JP3596371B2 - Radiation heat shield device for vertical continuous annealing furnace - Google Patents

Radiation heat shield device for vertical continuous annealing furnace Download PDF

Info

Publication number
JP3596371B2
JP3596371B2 JP25974699A JP25974699A JP3596371B2 JP 3596371 B2 JP3596371 B2 JP 3596371B2 JP 25974699 A JP25974699 A JP 25974699A JP 25974699 A JP25974699 A JP 25974699A JP 3596371 B2 JP3596371 B2 JP 3596371B2
Authority
JP
Japan
Prior art keywords
furnace
pipe
continuous annealing
roll
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25974699A
Other languages
Japanese (ja)
Other versions
JP2001081518A (en
Inventor
直人 上野
祐弘 飯田
隆昭 小橋
元己 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP25974699A priority Critical patent/JP3596371B2/en
Priority to TW90105857A priority patent/TW507010B/en
Publication of JP2001081518A publication Critical patent/JP2001081518A/en
Application granted granted Critical
Publication of JP3596371B2 publication Critical patent/JP3596371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯等の金属帯を連続的に搬送しながら熱処理を行う竪型連続焼鈍炉の輻射熱遮蔽装置に関する。
【0002】
【従来の技術】
近年、冷間圧延後の鋼帯を再結晶させて加工性を付与する焼鈍プロセスは、従来のバッチ焼純方式に代わり、連続焼鈍方式が主流となっている。この連続焼鈍を行うための連続焼鈍炉には、水平パスで焼鈍する横型連続焼鈍炉と、炉内の上部及び下部にロールを複数個配置して、縦パスで焼鈍する竪型連続焼鈍炉があるが、通板速度の高速化による大量生産プロセスには、竪型連続焼鈍炉が有利である。現在、竪型連続焼鈍炉の加熱源としては、ラジアントチューブによる間接加熱が主流であり、鋼帯は主にこれらの加熱源からの輻射熱で加熱される。
【0003】
ところで、炉内の上部及び下部に配列された複数個のロールを介して鋼帯を搬送する竪型連続焼鈍炉においては、鋼帯の蛇行を防止して、安定通板させることが重要である。一般に炉内のロールは、図11に示すような、ロール12の肩部にテーパを持った凸状のロールクラウンで設計されている。これは、ベルト車の原理により、テーパ部にかかった鋼帯に作用する、ロールエッジ部からロールセンタ部へ向かうセンタリング力(矢印F)を利用して、走行する鋼帯の中心を常にロール中心に合わせて通板できるようにするためである。
【0004】
しかしながら、図12に示す如く、炉内の加熱源(例えばラジアントチューブ)14からの輻射熱は、鋼帯10を加熱すると同時に、炉内のロール12をも加熱する。その結果、炉内のロールのクラウンは、ロールにもともと付与されていたクラウン(イニシャルクラウンと称する)に、加熱源からの輻射熱によるクラウン(サーマルクラウンと称する)が付与されるため、鋼帯の温度の方がロール温度より低い場合には、ロール中央部温度が低くなり、図12に実線で示すように凹状のクラウンになる。このような凹状のクラウンを有する炉内ロール12に、鋼帯10が乗りかかると、鋼帯の幅方向に働く力は、矢印F′に示す如く、ロールセンタ部からロールエッジ部に向かうため、鋼帯が一旦蛇行すると、一気にロールエッジ部へ乗り上げて、炉壁と接触する通板トラブルが発生する。
【0005】
このような問題に対して、従来から、実開昭63−119661に開示されている如く、加熱源14からロール12への輻射熱を遮断するために、遮蔽板を設置することが行われてきた。そして、遮蔽装置としては、内部に冷却用の空気、窒素ガス等を流動させた耐熱管を用いる技術が、特開昭57−79123に開示されている。
【0006】
又、遮蔽板のみではサーマルクラウンを抑制し切れないとの観点から、サーマルクラウンを積極的に制御することを目的として、特開昭52−71318では、ロールに冷却ガスを吹き付ける技術が開示されている。又、特開昭53−119208では、ロールエッジ部を水冷したり、ロールセンタ部とエッジ部とで熱伝導率を変える技術が開示されている。更に、特開昭53−130210、特公昭57−23733では、ロールとは別に冷却流路を形成させた冷却装置を配置する技術が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来技術のうち、ロールに発生するサーマルクラウンを積極的に抑制する技術は、蛇行防止効果はあるものの、設備投資力が大きくなり過ぎるという問題があった。更に、装置自体が大きくなるため、熱容量が大きくなり、加熱帯における燃料原単位が悪化するという問題もあった。
【0008】
本発明は、前記従来の問題点を解決するべくなされたもので、特開昭57−79123等に開示されている、冷却管を使用した輻射熱遮蔽装置を基礎として、安価で、より効率的な装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、炉内の上下にロールを配置して、このロールにより金属帯を連続的に搬送しながら熱処理を行う竪型連続焼鈍炉において、炉内の上部に位置するロールの直下又は炉内の下部に位置するロールの直上に配置される、炉内の加熱源からの輻射熱を遮蔽する遮蔽装置が、水平又は下向きの外気吸い込み口を有する内管と、上向きの排気口を有する外管からなる2重管を備えたことにより、前記課題を解決したものである。
【0010】
又、前記2重管の外管の外径Dを直径60mm以上、且つ2重管の外気吸い込み口と排気口の高低差Hを150mm以上とし、更に2重管の外管の外径D(単位m)と前記高低差H(単位m)とが、
×√(H)≧2.2×10−3 …(1)
の関係を満たすようにしたものである。
【0011】
更に、前記2重管を、炉内の上部に位置するロールの直下又は炉内の下部に位置するロールの直上に、水平方向に複数個を配列ようにしたり、あるいは、前記2重管を支持管として、その支持管に遮蔽板を装着するようにしたものである。
【0012】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0013】
本発明の第1実施形態は、竪型連続焼鈍炉内の上部に位置するロールの直下又は炉内の下部に位置するロールの直上に配置される、炉内の加熱源からの輻射熱を遮断する輻射熱遮蔽装置を、図1に示す如く、下向きの外気吸い込み口23を有する内管22と、上向きの排気口25を有する外管24からなる2重管20の構造として、外気(例えば空気)の自然対流を効果的に利用することで、安価で且つ効率的な輻射熱遮蔽装置とすることができるようにしたものである。
【0014】
更に実験を積み重ねた結果、2重管内を流れる冷却ガス(空気)流量と輻射熱遮蔽効果、並びに、2重管の耐高温変形(クリープ)との関係から、2重管の外管24の外径Dが直径60mm以上、2重管の外気吸い込み口23と排気口25の高低差Hが150mm以上で、且つ、2重管の外管の外径D(単位m)と、前記の高低差H(単位m)とが、前出(1)式の関係を満たす好適範囲を見出した。
【0015】
尚、前記2重管の材質としては耐熱性合金鋼が適しており、例えばCr含有量が18wt%以上、Ni含有量が8wt%以上のステンレス鋼や、その他、耐熱性を有する特殊鋼が好ましい。
【0016】
以下、本発明に至った理由について述べる。
【0017】
本発明者等は、特開昭57−79123に開示されている従来型の冷却管を用いた輻射熱制御装置では、外気(空気)の自然対流を利用した冷却には限界があることに気がついた。特開昭57−79123には、冷却用の空気を吸引ブロワもしくは押込みブロワで強制的に流動するように構成することが開示されているが、吸引側にブロワを設置する場合には、高温の排気ガスを吸引するために、ブロワ自体を耐熱性のあるものにするか、又は、吸引ガスをブロワ手前で冷却する装置が必要となり、いずれにしても設備コストの増大は免れない。一方、ブロワによる押込み方式では、冷却管から炉内への空気の漏洩による金属帯酸化の危険性がある。
【0018】
以上のような観点から、本発明においては、図2に示すような3種類の構造の輻射熱遮蔽装置を製作し、実機テストを行った。
【0019】
図2の左側は、単純な板状の遮蔽板16を用いた従来例、図2の中央は、単純な直管状2重管の冷却管18を用いた比較例、図2の右側は、図1に示したような本発明による2重管状の冷却管20を用いたものである。
【0020】
図3は、横軸に2重管の外管の外気排気口側で測定した冷却ガス(空気)流量をとり、縦軸に2重管の外管もしくは平板の表面温度(炉内ロール12に面した側)を測定した結果である。測定時の条件は、炉温900℃、外気温度30℃、2重管の外管径100mm、内管径40mm、又、2重管の外気吸い込み口23と排気口25の高低差Hは200mmとした。外気吸い込み口と排気口に何等工夫のされていない比較例(冷却管)では、図3中のΔ印で示すように、自然対流による冷却ガス流量が少なく、2重管の外管表面温度は800℃に達する。又、従来例(平板)では、図3中に□印で示すように、表面温度が860℃にも達する。これに対して、本発明のように下向きの外気吸い込み口と上向きの排気口をそれぞれ利用する2重管を備えた場合は、図3中に○印で示すように、冷却ガス流量は5.0×10−3(Nm/s)に達し、外管の表面温度も500℃近くまで低下することが分かった 。
【0021】
図4は、2重管の外管の外気排気口側で測定した冷却ガス(空気)流量と、輻射熱遮蔽装置の直上に位置する測温ロール(ロール幅方向に熱電対を埋め込んだロール)に発生する板幅方向の温度差ΔTとの関係を表わした図である。測定条件は、ロールバレル長2000mm、通板された鋼帯の平均板幅1260mm、平均炉温900℃であった。ここで、ΔT=Te(ロールエッジから100mmの地点のロール表面温度)−Tc(ロールセンタ部のロール表面温度)とした。これより、ロールが凹型になり、鋼帯の蛇行を発生させる最小のΔTは約150℃であり、蛇行を防止するのに必要な冷却ガス流量は3.0×10−3(Nm/s)以上であるといえる。
【0022】
なお、前記説明では、外気吸い込み口が下向きとされていたが、外気吸い込み口の向きはこれに限定されず、例えば水平であってもよい。
【0023】
本発明による水平又は下向きの外気吸い込み口と上向きの排気口をそれぞれ有する2重管からなる輻射熱遮蔽装置においては、前記の必要冷却ガス流量を満たすために、外気吸い込みから排気に至る煙突効果を利用している。流体の質量保存則より、冷却ガス流量Q(m/s)は、次式により導かれる。
【0024】
Q=Vg×π×(D/2) …(2)
【0025】
ここで、Vgは排気口での冷却ガス流速(m/s)、Dは外管の外径(m)である。
【0026】
又、流体のエネルギ保存則より、排気口での冷却ガス流速Vgは、次式により導かれる。
【0027】
Vg=√(2gH) …(3)
【0028】
ここで、gは重力加速度=9.8m/s、Hは2重管の外気吸い込み口と排気口 の高低差(m)である。
【0029】
この(3)式を(2)式に代入すると、次式が得られる。
【0030】
Q=√(2gH)×π×(D/2) …(4)
【0031】
この(4)式より、冷却ガス流量Qは、外管の外径Dの2乗に比例し、又、2重管の外気吸い込み口と排気口の高低差Hの平方根に比例することが分かる。
【0032】
図5は、横軸にパラメータとしてD×√(H)をとり、縦軸に冷却ガス流量Q(Nm/s)をとって実測データを整理したものである。これより、必要冷却ガス量Q=3.0×10−3(Nm/s)以上を満足するためには、D×√(H)≧2.2×10−3が必要であるといえる。即ち、実操業上、炉温は500℃から900℃であり、この温度範囲であれば、ガス流量は上記の値で十分であることがわかっている。従って、D×√(H)≧2×10−3であれば、実操業上は十分な冷却効果が得られる。
【0033】
一方、図6は、冷却ガス流量Q(Nm/s)と2重管の外気吸い込み口と排気口の高低差H(mm)の関係を表わしているが、高低差が150mm未満では、2重管の径との高低差がほぼ同じレベルになるため、冷却ガスが流れ難いことが分かった。よって、2重管の外気吸い込み口と排気口の高低差Hは150mm以上とすることが好ましい。
【0034】
又、2重管の外管の外径が小さいと、輻射熱によるクリープ変形が起こり易くなる。これまでに操業実績より、直径60mm以上の外径が好ましい。
【0035】
又、2重管の外管と内管の外径比は2.0以上且つ4.0以下、外管の材質は、Cr含有量が重量比18%以上、且つNi含有量が重量比8%以上のステンレス鋼であることが好ましく、例えば、JIS規格SUS304、SUS316、SUS316Lなどである。設置にあたっては、2重管の外気吸い込み口を、炉壁から100mm以上離すことが好ましい。
【0036】
更に、炉内のロール径が輻射熱遮蔽装置の2重管径に比べて数倍大きい場合には、1本の2重管からなる輻射熱遮蔽装置では、加熱源からロール表面への輻射を十分に遮蔽することが困難となる。この場合には、図7に示す第2実施形態のように、2重管20を、炉内の上部に位置するロールの直下又は炉内の下部に位置するロールの直上に、水平方向に複数個を配列したり、あるいは、図8に示す第3実施形態のように、2重管20を支持管として、この支持管に遮蔽板30を装着する方法が効果的である。
【0037】
【実施例】
実機テストで得られた結果を基礎として、図1に示す2重管をSUS316Lステンレス鋼で製作した。この2重管の外管外径Dは114.3mm、外管内径は97.1mm、内管外径は48.0mm、内管内径は41.2mm、又、2重管の外気吸い込み口と排気口の高低差Hは200mmである。この2重管を有する輻射熱遮蔽装置を取り付け、約2年にわたり実機確認を行った。その結果を、図9(蛇行発生件数)及び図10(輻射熱遮蔽装置の取換頻度)に示す。図9から明らかな如く、蛇行発生件数は、平板や冷却管を用いた従来型の輻射熱遮蔽装置に比べて、約1/3に減少している。又、図10から明らかな如く、外気による煙突効果を効果的に利用した冷却作用により、従来型の装置に比べて、寿命が大幅に延びている。
【0038】
【発明の効果】
本発明によれば、外気による煙突効果を効果的に利用して、安価で且つ蛇行抑制効果と長寿命化を兼ね備えた輻射熱遮蔽装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る輻射熱遮蔽装置の第1実施形態で用いられる2重管の構成を示す縦断面図
【図2】平板を用いた従来例及び単純な冷却管を用いた比較例と、本発明による冷却管を用いた場合の配置を比較して示す側面図及び正面図
【図3】本発明の原理を説明するための、冷却ガス流量と2重管の外管又は平板の表面温度の関係を比較して示す線図
【図4】同じく、冷却ガス流量及びロール板幅方向の温度差と蛇行発生の有無の関係を示す線図
【図5】同じく、外管の外径の2乗と高低差の平方根の積と冷却ガス流量の関係の例を示す線図
【図6】同じく、高低差と冷却ガス流量の関係の例を示す線図
【図7】本発明の第2実施形態の構成を示す側面図
【図8】同じく第3実施形態の構成を示す側面図
【図9】平板を用いた従来例及び冷却管を用いた比較例と、本発明における蛇行発生件数を比較して示す線図
【図10】同じく、輻射熱遮蔽装置の取換頻度を比較して示す線図
【図11】凸状のロールクラウンを有する炉内ロールを示す正面図
【図12】サーマルクラウンのため凹状のクラウンとなった炉内ロールにより鋼帯を搬送している状態を示す正面図
【符号の説明】
10…鋼帯
12…炉内ロール
14…加熱源(ラジアントチューブ)
20…冷却管
22…内管
23…外気吸い込み口
24…外管
25…排気口
30…遮蔽板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiant heat shield device of a vertical continuous annealing furnace that performs a heat treatment while continuously transporting a metal strip such as a steel strip.
[0002]
[Prior art]
In recent years, a continuous annealing method has become the mainstream of an annealing process for imparting workability by recrystallizing a steel strip after cold rolling, instead of a conventional batch annealing method. The continuous annealing furnace for performing this continuous annealing includes a horizontal continuous annealing furnace which performs annealing in a horizontal pass, and a vertical continuous annealing furnace in which a plurality of rolls are arranged at upper and lower portions in the furnace and annealing is performed in a vertical pass. However, a vertical continuous annealing furnace is advantageous for a mass production process by increasing the passing speed. At present, indirect heating using a radiant tube is mainly used as a heating source of a vertical continuous annealing furnace, and a steel strip is mainly heated by radiant heat from these heating sources.
[0003]
By the way, in a vertical continuous annealing furnace which conveys a steel strip through a plurality of rolls arranged at an upper part and a lower part in a furnace, it is important to prevent meandering of the steel strip and to stably pass the steel strip. . Generally, the roll in the furnace is designed with a convex roll crown having a tapered shoulder at the shoulder of the roll 12, as shown in FIG. This is based on the principle of a belt wheel, and the center of the traveling steel strip is always centered on the roll center by using the centering force (arrow F) from the roll edge to the roll center acting on the steel strip on the tapered part. This is in order to be able to pass the board in accordance with.
[0004]
However, as shown in FIG. 12, radiant heat from a heating source (for example, a radiant tube) 14 in the furnace heats the steel strip 10 and also heats the roll 12 in the furnace. As a result, the crown of the roll in the furnace is given a crown (called a thermal crown) by radiant heat from a heating source to a crown (called an initial crown) originally provided to the roll, so that the temperature of the steel strip is increased. When the temperature is lower than the roll temperature, the temperature at the center of the roll becomes lower, and a concave crown is formed as shown by a solid line in FIG. When the steel strip 10 rides on the furnace roll 12 having such a concave crown, the force acting in the width direction of the steel strip goes from the roll center portion to the roll edge portion as shown by an arrow F '. Once the steel strip meanders, the steel strip rides on the roll edge at a stretch, causing trouble in passing the steel strip in contact with the furnace wall.
[0005]
To solve such a problem, as disclosed in Japanese Utility Model Laid-Open Publication No. 63-119661, a shield plate has been conventionally installed to block radiant heat from the heating source 14 to the roll 12. . Japanese Patent Laid-Open No. 57-79123 discloses a technique using a heat-resistant tube in which cooling air, nitrogen gas or the like is allowed to flow as a shielding device.
[0006]
Japanese Patent Application Laid-Open No. 52-71318 discloses a technique in which a cooling gas is blown to a roll in order to actively control the thermal crown from the viewpoint that the thermal crown cannot be suppressed only by the shielding plate. I have. JP-A-53-119208 discloses a technique for cooling a roll edge with water or changing the thermal conductivity between a roll center and an edge. Further, JP-A-53-130210 and JP-B-57-23733 disclose a technique of disposing a cooling device having a cooling channel formed separately from a roll.
[0007]
[Problems to be solved by the invention]
However, among the conventional techniques, the technique of actively suppressing the thermal crown generated in the roll has a problem that although it has a meandering preventing effect, the capital investment is too large. Further, the size of the apparatus itself increases, so that the heat capacity increases, and there is a problem that the unit fuel consumption in the heating zone deteriorates.
[0008]
The present invention has been made to solve the above-mentioned conventional problems, and is based on a radiant heat shielding device using a cooling pipe disclosed in Japanese Patent Application Laid-Open No. 57-79123 or the like. It is an object to provide a device.
[0009]
[Means for Solving the Problems]
The present invention relates to a vertical continuous annealing furnace in which rolls are arranged above and below the furnace and heat treatment is performed while continuously transporting the metal band by the rolls. The shielding device, which is arranged immediately above the roll located at the lower part of the furnace and shields radiant heat from the heating source in the furnace, has an inner pipe having a horizontal or downward external air suction port, and an outer pipe having an upward exhaust port. This problem has been solved by providing a double pipe.
[0010]
The outer diameter D of the outer pipe of the double pipe is 60 mm or more in diameter, the height difference H between the outside air suction port and the exhaust port of the double pipe is 150 mm or more, and the outer diameter D of the outer pipe of the double pipe (D ( Unit m) and the height difference H (unit m)
D 2 × √ (H) ≧ 2.2 × 10 −3 (1)
This is to satisfy the relationship.
[0011]
Further, a plurality of the double pipes may be arranged in a horizontal direction directly under a roll located at an upper part in the furnace or directly above a roll located at a lower part in the furnace, or the double pipe may be supported. As the tube, a shielding plate is attached to the support tube.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
The first embodiment of the present invention shuts off radiant heat from a heating source in a furnace, which is arranged immediately below a roll located in an upper part in a vertical continuous annealing furnace or immediately above a roll located in a lower part in the furnace. As shown in FIG. 1, the radiant heat shielding device has a structure of a double pipe 20 composed of an inner pipe 22 having a downwardly directed outside air suction port 23 and an outer pipe 24 having an upwardly directed exhaust port 25. By effectively utilizing natural convection, an inexpensive and efficient radiant heat shielding device can be provided.
[0014]
As a result of further experiments, the outer diameter of the outer tube 24 of the double tube was determined from the relationship between the flow rate of the cooling gas (air) flowing in the double tube, the radiation heat shielding effect, and the high temperature deformation (creep) of the double tube. D is 60 mm or more in diameter, the height difference H between the outside air intake port 23 and the exhaust port 25 of the double pipe is 150 mm or more, and the outside diameter D (unit m) of the outer pipe of the double pipe is equal to the height difference H. (Unit m) has found a suitable range that satisfies the relationship of the above formula (1).
[0015]
A heat-resistant alloy steel is suitable as the material of the double pipe. For example, a stainless steel having a Cr content of 18 wt% or more and a Ni content of 8 wt% or more, or other special steel having heat resistance is preferable. .
[0016]
Hereinafter, the reason for the present invention will be described.
[0017]
The present inventors have noticed that the conventional radiant heat control device using a cooling pipe disclosed in Japanese Patent Application Laid-Open No. 57-79123 has a limit in cooling using natural convection of outside air (air). . Japanese Patent Laying-Open No. 57-79123 discloses a configuration in which cooling air is forcibly flowed by a suction blower or a push-in blower. In order to suck the exhaust gas, the blower itself must have heat resistance, or a device for cooling the sucked gas before the blower is required. In either case, an increase in equipment cost is inevitable. On the other hand, in the push-in method using a blower, there is a risk of metal strip oxidation due to air leaking from the cooling pipe into the furnace.
[0018]
From the above viewpoints, in the present invention, radiant heat shielding devices having three types of structures as shown in FIG. 2 were manufactured and subjected to actual machine tests.
[0019]
The left side of FIG. 2 is a conventional example using a simple plate-shaped shielding plate 16, the center of FIG. 2 is a comparative example using a cooling pipe 18 of a simple straight-tube double pipe, and the right side of FIG. The present embodiment uses a double cooling tube 20 according to the present invention as shown in FIG.
[0020]
In FIG. 3, the horizontal axis indicates the flow rate of the cooling gas (air) measured at the outside air exhaust port side of the outer pipe of the double pipe, and the vertical axis indicates the surface temperature of the outer pipe or the flat plate of the double pipe (to the furnace roll 12). (Side facing). The conditions at the time of the measurement were a furnace temperature of 900 ° C., an outside air temperature of 30 ° C., an outer tube diameter of a double tube of 100 mm, an inner tube diameter of 40 mm, and a height difference H between the outside air inlet 23 and the outlet 25 of the double tube was 200 mm. And In the comparative example (cooling pipe) in which the outside air suction port and the exhaust port are not devised, the cooling gas flow rate due to natural convection is small and the outer pipe surface temperature of the double pipe is low, as indicated by the mark Δ in FIG. Reaches 800 ° C. In addition, in the conventional example (flat plate), the surface temperature reaches 860 ° C. as shown by the mark in FIG. On the other hand, in the case where a double pipe is provided that uses the downward outside air intake port and the upward exhaust port as in the present invention, the flow rate of the cooling gas is 5. It reached 0 × 10 −3 (Nm 3 / s), and it was found that the surface temperature of the outer tube also dropped to near 500 ° C.
[0021]
FIG. 4 shows the flow rate of the cooling gas (air) measured on the outside air outlet side of the outer pipe of the double pipe and the temperature measurement roll (a roll in which a thermocouple is embedded in the roll width direction) located immediately above the radiation heat shielding device. FIG. 6 is a diagram illustrating a relationship with a generated temperature difference ΔT in a sheet width direction. The measurement conditions were a roll barrel length of 2000 mm, an average sheet width of the passed steel strip of 1,260 mm, and an average furnace temperature of 900 ° C. Here, ΔT = Te (roll surface temperature at a point 100 mm from the roll edge) −Tc (roll surface temperature of the roll center portion). Thus, the roll becomes concave, and the minimum ΔT that causes the steel strip to meander is about 150 ° C., and the cooling gas flow rate necessary to prevent the meandering is 3.0 × 10 −3 (Nm 3 / s). It can be said that it is above.
[0022]
In the above description, the outside air suction port is directed downward, but the direction of the outside air suction port is not limited to this, and may be, for example, horizontal.
[0023]
In the radiant heat shielding device comprising a double pipe having a horizontal or downward outside air intake port and an upward exhaust port according to the present invention, a chimney effect from outside air intake to exhaust is used to satisfy the required cooling gas flow rate. are doing. From the law of conservation of the mass of the fluid, the cooling gas flow rate Q (m 3 / s) is derived by the following equation.
[0024]
Q = Vg × π × (D / 2) 2 (2)
[0025]
Here, Vg is the flow rate of the cooling gas at the exhaust port (m / s), and D is the outer diameter (m) of the outer tube.
[0026]
Further, according to the law of conservation of fluid energy, the cooling gas flow velocity Vg at the exhaust port is derived by the following equation.
[0027]
Vg = √ (2gH) (3)
[0028]
Here, g is the gravitational acceleration = 9.8 m / s 2 , and H is the height difference (m) between the outside air intake port and the exhaust port of the double pipe.
[0029]
By substituting equation (3) into equation (2), the following equation is obtained.
[0030]
Q = √ (2 gH) × π × (D / 2) 2 (4)
[0031]
From equation (4), it can be seen that the cooling gas flow rate Q is proportional to the square of the outer diameter D of the outer pipe, and is proportional to the square root of the height difference H between the outside air intake port and the exhaust port of the double pipe. .
[0032]
In FIG. 5, the measured data is arranged by taking D 2 × √ (H) as a parameter on the horizontal axis and the cooling gas flow rate Q (Nm 3 / s) on the vertical axis. Thus, in order to satisfy the required cooling gas amount Q = 3.0 × 10 −3 (Nm 3 / s) or more, it is necessary to satisfy D 2 × √ (H) ≧ 2.2 × 10 −3. I can say. That is, in actual operation, the furnace temperature is 500 ° C. to 900 ° C., and it is known that the gas flow rate is sufficient in this temperature range. Therefore, if D 2 × √ (H) ≧ 2 × 10 −3 , a sufficient cooling effect can be obtained in actual operation.
[0033]
On the other hand, FIG. 6 shows the relationship between the cooling gas flow rate Q (Nm 3 / s) and the height difference H (mm) between the outside air intake port and the exhaust port of the double pipe. Since the height difference with the diameter of the heavy pipe was almost the same level, it was found that the cooling gas was difficult to flow. Therefore, it is preferable that the height difference H between the outside air intake port and the exhaust port of the double pipe be 150 mm or more.
[0034]
In addition, when the outer diameter of the outer tube of the double tube is small, creep deformation due to radiant heat is likely to occur. An outer diameter of 60 mm or more is preferable based on operation results so far.
[0035]
The outer diameter ratio of the outer tube to the inner tube of the double tube is 2.0 or more and 4.0 or less, and the material of the outer tube is such that the Cr content is 18% or more by weight and the Ni content is 8 by weight. % Or more of stainless steel, for example, JIS standard SUS304, SUS316, SUS316L and the like. In installation, it is preferable that the outside air suction port of the double pipe is separated from the furnace wall by 100 mm or more.
[0036]
Furthermore, when the roll diameter in the furnace is several times larger than the double pipe diameter of the radiant heat shield device, the radiant heat shield device having one double tube sufficiently radiates the radiation from the heating source to the roll surface. It becomes difficult to shield. In this case, as in the second embodiment shown in FIG. 7, a plurality of double pipes 20 are placed in a horizontal direction directly below a roll located at the upper part in the furnace or directly above a roll located at the lower part in the furnace. A method of arranging the individual pieces or mounting the shielding plate 30 on the support pipe using the double pipe 20 as a support pipe as in the third embodiment shown in FIG. 8 is effective.
[0037]
【Example】
Based on the results obtained in the actual machine test, the double pipe shown in FIG. 1 was made of SUS316L stainless steel. The outer diameter D of the outer pipe of this double pipe is 114.3 mm, the inner diameter of the outer pipe is 97.1 mm, the outer diameter of the inner pipe is 48.0 mm, the inner diameter of the inner pipe is 41.2 mm. The height difference H of the exhaust port is 200 mm. The radiant heat shielding device having this double tube was attached, and the actual equipment was confirmed for about two years. The results are shown in FIG. 9 (number of occurrences of meandering) and FIG. 10 (replacement frequency of the radiation heat shielding device). As is clear from FIG. 9, the number of occurrences of meandering is reduced to about 1/3 as compared with the conventional radiant heat shield device using a flat plate or a cooling pipe. Further, as is apparent from FIG. 10, the cooling operation effectively utilizing the chimney effect of the outside air greatly extends the service life as compared with the conventional device.
[0038]
【The invention's effect】
According to the present invention, it is possible to provide a radiant heat shielding device which is inexpensive and has both a meandering suppressing effect and a long life by effectively utilizing the chimney effect of the outside air.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a configuration of a double pipe used in a first embodiment of a radiant heat shielding device according to the present invention. FIG. 2 shows a conventional example using a flat plate and a comparative example using a simple cooling pipe. FIG. 3 is a side view and a front view showing an arrangement in which a cooling pipe according to the present invention is used. FIG. FIG. 4 is a diagram showing the relationship between the temperature and the difference between the cooling gas flow rate and the temperature difference in the roll plate width direction and the presence or absence of meandering. FIG. 5 is a diagram showing the outer diameter of the outer tube. FIG. 6 is a diagram showing an example of a relationship between a product of a square and a square root of a height difference and a cooling gas flow rate. FIG. 6 is a diagram showing an example of a relationship between a height difference and a cooling gas flow rate. FIG. 8 is a side view showing the configuration of the third embodiment. FIG. 9 is a side view showing a conventional example using a flat plate. FIG. 10 is a diagram showing a comparison between the comparative example using the heat pipe and the number of occurrences of meandering in the present invention. FIG. 10 is a diagram showing a comparison showing the replacement frequency of the radiant heat shielding device. FIG. 12 is a front view showing a furnace roll having a crown. FIG. 12 is a front view showing a state in which a steel strip is being conveyed by a furnace roll having a concave crown due to a thermal crown.
10 steel strip 12 furnace roll 14 heating source (radiant tube)
Reference Signs List 20 cooling pipe 22 inner pipe 23 outside air suction port 24 outer pipe 25 exhaust port 30 shielding plate

Claims (4)

炉内の上下にロールを配置して、このロールにより金属帯を連続的に搬送しながら熱処理を行う竪型連続焼鈍炉において、
炉内の上部に位置するロールの直下又は炉内の下部に位置するロールの直上に配置される、炉内の加熱源からの輻射熱を遮蔽する遮蔽装置が、水平又は下向きの外気吸い込み口を有する内管と、上向きの排気口を有する外管からなる2重管を備えたことを特徴とする竪型連続焼鈍炉の輻射熱遮蔽装置。
In a vertical continuous annealing furnace that performs heat treatment while continuously transporting a metal band by placing the rolls above and below in the furnace,
A shielding device for shielding radiant heat from a heating source in the furnace, which is disposed immediately below a roll located in an upper part of the furnace or immediately above a roll located in a lower part of the furnace, has a horizontal or downward facing outside air suction port. A radiant heat shielding apparatus for a vertical continuous annealing furnace, comprising a double pipe comprising an inner pipe and an outer pipe having an upward exhaust port.
前記2重管の外管の外径Dが直径60mm以上、且つ2重管の外気吸い込み口と排気口の高低差Hが150mm以上であり、更に2重管の外管の外径D(単位m)と前記高低差H(単位m)とが、
×√(H)≧2.2×10−3
の関係を満たすことを特徴とする、請求項1に記載の竪型連続焼鈍炉の輻射熱遮蔽装置。
The outer diameter D of the outer pipe of the double pipe is 60 mm or more in diameter, the height difference H between the outside air suction port and the exhaust port of the double pipe is 150 mm or more, and the outer diameter D of the outer pipe of the double pipe (unit) m) and the height difference H (unit m) are:
D 2 × √ (H) ≧ 2.2 × 10 −3
The radiation heat shielding device for a vertical continuous annealing furnace according to claim 1, wherein the following condition is satisfied.
請求項1又は2に記載の2重管を、炉内の上部に位置するロールの直下又は炉内の下部に位置するロールの直上に、水平方向に複数個を配列したことを特徴とする堅型連続焼鈍炉の輻射熱遮蔽装置。A plurality of the double tubes according to claim 1 or 2 are arranged in a horizontal direction immediately below a roll located at an upper part in the furnace or directly above a roll located at a lower part in the furnace. Radiation heat shield device for continuous annealing furnace. 請求項1又は2に記載の2重管を支持管として、その支持管に遮蔽板を装着したことを特徴とする竪型連続焼鈍炉の輻射熱遮蔽装置。A radiation heat shielding apparatus for a vertical continuous annealing furnace, wherein the double pipe according to claim 1 or 2 is used as a support pipe, and a shielding plate is attached to the support pipe.
JP25974699A 1999-09-14 1999-09-14 Radiation heat shield device for vertical continuous annealing furnace Expired - Fee Related JP3596371B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25974699A JP3596371B2 (en) 1999-09-14 1999-09-14 Radiation heat shield device for vertical continuous annealing furnace
TW90105857A TW507010B (en) 1999-09-14 2001-03-13 Heat shielding apparatus for vertical continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25974699A JP3596371B2 (en) 1999-09-14 1999-09-14 Radiation heat shield device for vertical continuous annealing furnace

Publications (2)

Publication Number Publication Date
JP2001081518A JP2001081518A (en) 2001-03-27
JP3596371B2 true JP3596371B2 (en) 2004-12-02

Family

ID=17338383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25974699A Expired - Fee Related JP3596371B2 (en) 1999-09-14 1999-09-14 Radiation heat shield device for vertical continuous annealing furnace

Country Status (2)

Country Link
JP (1) JP3596371B2 (en)
TW (1) TW507010B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029703A (en) * 2018-07-13 2018-12-18 东方电气(广州)重型机器有限公司 A kind of vibration and noise pilot system of air cooled tube

Also Published As

Publication number Publication date
TW507010B (en) 2002-10-21
JP2001081518A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP5546641B2 (en) Method and apparatus for reducing heat loss from edge inductors in a glass manufacturing process
US4092140A (en) Apparatus and method using heat pipes for manipulating temperature gradients in a glass forming chamber
CN102686965A (en) Equipment and method for preheating a continuously moving steel strip
CN103290191A (en) Device for recycling afterheat of thermal treatment furnace
CN205590763U (en) Metal strip roll high efficiency low energy consumption annealing stove
JP3596371B2 (en) Radiation heat shield device for vertical continuous annealing furnace
CN106587584A (en) Glass tempering heating furnace and tempered-glass production equipment comprising same
KR100580063B1 (en) Heat shielding apparatus for vertical continuous annealing furnace
US6444163B1 (en) Heat shielding apparatus for vertical continuous annealing furnace
CN106670412B (en) Roll-casting of magnesium alloy system and casting-rolling technology based on the casting system
EP1241274B1 (en) Heat shielding apparatus for vertical continuous annealing furnace
NL2004883C2 (en) Annealing installation with m-shaped strip treatment tunnel.
JPH0393639A (en) Method and apparatus for preventing bend of plate glass
CN1289697C (en) Thermal shield apparatus for vertical continuous annealing furnace
CN108362135B (en) Cupola waste heat utilization device
JP4268281B2 (en) Horizontal bright continuous annealing furnace for metal strip
CN206799430U (en) A kind of glass tempering heating furnace and the reinforced glass production facility comprising the heating furnace
CN212864890U (en) Water-cooling sealing door device for joint of annealing furnace and disc roller
CN205710885U (en) The device of stable alloy stove in-furnace temperature
US5609785A (en) Method and apparatus for improving the performance of a heating furnace for metal slabs
CA2339706C (en) Heat shielding apparatus for vertical continuous annealing furnace
CN203513725U (en) Cooling device for downcomer of RH refining furnace in steel mill
CN103572005B (en) A kind of refrigerating unit for steel mill RH refining furnace downtake and method of cooling
US4470808A (en) Pushing furnace for heating steel
CN208917261U (en) A kind of furnace body annealing furnace with long service life

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees