JP3596239B2 - Surface mount antenna - Google Patents

Surface mount antenna Download PDF

Info

Publication number
JP3596239B2
JP3596239B2 JP18949997A JP18949997A JP3596239B2 JP 3596239 B2 JP3596239 B2 JP 3596239B2 JP 18949997 A JP18949997 A JP 18949997A JP 18949997 A JP18949997 A JP 18949997A JP 3596239 B2 JP3596239 B2 JP 3596239B2
Authority
JP
Japan
Prior art keywords
electrode
base
radiation
power supply
radiation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18949997A
Other languages
Japanese (ja)
Other versions
JPH1141021A (en
Inventor
一也 川端
淳一 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18949997A priority Critical patent/JP3596239B2/en
Publication of JPH1141021A publication Critical patent/JPH1141021A/en
Application granted granted Critical
Publication of JP3596239B2 publication Critical patent/JP3596239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、移動体通信機器等に用いられる表面実装型アンテナに関する。
【0002】
【従来の技術】
従来の表面実装型アンテナとして、図5を用いて説明する。
【0003】
図5において、31は表面実装型アンテナであり、例えばセラミック等の誘電体からなる直方体状の基体32に放射電極33、接地電極34、および給電電極35を設けてなる。ここで、放射電極33は、基体32の第1の側面32aに設けられ、一端側が基体32の第1の端面32cに延びて開放端33aを形成しており、他端側が基体32の第2の端面32dに延びて延在部33bを形成している。また、接地電極34は、基体32の第2の側面32bに、放射電極33の延在部33bに連続して設けられる。また、給電電極35は、基体32の第1の端面32cに、放射電極33の開放端33aに近接して設けられる。
【0004】
このように構成される表面実装型アンテナ31においては、放射電極33の開放端33aと給電電極35との間に静電容量が発生し、この静電容量による容量結合によって放射電極33が励振され、共振型の表面実装型アンテナとして動作する。
【0005】
【発明が解決しようとする課題】
従来の表面実装型アンテナ31においては、放射電極33と給電電極35との間に発生する静電容量が所定値を上回り、容量結合が強くなりすぎて、インピーダンス整合が取れない場合、容量結合を弱めるための方法として、トリミング等により、放射電極33および給電電極35を小さくすること、もしくは、これらの電極間の距離を大きくすることが行われていた。しかしながら、前者の方法によると、電極が基体から剥離しやすくなったり、電極のトリミングの作業が困難となり、微調整ができないという問題があり、後者の方法によると、基体の表面積の拡大につながり、アンテナの小型化が阻害されるという問題があった。
【0006】
そこで、本発明においては、電極面積の縮小および基体の寸法拡大を伴うことなく、放射電極と給電電極との間に発生する静電容量を所定値に保つことにより、共振周波数および利得等のアンテナ特性が所望の値となる表面実装型アンテナを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明にかかる表面実装型アンテナにおいては、誘電体または磁性体からなり、直方体状をなす基体と、該基体の第1の側面に設けられ、一部が前記基体の第1の側面に隣接する他の面において開放端を形成する放射電極と、前記基体の第1の側面に対向する第2の側面に、前記放射電極に連続して設けられる接地電極と、前記基体の第2の側面に設けられる給電電極とを備えてなり、前記給電電極が、ギャップを介して前記接地電極に囲まれていることを特徴とする。
【0008】
本発明にかかる表面実装型アンテナにおいては、給電電極および接地電極が、ともに基体の放射電極の開放端が設けられる面に隣接する第2の側面に設けられ、しかも、給電電極がギャップを介して接地電極に囲まれている。したがって、放射電極の開放端と給電電極とが、接地電極を介して配置されることとなり、放射電極および接地電極間に発生する静電容量が、放射電極および給電電極間に発生する静電容量より相対的に大きくなり、アンテナの容量成分のうち、放射電極および接地電極間に発生する静電容量が支配的なものとなる。これにより、放射電極および給電電極間の静電容量が大きくなりすぎたり、放射電極および給電電極間の静電容量が大きすぎることによるインピーダンス不整合が発生したりする恐れがない。したがって、放射電極および給電電極の面積を小さくしたり、基体の寸法を拡大したりすることなく、放射電極および給電電極間に発生する静電容量を所定値に保ち、共振周波数および利得等のアンテナ特性を所望の値とすることができる。
【0009】
【発明の実施の形態】
本発明の第1の実施例にかかる表面実装型アンテナの構成を図1を参照して説明する。
【0010】
図1において、1は表面実装型アンテナであり、例えばセラミック等の誘電体からなる直方体状の基体2に、放射電極3、接地電極4、および給電電極5を設けてなる。このうち、放射電極3は、基体2の第1の側面2aに設けられ、一端側が基体2の第1の側面2aに隣接する第1の端面2cに延在し、開放端3aを形成しており、他端側が基体2の第1の端面2cに対向する第2の端面2dに延在し、延在部3bを形成している。また、接地電極4は、基体2の第1の側面2aに対向する第2の側面2bに、放射電極3の延在部3bに連続して設けられる。また、基体2の第1の主面2eおよび第1の端面2cに、それぞれ接地電極4の延在部4a、4bが形成される。また、給電電極5は、基体2の第2の側面2bに設けられるものであり、基体2の第1の主面2eに、給電電極5の延在部5aが形成される。ここで、給電電極5と接地電極4との間には、基体2の第2の側面2bから第1の主面2eに亘って、ギャップGが設けられており、給電電極5は、ギャップGを介して接地電極4に囲まれている。
【0011】
次に、表面実装型アンテナ1の動作を図2に示す等価回路図を参照して説明する。図2において、Lは放射電極3の自己インダクタンス、C1は放射電極3の開放端3aおよび給電電極5間に発生する静電容量、C2は放射電極3および接地電極4間に発生する静電容量、C3は接地電極4および給電電極5間に発生する静電容量、Rは表面実装型アンテナ1の放射抵抗である。そして、主としてインダクタンスL、抵抗R、および静電容量C1から共振回路が構成されており、高周波信号源Sから静電容量C1を介して共振回路に信号が入力されると、そのエネルギーは共振回路内で共振し、その一部が空中に放射され、アンテナとして動作する。
【0012】
ここで、表面実装型アンテナ1においては、接地電極4および給電電極5が、ともに基体2の第2の側面2bに設けられるとともに、給電電極5がギャップGを介して接地電極4に囲まれており、放射電極3の開放端3aと給電電極5とが、接地電極4を介して配置されている。このため、放射電極3および接地電極4間に発生する静電容量C2が、放射電極3および給電電極5間に発生する静電容量C1より相対的に大きくなり、アンテナの容量成分のうち、静電容量C2が支配的なものとなる。これにより、静電容量C1が大きくなりすぎたり、静電容量C1が大きすぎることによるインピーダンス不整合が発生したりする恐れがない。したがって、放射電極3および給電電極5の面積を小さくしたり、基体2の寸法を拡大したりすることなく、静電容量C1を所定値に保ち、共振周波数および利得等のアンテナ特性を所望の値とすることができる。
【0013】
次に、本発明にかかる第2の実施例を図3を用いて説明する。なお、第1の実施例と同一もしくは相当する部分には同一の符号を付し、その説明は省略する。図3において、11は表面実装型アンテナであり、基体2に放射電極12、接地電極13、および給電電極5を設けてなる。このうち、放射電極12は、基体2の第1の側面2aに設けられ、一端側が基体2の第1の主面2eに延在し、開放端12aを形成するとともに、他端側が基体2の第2の端面2dに延在し、延在部12bを形成している。また、接地電極13は、基体2の第2の側面2bに、放射電極12の延在部12bに連続して設けられる。また、給電電極5は、基体2の第2の側面2bに設けられており、ギャップGを介して接地電極13に囲まれている。また、基体2の第1の主面2eには、給電電極5の延在部5a、および接地電極13の延在部13aが形成される。
【0014】
このように構成される表面実装型アンテナ11においては、放射電極12の開放端12aと給電電極5とが、接地電極13を介して配置されることとなる。このため、放射電極12および接地電極13間に発生する静電容量が、放射電極12および給電電極5間に発生する静電容量より相対的に大きくなり、アンテナの容量成分のうち、放射電極12および接地電極13間の静電容量が支配的なものとなる。これにより、放射電極12および給電電極5間の静電容量が大きくなりすぎたり、それによってインピーダンス不整合が発生したりする恐れがない。したがって、放射電極12および給電電極5の面積を小さくしたり、基体2の寸法を拡大したりすることなく、放射電極12および給電電極5間の静電容量を所定値に保ち、所望のアンテナ特性を得ることができる。
【0015】
次に、本発明にかかる第3の実施例を図4を用いて説明する。なお、第1の実施例と同一もしくは相当する部分には同一の符号を付し、その説明は省略する。図4において、21は表面実装型アンテナであり、基体2に放射電極22、接地電極23、および給電電極5を設けてなる。このうち、放射電極22は、基体2の第1の側面2aに設けられ、一端側および他端側が、ともに基体2の第2の主面2fに延在し、それぞれ開放端22aおよび延在部22bを形成している。また、接地電極23は、基体2の第2の側面2bに、放射電極22の延在部22bに連続して設けられる。また、給電電極5は、基体2の第2の側面2bに設けられており、ギャップGを介して接地電極23に囲まれている。また、基体2の第1の主面2eには、接地電極23の延在部23a、および給電電極5の延在部5aが形成される。
【0016】
このように構成される表面実装型アンテナ21においては、給電電極5が、ギャップGを介して接地電極23に囲まれているため、放射電極22の開放端22aと給電電極5とが、接地電極23を介して配置されることとなる。このため、放射電極22および接地電極23間に発生する静電容量が、放射電極22および給電電極5間に発生する静電容量より相対的に大きくなり、アンテナの容量成分のうち、放射電極22および接地電極23間の静電容量が支配的なものとなる。これにより、放射電極22および給電電極5間の静電容量が大きくなりすぎたり、それによってインピーダンス不整合が発生したりする恐れがない。したがって、放射電極22および給電電極5の面積を小さくしたり、基体2の寸法を拡大したりすることなく、放射電極22および給電電極5間の静電容量を所定値に保ち、所望のアンテナ特性を得ることができる。
【0017】
なお、上記各実施例においては、誘電体からなる基体を用いて表面実装型アンテナを構成する場合について説明したが、磁性体からなる基体を用いた表面実装型アンテナにも、本発明を適用することができる。
【0018】
【発明の効果】
本発明にかかる表面実装型アンテナにおいては、給電電極および接地電極が、ともに基体の放射電極の開放端が設けられる面に隣接する第2の側面に設けられ、しかも、給電電極がギャップを介して接地電極に囲まれている。したがって、放射電極の開放端と給電電極とが、接地電極を介して配置されることとなり、放射電極および接地電極間に発生する静電容量が、放射電極および給電電極間に発生する静電容量より相対的に大きくなり、アンテナの容量成分のうち、放射電極および接地電極間に発生する静電容量が支配的なものとなる。これにより、放射電極および給電電極間の静電容量が大きくなりすぎたり、放射電極および給電電極間の静電容量が大きすぎることによるインピーダンス不整合が発生したりする恐れがない。したがって、放射電極および給電電極の面積を小さくしたり、基体の寸法を拡大したりすることなく、放射電極および給電電極間に発生する静電容量を所定値に保ち、共振周波数および利得等のアンテナ特性を所望の値とすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例にかかる表面実装型アンテナを示す透視斜視図である。
【図2】図1の表面実装型アンテナの等価回路図である。
【図3】本発明の第2の実施例にかかる表面実装型アンテナを示す透視斜視図である。
【図4】本発明の第3の実施例にかかる表面実装型アンテナを示す透視斜視図である。
【図5】従来の表面実装型アンテナを示す透視斜視図である。
【符号の説明】
1、11、21 表面実装型アンテナ
2 基体
3、12、22 放射電極
3a、12a、22a 開放端
4、13、23 接地電極
5 給電電極
G ギャップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface mount antenna used for a mobile communication device or the like.
[0002]
[Prior art]
A conventional surface mount antenna will be described with reference to FIG.
[0003]
In FIG. 5, reference numeral 31 denotes a surface-mounted antenna, which is provided with a radiation electrode 33, a ground electrode 34, and a feed electrode 35 on a rectangular parallelepiped base 32 made of a dielectric material such as ceramic. Here, the radiation electrode 33 is provided on the first side surface 32 a of the base 32, one end of the radiation electrode 33 extends to the first end surface 32 c of the base 32 to form an open end 33 a, and the other end of the radiation electrode 33 corresponds to the second end of the base 32. Extend to the end face 32d to form an extended portion 33b. In addition, the ground electrode 34 is provided on the second side surface 32 b of the base 32 so as to be continuous with the extending portion 33 b of the radiation electrode 33. The power supply electrode 35 is provided on the first end face 32 c of the base 32, close to the open end 33 a of the radiation electrode 33.
[0004]
In the surface-mounted antenna 31 configured as described above, a capacitance is generated between the open end 33a of the radiation electrode 33 and the feeding electrode 35, and the radiation electrode 33 is excited by capacitive coupling due to the capacitance. Operate as a resonance type surface mount antenna.
[0005]
[Problems to be solved by the invention]
In the conventional surface mount antenna 31, when the capacitance generated between the radiation electrode 33 and the power supply electrode 35 exceeds a predetermined value and the capacitive coupling becomes too strong to achieve the impedance matching, the capacitive coupling is performed. As a method for weakening, the size of the radiation electrode 33 and the feed electrode 35 is reduced by trimming or the like, or the distance between these electrodes is increased. However, according to the former method, there is a problem that the electrode is easily peeled off from the substrate, or the operation of trimming the electrode becomes difficult, and fine adjustment cannot be performed. According to the latter method, the surface area of the substrate is increased, There is a problem that miniaturization of the antenna is hindered.
[0006]
Therefore, in the present invention, by keeping the capacitance generated between the radiation electrode and the feeding electrode at a predetermined value without reducing the electrode area and enlarging the size of the base, the antenna such as the resonance frequency and the gain can be improved. It is an object of the present invention to provide a surface mount antenna whose characteristics have desired values.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in a surface mount antenna according to the present invention, a rectangular parallelepiped base made of a dielectric substance or a magnetic substance, and a base provided on a first side surface of the base and a part of the base are provided. A radiation electrode forming an open end on the other surface adjacent to the first side surface, and a ground electrode provided on the second side surface facing the first side surface of the base body so as to be continuous with the radiation electrode; And a power supply electrode provided on a second side surface of the base, wherein the power supply electrode is surrounded by the ground electrode via a gap.
[0008]
In the surface-mounted antenna according to the present invention, the feed electrode and the ground electrode are both provided on the second side surface adjacent to the surface on which the open end of the radiation electrode of the base is provided, and the feed electrode is disposed via the gap. Surrounded by ground electrodes. Therefore, the open end of the radiation electrode and the power supply electrode are arranged via the ground electrode, and the capacitance generated between the radiation electrode and the ground electrode is changed to the capacitance generated between the radiation electrode and the power supply electrode. It becomes relatively larger, and the capacitance generated between the radiation electrode and the ground electrode becomes dominant among the capacitance components of the antenna. Thus, there is no possibility that the capacitance between the radiation electrode and the power supply electrode becomes too large, or that the impedance between the radiation electrode and the power supply electrode is too large, thereby causing impedance mismatch. Therefore, without reducing the area of the radiation electrode and the feed electrode, or increasing the size of the base, the capacitance generated between the radiation electrode and the feed electrode is maintained at a predetermined value, and the antenna such as the resonance frequency and the gain are adjusted. The characteristics can be set to desired values.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A configuration of a surface mount antenna according to a first embodiment of the present invention will be described with reference to FIG.
[0010]
In FIG. 1, reference numeral 1 denotes a surface-mounted antenna, which is provided with a radiation electrode 3, a ground electrode 4, and a feed electrode 5 on a rectangular parallelepiped base 2 made of a dielectric such as ceramic. The radiation electrode 3 is provided on the first side surface 2a of the base 2, one end of the radiation electrode 3 extends to the first end surface 2c adjacent to the first side surface 2a of the base 2, and forms an open end 3a. The other end extends to a second end face 2d facing the first end face 2c of the base 2 to form an extension 3b. In addition, the ground electrode 4 is provided on the second side surface 2 b facing the first side surface 2 a of the base 2, continuously with the extension 3 b of the radiation electrode 3. Further, extending portions 4a and 4b of the ground electrode 4 are formed on the first main surface 2e and the first end surface 2c of the base 2, respectively. The power supply electrode 5 is provided on the second side surface 2 b of the base 2, and an extension 5 a of the power supply electrode 5 is formed on the first main surface 2 e of the base 2. Here, a gap G is provided between the power supply electrode 5 and the ground electrode 4 from the second side surface 2b of the base 2 to the first main surface 2e. Is surrounded by the ground electrode 4.
[0011]
Next, the operation of the surface mount antenna 1 will be described with reference to an equivalent circuit diagram shown in FIG. 2, L is the self-inductance of the radiation electrode 3, C1 is the capacitance generated between the open end 3a of the radiation electrode 3 and the feeding electrode 5, and C2 is the capacitance generated between the radiation electrode 3 and the ground electrode 4. , C3 is the capacitance generated between the ground electrode 4 and the feed electrode 5, and R is the radiation resistance of the surface mount antenna 1. A resonance circuit mainly includes the inductance L, the resistance R, and the capacitance C1, and when a signal is input from the high-frequency signal source S to the resonance circuit via the capacitance C1, the energy is transmitted to the resonance circuit. Resonate in the air, and a part of the light is radiated into the air to operate as an antenna.
[0012]
Here, in the surface mount antenna 1, the ground electrode 4 and the feed electrode 5 are both provided on the second side surface 2 b of the base 2, and the feed electrode 5 is surrounded by the ground electrode 4 via the gap G. In addition, the open end 3 a of the radiation electrode 3 and the power supply electrode 5 are arranged via the ground electrode 4. Therefore, the capacitance C2 generated between the radiating electrode 3 and the ground electrode 4 becomes relatively larger than the capacitance C1 generated between the radiating electrode 3 and the feeding electrode 5, and of the capacitance components of the antenna, The capacitance C2 becomes dominant. Thus, there is no possibility that the capacitance C1 becomes too large or that the impedance mismatch occurs due to the capacitance C1 being too large. Therefore, the capacitance C1 is maintained at a predetermined value and the antenna characteristics such as the resonance frequency and the gain are set to desired values without reducing the area of the radiation electrode 3 and the feeding electrode 5 and without increasing the dimensions of the base 2. It can be.
[0013]
Next, a second embodiment according to the present invention will be described with reference to FIG. The same or corresponding parts as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 3, reference numeral 11 denotes a surface-mounted antenna, which is provided with a radiation electrode 12, a ground electrode 13, and a feed electrode 5 on a base 2. Among them, the radiation electrode 12 is provided on the first side surface 2a of the base 2, one end thereof extends to the first main surface 2e of the base 2, forms an open end 12a, and the other end of the base 2 It extends to the second end face 2d to form an extension 12b. The ground electrode 13 is provided on the second side surface 2b of the base 2 so as to be continuous with the extending portion 12b of the radiation electrode 12. The power supply electrode 5 is provided on the second side surface 2 b of the base 2, and is surrounded by the ground electrode 13 via the gap G. An extension 5a of the power supply electrode 5 and an extension 13a of the ground electrode 13 are formed on the first main surface 2e of the base 2.
[0014]
In the surface-mounted antenna 11 configured as described above, the open end 12 a of the radiation electrode 12 and the power supply electrode 5 are arranged via the ground electrode 13. For this reason, the capacitance generated between the radiation electrode 12 and the ground electrode 13 becomes relatively larger than the capacitance generated between the radiation electrode 12 and the feed electrode 5, and the radiation electrode 12 And the capacitance between the ground electrode 13 becomes dominant. Accordingly, there is no possibility that the capacitance between the radiation electrode 12 and the power supply electrode 5 becomes too large, and that the impedance mismatch occurs. Therefore, the capacitance between the radiation electrode 12 and the power supply electrode 5 is maintained at a predetermined value without reducing the area of the radiation electrode 12 and the power supply electrode 5 and without increasing the size of the base 2, and a desired antenna characteristic is obtained. Can be obtained.
[0015]
Next, a third embodiment according to the present invention will be described with reference to FIG. The same or corresponding parts as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 4, reference numeral 21 denotes a surface mount antenna, which is provided with a radiation electrode 22, a ground electrode 23, and a feed electrode 5 on a base 2. Among them, the radiation electrode 22 is provided on the first side surface 2a of the base 2, and one end and the other end both extend to the second main surface 2f of the base 2, and the open end 22a and the extending portion are respectively provided. 22b. The ground electrode 23 is provided on the second side surface 2b of the base 2 so as to be continuous with the extending portion 22b of the radiation electrode 22. The power supply electrode 5 is provided on the second side surface 2 b of the base 2, and is surrounded by the ground electrode 23 via the gap G. An extension 23a of the ground electrode 23 and an extension 5a of the power supply electrode 5 are formed on the first main surface 2e of the base 2.
[0016]
In the surface-mounted antenna 21 configured as described above, since the power supply electrode 5 is surrounded by the ground electrode 23 via the gap G, the open end 22a of the radiation electrode 22 and the power supply electrode 5 are connected to the ground electrode. 23. For this reason, the capacitance generated between the radiation electrode 22 and the ground electrode 23 becomes relatively larger than the capacitance generated between the radiation electrode 22 and the feed electrode 5, and the radiation electrode 22 And the capacitance between the ground electrode 23 becomes dominant. Thus, there is no possibility that the capacitance between the radiation electrode 22 and the power supply electrode 5 becomes too large, and that the impedance mismatch occurs. Therefore, the capacitance between the radiation electrode 22 and the power supply electrode 5 is maintained at a predetermined value without reducing the area of the radiation electrode 22 and the power supply electrode 5 and without increasing the dimensions of the base 2, and a desired antenna characteristic is obtained. Can be obtained.
[0017]
In each of the embodiments described above, the case where the surface-mount antenna is formed using the base made of a dielectric material has been described. However, the present invention is also applied to a surface-mount antenna using a base made of a magnetic material. be able to.
[0018]
【The invention's effect】
In the surface-mounted antenna according to the present invention, the feed electrode and the ground electrode are both provided on the second side surface adjacent to the surface on which the open end of the radiation electrode of the base is provided, and the feed electrode is disposed via the gap. Surrounded by ground electrodes. Therefore, the open end of the radiation electrode and the power supply electrode are arranged via the ground electrode, and the capacitance generated between the radiation electrode and the ground electrode is changed to the capacitance generated between the radiation electrode and the power supply electrode. It becomes relatively larger, and the capacitance generated between the radiation electrode and the ground electrode becomes dominant among the capacitance components of the antenna. Thus, there is no possibility that the capacitance between the radiation electrode and the power supply electrode becomes too large, or that the impedance between the radiation electrode and the power supply electrode is too large, thereby causing impedance mismatch. Therefore, without reducing the area of the radiation electrode and the feed electrode, or increasing the size of the base, the capacitance generated between the radiation electrode and the feed electrode is maintained at a predetermined value, and the antenna such as the resonance frequency and the gain are adjusted. The characteristics can be set to desired values.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a surface mount antenna according to a first embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram of the surface mount antenna of FIG.
FIG. 3 is a perspective view showing a surface mount antenna according to a second embodiment of the present invention.
FIG. 4 is a perspective view showing a surface mount antenna according to a third embodiment of the present invention.
FIG. 5 is a perspective view showing a conventional surface mount antenna.
[Explanation of symbols]
1, 11, 21 Surface mount antenna 2 Bases 3, 12, 22 Radiation electrodes 3a, 12a, 22a Open ends 4, 13, 23 Ground electrode 5 Feed electrode G Gap

Claims (1)

誘電体または磁性体からなり、直方体状をなす基体と、
該基体の第1の側面に設けられ、一部が前記基体の第1の側面に隣接する他の面において開放端を形成する放射電極と、
前記基体の第1の側面に対向する第2の側面に、前記放射電極に連続して設けられる接地電極と、
前記基体の第2の側面に設けられる給電電極とを備えてなり、
前記給電電極が、ギャップを介して前記接地電極に囲まれていることを特徴とする表面実装型アンテナ。
A rectangular parallelepiped base made of a dielectric or magnetic material,
A radiating electrode provided on a first side surface of the base, a part of which forms an open end on another surface adjacent to the first side surface of the base;
A ground electrode provided on a second side surface of the base opposite to the first side surface, the ground electrode being provided continuously with the radiation electrode;
A power supply electrode provided on a second side surface of the base,
A surface-mounted antenna, wherein the power supply electrode is surrounded by the ground electrode via a gap.
JP18949997A 1997-07-15 1997-07-15 Surface mount antenna Expired - Fee Related JP3596239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18949997A JP3596239B2 (en) 1997-07-15 1997-07-15 Surface mount antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18949997A JP3596239B2 (en) 1997-07-15 1997-07-15 Surface mount antenna

Publications (2)

Publication Number Publication Date
JPH1141021A JPH1141021A (en) 1999-02-12
JP3596239B2 true JP3596239B2 (en) 2004-12-02

Family

ID=16242303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18949997A Expired - Fee Related JP3596239B2 (en) 1997-07-15 1997-07-15 Surface mount antenna

Country Status (1)

Country Link
JP (1) JP3596239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180473B2 (en) 2001-02-23 2007-02-20 Yokowo Co., Ltd. Antenna with built-in filter

Also Published As

Publication number Publication date
JPH1141021A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP3279205B2 (en) Surface mount antenna and communication equipment
JP3114621B2 (en) Surface mount antenna and communication device using the same
EP0766340B1 (en) Surface mounting antenna and communication apparatus using the same antenna
JP3794360B2 (en) Antenna structure and communication device having the same
JPH0998015A (en) Surface mount antenna and communication equipment using the antenna
JP2004166242A (en) Surface mount antenna, antenna device and communication device using the same
JPH09219619A (en) Surface mount antenna and communication equipment using the same
JP3246365B2 (en) Surface mount antenna, antenna device, and communication device
WO2005078860A1 (en) Antenna
JPH0851313A (en) Surface mount antenna and its frequency adjustment method
JP3279188B2 (en) Surface mount antenna
JP3435622B2 (en) Method of adjusting resonance frequency of surface-mounted antenna and method of adjusting impedance
JP3116763B2 (en) Surface mount antenna and communication device using the same
JP3307248B2 (en) Surface mounted antenna and surface mounted antenna device
JP2004056506A (en) Surface-mounted antenna and portable radio device
JPH10107535A (en) Surface mount antenna
JP3596239B2 (en) Surface mount antenna
JP3042386B2 (en) Surface mount antenna and communication device using the same
JPH05206730A (en) Voltage controlled oscillator and adjustment method of its oscillating frequency
JP3286894B2 (en) Surface mount antenna
JP3042384B2 (en) Surface mount antenna and communication device using the same
JP3663951B2 (en) Surface mount antenna and communication device using the same
JPH1032421A (en) Surface mounted antenna
CN214280210U (en) Antenna device and electronic apparatus
JPH10341107A (en) Surface mount antenna and antenna system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees