は2.5kHzとなるようにした。
【0025】
次に振動子21の作用について、図4にて説明する。先ず、回路基板80より、振動子21の各駆動電極に反転した電圧を印加することでY方向に共振し、駆動振幅が発生し質点速度Vが発生する。この時の駆動周波数は、振幅効率が高く同一電圧で速度が最大となる振動子21の対象モードの共振周波数で振動する。また、モニタ用電極32,33の出力をモニタしフィードバックすることで、温度等により駆動振幅状態が変わっても一定となる様に自励発振制御を行っている。
【0026】
この様に振動子21に質点速度Vが発生している状態にて角速度Ωが入力された時、質点速度Vと角速度入力軸(Z)に対して直交する方向にコリオリ力Fcが発生する。これにより、X方向へのたわみ振幅(検出振幅)が発生し、これに比例した出力が角速度検出用電極41,42より発生することで、角速度Ωを検出する。
【0027】
本件で問題としているセンサ特性であるオフセット温度ドリフト(以下、温ドリと略す)とは、入力角速度が無入力(0°/s)状態での角速度検出用電極41,42からの出力(即ちオフセット)の温度変化であり、この温ドリがある特定の温度域において著しい突起状の変動が発生するという問題がある。この温ドリの発生要因として、今回、防振部材50の形状と温ドリとの関係について調査、研究の結果、防振部材50の特に基台保持部51に使用する材料や形状から決定される共振周波数から発生する振動が温ドリの主要因の1つである振動子21の不要振動の増長に大きく影響しており、防振部材50あるいは基台保持部51形状及び、使用する材料を最適化することで振動子21の不要振動を最小限に抑えることができ、温ドリの改善が可能となった。
【0028】
以下本発明の特徴部分を詳細に説明する。
【0029】
はじめに、従来の圧電体を用いた音叉型振動子21と防振部材50に例えば標準シリコンゴムで硬度60°Hs程度を用いた時の温ドリを評価した結果を図5に示す。
【0030】
図5では、横軸に温度の変化と縦軸に振動子出力との関係を示す。
従来構造においては、図5に示す様に、−20℃近傍において、温ドリに突起状の異常変動(以下、温ドリ突起Tと略す)が発生する。
【0031】
そこで、我々発明者らは、この温ドリ突起Tの発生している温度域(図5の場合には、−20℃近傍)での防振部材50の振動状態に着目した。その結果、この温度域では、防振部材50の保持部51の振動の共振周波数が振動子21の共振周波数とほぼ一致していることが確認された。
【0032】
これは、振動子21と防振部材50の保持部51との共振周波数と温ドリ突起Tの発生温度との関係を示す図6より明らかである。
【0033】
即ち、図6より従来構造において発生する温ドリ突起Tの発生温度域(この場合では−20℃)にて双方の共振周波数が一致していることがわかる。
【0034】
尚、本発明における防振部材50の共振周波数の測定方法としては、防振部材50を組み付けた状態で振動子21に交流電圧を印可させることにより振動子21を加振させた後、この振動子21の振動周波数を順次変化させ、各々の振動子21における周波数での防振部材50の保持部の動きをレーザ変位計で確認した。そして、この防振部材50の動きより、防振部材50の周波数を求めた。
【0035】
以上のような知見より、本発明においては、防振部材50の保持部51の共振周波数を振動子21の共振周波数とを相違させる必要があることを初めて見出したものである。
【0036】
具体的な手段としては、図7に示す関係式を用いることができる。
【0037】
即ち、防振部材50の保持部51の共振周波数Fhは、伝播定数((E/ρ)1/2に相当)と防振部材の形状(Dに相当)との積に比例する。そして、夫々についての最適な形状を選択することにより温ドリ突起Tを抑制し温ドリ特性を改善することが出来るのである。ここで、Eは、粘弾性率を、ρは密度を、Dは、保持部形状であり、具体的には、保持部厚さを示した。
【0038】
以下に、防振部材50の使用材料の最適化について説明する。
【0039】
図7に示す関係式の係数である材料物性値により決定される伝播定数と温ドリ突起Tの発生する温度との関係を図8に示す。
【0040】
図8より明らかなように、両者は相関関係にあり、伝播定数を変化させることで温ドリ突起Tの発生温度域を変えることが出来ることを見出した。
【0041】
このことから、従来、防振部材50に関しては外部からの振動や衝撃に対してのみ考慮され設計されてきていたが、今回、防振部材50の特に防振部材50の保持部51の固有振動による振動子への影響が非常に高く、減衰率の高い材料を用いる等により振動子21への干渉を回避する配慮が必要であることが理解できる。
【0042】
次に、図7に示す関係式の係数である防振部材50の保持部51の形状について検討した。
【0043】
本実施形態における防振部材50の保持部51の形状とは、図9における保持部51の厚さDの寸法を示す。
【0044】
図10に、各性部材の形状における伝播定数と突起発生温度との関係を示す特性図を示す。
【0045】
その結果、防振部材50の保持部51における厚さDを変化させることにより、基台50の共振周波数が変化することが理解された。即ち、厚さDと温ドリ突起Tの発生温度との関係は図9に示すように、防振部材50の保持部51の厚さDを変化させることで温ドリ突起Tの発生温度域を変えることが出来る。
【0046】
以上の最適化を実施することで、センサ使用温度範囲内での防振部材50の基台保持部51の共振周波数を振動子21の共振周波数と異ならしめることにより、温ドリ突起Tを抑制し温ドリを改善することが出来た。
【0047】
図1の実施形態に対して、上記の最適化を実施することで温ドリについては改善できるが、更に、耐振動性についても考慮し設計する必要がある。例えば、温ドリ突起Tを改善するため軟らかいゴムを使用する必要がある場合、バネ性が低いことから耐振動性が著しく低下することになる。これについては、防振部材50の特にバネ部52を圧縮し組み付けることでバネ性を上げ、耐振動性について向上することができる。
【0048】
この圧縮する構成としては、例えば図1に示す防振部材50のバネ部52の太さを太くしてもよい。
【0049】
上記実施形態においては、振動子21の形状として、圧電素子よりなる音叉形状を採用したが、その他にも例えば、角柱の一端を固定されたものや、角柱の両端を自由となる様に固定されたものでも良い。さらに、半導体よりなる振動子でも同様な作用・効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る角速度センサの全体構成を示す分解斜視図である。
【図2】(a)は図1におけるセンサ部のA視構成図、(b)は(a)のB視透過図である。
【図3】図2のセンサ部の主要部構成を示す斜視図である。
【図4】図3の振動子を前後左右からみた展開図である。
【図5】温度変化と振動出力との関係を示す特性図である。
【図6】温ドリ突起Tの発生温度と振動子及び防振部材の各共振周波数との関係を示す特性図である。
【図7】保持部51の共振周波数に関係する関係式である。
【図8】伝播定数と突起発生温度との関係を示す特性図である。
【図9】防振部材50の保持部51の形状を示す説明図である。
【図10】各性部材の形状における伝播定数と突起発生温度との関係を示す特性図である。
【符号の説明】
10…ケース、20…センサ部、21…振動子、22…基台、50…防振部材、51…保持部、52…バネ部、60…フレーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an angular velocity sensor having a vibrator for electrically detecting an angular velocity about a predetermined axis, and more particularly, to a characteristic of the sensor and an anti-vibration structure.
[0002]
[Prior art]
In a vibration type angular velocity sensor using a Coriolis force shown as a conventional angular velocity sensor, a velocity V is given by oscillating and driving at a natural resonance frequency f having a natural vibration mode of a vibrator. At this time, when the angular velocity Ω is input around a predetermined axis of the vibrator, a Coriolis force Fc is generated in a direction orthogonal to the velocity and each of the angular velocity input axes. The Coriolis force Fc is extracted by an electric signal, and is synchronously detected at the same frequency as the driving frequency f, and is output as an angular velocity signal.
[0003]
[Problems to be solved by the invention]
In such an angular velocity sensor, it is difficult to discriminate / separate a noise signal in a frequency band of an external vibration parasitic near the driving frequency f from a signal of the Coriolis force generated when the angular velocity Ω is actually input. The angular velocity detection accuracy is deteriorated.
[0004]
For this reason, as a countermeasure against external noise or the like, for example, as disclosed in Japanese Patent Application Laid-Open No. H11-6736, the shape of the vibration isolating member has been devised.
[0005]
However, sufficient noise countermeasures have not been found yet.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a configuration in which sufficient measures against noise have been taken in an angular velocity sensor.
[0007]
[Means for Solving the Problems]
As a countermeasure against these noises, the present inventors conducted research from a completely new point of view, focused on the vibration of the vibration isolating member itself, and the resonance of the vibration isolating member, particularly the base holding portion, greatly affected the vibration state of the vibrator. For the first time.
[0008]
That is, according to the first aspect of the present invention, a sensor unit having at least a vibrator for detecting an angular velocity about a predetermined axis and a base to which the vibrator is fixed, and a resonance unit provided on the sensor unit, And a vibration isolating member having a resonance frequency separated by 3% or more from the frequency.
[0009]
In this way, by providing a vibration isolating member having a resonance frequency that is at least 3% apart from the resonance frequency of the vibrator, the base that resonates due to the vibration of the vibrator can resonate with the vibration isolating member that holds the base. Therefore, resonance does not resonate more than necessary. Therefore, vibration of the base can be suppressed, and noise vibration to the vibrator fixed to the base can be suppressed.
[0010]
Here, if the distance is not more than 3% from the resonance frequency of the vibrator, a sufficient effect cannot be obtained.
[0011]
According to the fourth aspect of the present invention, a supporting portion for fixing the vibrator and the base is provided between the vibrator and the base. Thus, by providing the support portion, the vibrator can be easily separated from the base, and transmission of vibration of the vibrator to the base can be suppressed.
[0012]
According to the fifth aspect of the present invention, since the sensor portion is housed in the case, it is possible to further suppress the generation of noise due to external vibration.
[0013]
Still further, according to the invention of claim 6, a sensor unit having at least a vibrator for detecting an angular velocity about a predetermined axis and a base to which the vibrator is fixed, a case accommodating the sensor unit, and a sensor unit An angular velocity sensor comprising a spring portion that is separated from the case and elastically supports the vibration isolation member, and a holding portion that holds the sensor portion by inserting at least a part of the base through an insertion hole. Thus, the vibration isolating member provides an angular velocity sensor having a resonance frequency separated by 3% or more from the resonance frequency of the vibrator.
[0014]
As described above, since the spring portion and the holding portion are formed as the configuration of the vibration isolating member, it is possible to further suppress noise generation of the vibrator due to vibration.
[0015]
According to the ninth aspect of the present invention, the material forming the holding portion of the vibration isolating member is selected so that the resonance frequency of the holding portion of the vibration isolating member is separated from the resonance frequency of the vibrator by 3% or more. By doing so, the present invention can be easily achieved.
[0016]
Further, in the invention of claim 10, the thickness of the base-side mounting portion of the vibration isolating member is the same as that of the vibration isolating member so that the resonance frequency of the holding portion of the vibration isolating member is separated from the resonance frequency of the vibrator by 3% or more. If the thickness on the direction side is adjusted, the resonance frequency of the holding portion of the vibration isolating member can be accurately separated from the resonance frequency of the vibrator by 3% or more.
[0017]
In the invention according to claim 11, a sensor unit having at least a vibrator for detecting an angular velocity about a predetermined axis and a base to which the vibrator is fixed, a case for housing the sensor unit, and a sensor unit Between the vibration isolating member and the case so that the sensor portion is held in the case by applying a compressive stress to the vibration isolating member. And a frame member provided in the vibrator, wherein the vibration damping member has a resonance frequency that is at least 3% apart from a resonance frequency of the vibrator.
[0018]
By employing such a configuration, noise can be further reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0020]
In the present embodiment, for example, a sensor unit 20 having a case 10 for fixing a sensor to an object to be detected such as a vehicle, a vibrator 21 and a base 22 for fixing the vibrator 21, and the sensor unit 20 is housed in the case 10. And a vibration isolating member 50 for holding and attenuating external vibrations and shocks transmitted to the vibrator 21, a frame 60 for fixing the vibration isolating member 50 in the case 10, and generating a drive signal for the vibrator 21 to generate a Coriolis force. A circuit board 80 for processing a signal that has detected Fc, a flexible cable 70 (hereinafter, abbreviated as “flexible”) for connecting an electric signal to the circuit board 80 by connecting, for example, the hermetic terminal p of the base 22 to the circuit board 80, It is formed by a connector 90 having a power supply terminal and an angular velocity signal output terminal processed by the circuit board 80 and covering the circuit board from external noise. The vibration isolating member 50 includes a spring portion 52 for supporting the sensor portion 20 at a distance from the case for insulating the interference from the outside and a holding portion 51 for elastically holding the sensor portion. Is formed with an insertion hole 51a so that it can be fitted to the base side mounting portion.
[0021]
Next, the sensor unit 20 of the angular velocity sensor will be described with reference to FIGS. The sensor unit 20 includes, for example, a vibrator 21 having an electrode formed on the surface of a piezoelectric element, a metal plate-like base 22 disposed substantially parallel to the vibrator 21, and a vibrator 21 and the base 22. The structure includes a supporting portion 23 made of, for example, 42 alloy, which is connected and fixed, and a dome-shaped shell 27 made of metal and arranged to cover the vibrator 21. Further, the base 22 is provided with a base-side mounting portion 22a for mounting a vibration isolating member.
[0022]
The vibrator 21 constitutes a so-called tuning fork type vibrator having a tuning fork shape having a pair of arm portions 24 and 25 and a connecting portion 26 connecting one end of each arm portion 24 and 25. The vibrator 21 is joined to the support 23 by, for example, an epoxy-based adhesive. Further, the support portion 23 fixes the vibrator 21 to the base 22 by fixing it to the base 22 by, for example, welding. The vibrator 21 includes driving electrodes 30, 31, monitoring electrodes 32, 33, temporary GND electrodes 34, 35, 40 grounded to a reference potential, angular velocity detecting electrodes 41, 42, and angular velocity detecting electrodes 41, 42. , The extraction electrodes 45, 46 for extracting the output from the angular velocity detection electrodes 41, 42 to the pad electrodes 36, 37, the provisional GND electrode 40 on the back surface, and the provisional GND on the front surface. Temporary GND short-circuit electrodes 43 and 44 for short-circuiting the electrodes 34 and 35 are formed.
[0023]
Input and output of signals between the vibrator 21 and the outside such as a circuit board are performed by connecting the hermetic terminal p provided on the base 22 and each electrode on the vibrator 21 by wire bonding S, for example.
[0024]
At room temperature, the resonance frequency of the vibrator 21 was 3.2 kHz, and the resonance frequency of the vibration isolating member 50 was 2.5 kHz.
[0025]
Next, the operation of the vibrator 21 will be described with reference to FIG. First, by applying an inverted voltage to each drive electrode of the vibrator 21 from the circuit board 80, resonance occurs in the Y direction, a drive amplitude is generated, and a mass velocity V is generated. The driving frequency at this time oscillates at the resonance frequency of the target mode of the vibrator 21 in which the amplitude efficiency is high and the speed is maximum at the same voltage. Also, by monitoring and feeding back the outputs of the monitoring electrodes 32 and 33, self-excited oscillation control is performed so that the output becomes constant even when the drive amplitude state changes due to temperature or the like.
[0026]
When the angular velocity Ω is input while the mass velocity V is generated in the vibrator 21 in this manner, a Coriolis force Fc is generated in a direction orthogonal to the mass velocity V and the angular velocity input axis (Z). As a result, a deflection amplitude (detection amplitude) in the X direction is generated, and an output proportional to the deflection amplitude is generated from the angular velocity detection electrodes 41 and 42, thereby detecting the angular velocity Ω.
[0027]
The offset temperature drift (hereinafter, abbreviated as “temperature drift”), which is a sensor characteristic in the present case, refers to the output from the angular velocity detection electrodes 41 and 42 (ie, the offset) when the input angular velocity is not input (0 ° / s). ), And there is a problem that a remarkable projection-like variation occurs in a specific temperature range of the warm drill. As a cause of the generation of the hot dripper, the relationship between the shape of the vibration isolating member 50 and the hot drift is determined and determined as a result of a research and a result of the material and the shape used for the vibration isolating member 50, particularly, the base holder 51. The vibration generated from the resonance frequency greatly affects the increase of unnecessary vibration of the vibrator 21 which is one of the main factors of the warming, and the shape of the vibration isolating member 50 or the base holder 51 and the material to be used are optimized. By doing so, unnecessary vibration of the vibrator 21 can be minimized, and an improvement in hot dripping has become possible.
[0028]
Hereinafter, features of the present invention will be described in detail.
[0029]
First, FIG. 5 shows the results of evaluation of hot drilling when the conventional tuning fork vibrator 21 using a piezoelectric body and the vibration isolating member 50 are made of, for example, standard silicon rubber and have a hardness of about 60 ° Hs.
[0030]
In FIG. 5, the horizontal axis shows the relationship between the change in temperature and the vertical axis shows the relationship between the transducer output.
In the conventional structure, as shown in FIG. 5, at around −20 ° C., abnormal protrusions in the shape of a protrusion (hereinafter, abbreviated as a protrusion T) occur in the warm drill.
[0031]
Therefore, the inventors paid attention to the vibration state of the vibration isolating member 50 in the temperature range where the hot drill protrusions T occur (in the case of FIG. 5, around -20 ° C.). As a result, in this temperature range, it was confirmed that the resonance frequency of the vibration of the holding portion 51 of the vibration isolating member 50 substantially matched the resonance frequency of the vibrator 21.
[0032]
This is apparent from FIG. 6 showing the relationship between the resonance frequency of the vibrator 21 and the holding portion 51 of the vibration isolating member 50 and the temperature at which the hot drill protrusion T occurs.
[0033]
That is, it can be seen from FIG. 6 that the two resonance frequencies coincide in the temperature range (in this case, −20 ° C.) in which the warm drill protrusion T occurs in the conventional structure.
[0034]
As a method for measuring the resonance frequency of the vibration isolating member 50 in the present invention, the vibrator 21 is vibrated by applying an AC voltage to the vibrator 21 in a state where the vibration isolating member 50 is assembled. The vibration frequency of the vibrators 21 was sequentially changed, and the movement of the holding portion of the vibration isolating member 50 at the frequency of each vibrator 21 was confirmed with a laser displacement meter. Then, the frequency of the vibration isolating member 50 was obtained from the movement of the vibration isolating member 50.
[0035]
From the above findings, it has been found for the first time in the present invention that it is necessary to make the resonance frequency of the holding portion 51 of the vibration isolating member 50 different from the resonance frequency of the vibrator 21.
[0036]
As specific means, a relational expression shown in FIG. 7 can be used.
[0037]
That is, the resonance frequency Fh of the holding portion 51 of the vibration isolating member 50 is proportional to the product of the propagation constant (corresponding to (E / ρ) 1/2 ) and the shape of the vibration isolating member (corresponding to D). Then, by selecting the optimum shape for each, the warm-driving protrusion T can be suppressed and the warm-driving characteristics can be improved. Here, E is the viscoelastic modulus, ρ is the density, and D is the shape of the holding part, and specifically, the thickness of the holding part.
[0038]
Hereinafter, optimization of the material used for the vibration isolation member 50 will be described.
[0039]
FIG. 8 shows the relationship between the propagation constant determined by the material property value which is a coefficient of the relational expression shown in FIG. 7 and the temperature at which the hot drill protrusion T occurs.
[0040]
As is clear from FIG. 8, the two are in a correlation, and it has been found that the temperature range in which the warm projections T occur can be changed by changing the propagation constant.
[0041]
For this reason, the anti-vibration member 50 has conventionally been designed with consideration given only to external vibration and impact. However, this time, the natural vibration of the anti-vibration member 50, particularly the holding portion 51 of the anti-vibration member 50 has been considered. It can be understood that the influence on the vibrator by the vibration is very high, and that it is necessary to take care to avoid interference with the vibrator 21 by using a material having a high attenuation rate.
[0042]
Next, the shape of the holding portion 51 of the vibration isolating member 50, which is a coefficient of the relational expression shown in FIG. 7, was examined.
[0043]
The shape of the holding portion 51 of the vibration isolating member 50 in the present embodiment indicates the size of the thickness D of the holding portion 51 in FIG.
[0044]
FIG. 10 is a characteristic diagram showing the relationship between the propagation constant and the protrusion generation temperature in the shape of each sex member.
[0045]
As a result, it was understood that the resonance frequency of the base 50 changed by changing the thickness D of the holding portion 51 of the vibration isolating member 50. That is, as shown in FIG. 9, the relationship between the thickness D and the temperature at which the warm-driving protrusion T is generated can be changed by changing the thickness D of the holding portion 51 of the vibration isolating member 50 so that the temperature range at which the warm-driving protrusion T is generated. Can be changed.
[0046]
By performing the above optimization, the resonance frequency of the base holder 51 of the vibration isolating member 50 in the sensor operating temperature range is made different from the resonance frequency of the vibrator 21, thereby suppressing the warming projection T. We were able to improve warm drips.
[0047]
By performing the above-described optimization with respect to the embodiment of FIG. 1, it is possible to improve the temperature drift. However, it is necessary to design in consideration of vibration resistance. For example, when it is necessary to use a soft rubber to improve the warming projection T, the vibration resistance is remarkably reduced due to the low spring property. In this regard, by compressing and assembling the spring part 52 of the vibration isolating member 50 in particular, the spring property can be increased, and the vibration resistance can be improved.
[0048]
As a configuration of this compression, for example, the thickness of the spring portion 52 of the vibration isolating member 50 shown in FIG. 1 may be increased.
[0049]
In the above-described embodiment, the vibrator 21 has a tuning fork shape made of a piezoelectric element. However, for example, the vibrator 21 may have a shape in which one end of a prism is fixed, or a shape in which both ends of a prism are free. May be used. Further, the same operation and effect can be obtained even with a vibrator made of a semiconductor.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an entire configuration of an angular velocity sensor according to a first embodiment of the present invention.
2A is a configuration diagram of a sensor unit in FIG. 1 as viewed in A, and FIG. 2B is a transmission diagram in B of FIG.
FIG. 3 is a perspective view showing a main part configuration of a sensor unit of FIG. 2;
FIG. 4 is a development view of the vibrator of FIG.
FIG. 5 is a characteristic diagram showing a relationship between a temperature change and a vibration output.
FIG. 6 is a characteristic diagram showing the relationship between the temperature at which the warm projections T occur and the respective resonance frequencies of the vibrator and the vibration isolating member.
FIG. 7 is a relational expression related to a resonance frequency of the holding unit 51.
FIG. 8 is a characteristic diagram showing a relationship between a propagation constant and a protrusion generation temperature.
FIG. 9 is an explanatory view showing a shape of a holding portion 51 of the vibration isolating member 50.
FIG. 10 is a characteristic diagram showing a relationship between a propagation constant and a protrusion generation temperature in the shape of each sex member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... case, 20 ... sensor part, 21 ... vibrator, 22 ... base, 50 ... vibration isolating member, 51 ... holding part, 52 ... spring part, 60 ... frame

Claims (11)

所定軸回りの角速度を検出する振動子と該振動子が固定された基台とを少なくとも有するセンサ部と、
該センサ部に設けられ、前記振動子の共振周波数よりも3%以上離れている共振周波数を有する防振部材とからなることを特徴とする角速度センサ。
A sensor unit having at least a vibrator for detecting an angular velocity about a predetermined axis and a base on which the vibrator is fixed,
An angular velocity sensor, comprising: a vibration isolating member provided in the sensor unit and having a resonance frequency separated by 3% or more from the resonance frequency of the vibrator.
前記防振部材の共振周波数が、前記振動子の共振周波数を基準として、前記振動子の共振周波数の3%以上小であることを特徴とする請求項1記載の角速度センサ。2. The angular velocity sensor according to claim 1, wherein a resonance frequency of the vibration isolating member is lower than a resonance frequency of the vibrator by 3% or more with respect to a resonance frequency of the vibrator. 3. 前記防振部材の共振周波数が、前記振動子の共振周波数を基準として、前記振動子の共振周波数の3%以上大であることを特徴とする請求項1記載の角速度センサ。2. The angular velocity sensor according to claim 1, wherein a resonance frequency of the vibration isolation member is higher than a resonance frequency of the vibrator by 3% or more with respect to a resonance frequency of the vibrator. 3. 前記振動子と前記基台との間には、前記振動子と前記基台とを固定する支持部を有していることを特徴とする請求項1乃至3いずれか1項記載の角速度センサ。The angular velocity sensor according to any one of claims 1 to 3, further comprising a support between the vibrator and the base for fixing the vibrator and the base. 前記センサ部は、前記防振部材を介して前記ケース内に保持されていることを特徴とする請求項1乃至4いずれか1項記載の角速度センサ。The angular velocity sensor according to claim 1, wherein the sensor unit is held in the case via the vibration isolating member. 所定軸回りの角速度を検出する振動子と該振動子が固定された基台とを少なくとも有するセンサ部と、
該センサ部を収納するケースと、
前記センサ部を前記ケースより離間させ弾性に支持するバネ部と、前記基台の少なくとも一部を挿入穴により挿入させることにより前記センサ部を保持する保持部とからなる防振部材とを有する角速度センサであって、
前記防振部材は、前記振動子の前記保持部の共振周波数よりも3%以上離れている共振周波数を有することを特徴とする角速度センサ。
A sensor unit having at least a vibrator for detecting an angular velocity about a predetermined axis and a base on which the vibrator is fixed,
A case for housing the sensor unit,
An angular velocity comprising: a spring portion that elastically supports the sensor portion by separating the sensor portion from the case; and a vibration isolating member including a holding portion that holds the sensor portion by inserting at least a part of the base through an insertion hole. A sensor,
The angular velocity sensor according to claim 1, wherein the vibration isolation member has a resonance frequency that is at least 3% apart from a resonance frequency of the holding unit of the vibrator.
前記防振部材の前記保持部の共振周波数が、前記振動子の共振周波数を基準として、前記振動子の共振周波数の3%以上小であることを特徴とする請求項6記載の角速度センサ。7. The angular velocity sensor according to claim 6, wherein a resonance frequency of the holding portion of the vibration isolating member is smaller than a resonance frequency of the vibrator by 3% or more with respect to a resonance frequency of the vibrator. 前記防振部材の前記保持部の共振周波数が、前記振動子の共振周波数を基準として、前記振動子の共振周波数の3%以上大であることを特徴とする請求項6記載の角速度センサ。7. The angular velocity sensor according to claim 6, wherein a resonance frequency of the holding portion of the vibration isolator is higher than a resonance frequency of the vibrator by 3% or more with respect to a resonance frequency of the vibrator. 前記防振部材の前記保持部の共振周波数が前記振動子の共振周波数よりも3%以上離れるように、前記防振部材の前記保持部を構成する材料が選定されていることを特徴とする請求項6乃至8のいずれか1項記載の角速度センサ。The material constituting the holding portion of the vibration isolating member is selected such that the resonance frequency of the holding portion of the vibration isolating member is separated from the resonance frequency of the vibrator by 3% or more. Item 9. The angular velocity sensor according to any one of Items 6 to 8. 前記防振部材の前記保持部の共振周波数が前記振動子の共振周波数よりも3%以上離れるように、前記防振部材の基台側取付部板厚と同方向側の厚さが調整されることを特徴とする請求項6記載の角速度センサ。The thickness of the vibration isolating member in the same direction as the thickness of the base-side mounting portion is adjusted such that the resonance frequency of the holding portion of the vibration isolating member is separated from the resonance frequency of the vibrator by 3% or more. The angular velocity sensor according to claim 6, wherein: 所定軸回りの角速度を検出する振動子と該振動子が固定された基台とを少なくとも有するセンサ部と、
該センサ部を収納するケースと、
前記センサ部を前記ケース内に固定する防振部材と、
前記防振部材が圧縮応力を印加されることによって、前記センサ部が前記ケース内に保持されるように、前記防振部材と前記ケースとの間に設けられるフレーム部材とからなる角速度センサであって、
前記防振部材は、前記振動子の共振周波数よりも3%以上離れている共振周波数を有することを特徴とする角速度センサ。
A sensor unit having at least a vibrator for detecting an angular velocity about a predetermined axis and a base on which the vibrator is fixed,
A case for housing the sensor unit,
An anti-vibration member for fixing the sensor unit in the case,
An angular velocity sensor comprising a frame member provided between the vibration isolating member and the case so that the sensor portion is held in the case by applying a compressive stress to the vibration isolating member. hand,
The angular velocity sensor according to claim 1, wherein the vibration isolating member has a resonance frequency that is at least 3% apart from a resonance frequency of the vibrator.
JP2000205428A 2000-07-06 2000-07-06 Angular velocity sensor Expired - Fee Related JP3596436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205428A JP3596436B2 (en) 2000-07-06 2000-07-06 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205428A JP3596436B2 (en) 2000-07-06 2000-07-06 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JP2002022447A JP2002022447A (en) 2002-01-23
JP3596436B2 true JP3596436B2 (en) 2004-12-02

Family

ID=18702517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205428A Expired - Fee Related JP3596436B2 (en) 2000-07-06 2000-07-06 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3596436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028644A (en) * 2001-07-12 2003-01-29 Denso Corp Angular velocity sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254637B2 (en) * 2019-06-17 2023-04-10 キヤノン株式会社 Angular velocity detection device, imaging device and lens barrel provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028644A (en) * 2001-07-12 2003-01-29 Denso Corp Angular velocity sensor

Also Published As

Publication number Publication date
JP2002022447A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP4757026B2 (en) Acceleration sensor characteristic adjustment method
US9448068B2 (en) Angular velocity sensor
JP4219737B2 (en) Piezoelectric vibrator
US20120187803A1 (en) Flexural vibration element and electronic component
US10536779B2 (en) Electroacoustic transducer
JP5579190B2 (en) Piezoelectric acceleration sensor
JP4720528B2 (en) Angular velocity sensor device
US6927568B2 (en) Rotational-rate sensor
TWI598569B (en) Vibrating reed, gyro sensor, electronic apparatus and moving object
JPWO2005012923A1 (en) Acceleration sensor
US20120325000A1 (en) Bending vibration piece and electronic device
US20050086995A1 (en) Transducer, electronic equipment, and method of adjusting frequency of transducer
JP3596436B2 (en) Angular velocity sensor
JP2006105854A (en) Angular velocity sensor
US8561467B2 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
JPH116736A (en) Angular speed sensor
JP2001264070A (en) Angular velocity sensor
JPH09229960A (en) Vibrator
US20040016307A1 (en) Vibration isolation mechanism for a vibrating beam force sensor
JPH09329444A (en) Angular velocity sensor
JP4304742B2 (en) Angular velocity sensor
JP2000055667A (en) Angular velocity sensor
JP3593197B2 (en) Piezoelectric vibration gyro
JP4668752B2 (en) Vibrating gyro
JPH10332387A (en) Angular speed sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees