JP3595863B2 - Method for producing norbornene-based polymer molded article and molded article thereof - Google Patents

Method for producing norbornene-based polymer molded article and molded article thereof Download PDF

Info

Publication number
JP3595863B2
JP3595863B2 JP13324795A JP13324795A JP3595863B2 JP 3595863 B2 JP3595863 B2 JP 3595863B2 JP 13324795 A JP13324795 A JP 13324795A JP 13324795 A JP13324795 A JP 13324795A JP 3595863 B2 JP3595863 B2 JP 3595863B2
Authority
JP
Japan
Prior art keywords
group
palladium
norbornene
molded article
based polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13324795A
Other languages
Japanese (ja)
Other versions
JPH08325329A (en
Inventor
健二 長岡
伸夫 大井
健太郎 間下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13324795A priority Critical patent/JP3595863B2/en
Publication of JPH08325329A publication Critical patent/JPH08325329A/en
Application granted granted Critical
Publication of JP3595863B2 publication Critical patent/JP3595863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings

Description

【0001】
【産業上の利用分野】
本発明はノルボルネン系ポリマー成形体の製造方法及びその成形体に関する。さらに詳しくは第10族金属化合物を触媒に用いる反応成形法によるノルボルネン系ポリマー成形体の製造方法及びその成形体に関するものである。
【0002】
【従来の技術】
樹脂の各種成形法の中で一般にRIMと呼ばれる反応成形法は、大型で複雑な形状のものを成形できる、成形型が安価である、成形に要するエネルギーが少ない等の特徴を有した優れた成形法であり、2種以上の反応原液を混合することによって重合が起こり、しかもその重合が迅速であるという条件を満たす系には広く実用されている。
ノルボルネン系モノマーの反応成形も知られており、例えば特開昭58−129013号公報にはジシクロペンタジエンの反応成形法が開示されている。しかし、従来知られているノルボルネン系モノマーの反応成形は第6族遷移金属化合物等とアルキルアルミニウム等の助触媒とからなる、いわゆるメタセシス触媒系を用いるものに限られており、従って得られる成形体もノルボルネン系モノマーの開環重合体からなるものに限られていた。ノルボルネン系モノマーの開環重合体は衝撃強度等の機械的特性は優れるものの、必然的に主鎖に不飽和鎖が導入されるため、耐熱性が低い、耐候性が劣る等の欠点があった。
一方付加構造を有するノルボルネン系ポリマーは開環重合体に比して高い耐熱性と優れた耐候性を有するが、反応成形によるその成形体は知られておらず、成形は射出成形等の溶融成形法に依らざるを得なかった。これら溶融成形に供される付加構造を有するノルボルネン系ポリマーの例としては特公平4−14685号公報に開示のポリマー等を挙げることができる。さらに、耐熱性のより高い、環構造を多く含む付加構造を有するノルボルネン系ポリマーは溶融温度が高く、実質上溶融成形することができないという欠点を有する。このようなポリマーの例としてはメタロセン触媒によるポリノルボルネン[触媒、33(8)536−544(1991)]や特開平4−63807号公報に開示のノルボルネン系ポリマーを挙げることができる。このように現在のところ付加構造を有するノルボルネン系ポリマーについては開環重合体に匹敵するような合理的な成形法は知られていないというのが実情である。
【0003】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものである。即ち、本発明の課題は付加構造を有するノルボルネン系ポリマーの成形体を製造する方法ならびにその成形体を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、ノルボルネン系ポリマーの重合並びに成形について鋭意研究を重ねた結果、触媒として特定の遷移金属化合物を用いて反応成形した場合に、実質的に不飽和結合を含まない、耐熱性及び機械特性が顕著に優れた成形体が得られることを見いだし本発明を完成するに至った。
【0005】
即ち、本発明は、反応原液を成形型中に注入し、該成形型内にて重合せしめてポリマー成形体を得る反応成形法において、反応原液として少なくとも(A)第10族遷移金属化合物(a)を含有する反応原液及び(B)助触媒(b)を含有する反応原液を用い、かつ少なくとも一つの反応原液は一般式[I]で表されるノルボルネン系モノマーを含有する実質的に不飽和結合を含まないノルボルネン系ポリマー成形体の製造方法及びその成形体を提供するものである。

Figure 0003595863
(式中、R1〜R12は、それぞれ独立に水素原子、ハロゲン原子、水酸基、アミノ基および炭素数1〜20の有機基からなる群から選ばれる置換基を示し、R5とR7は環を形成してもよい。nは0以上の整数を示す。)
以下、本発明についてさらに詳しく説明する。
【0006】
(a)第10族遷移金属化合物
本発明の方法において用いられる第10族遷移金属化合物(a)とは、周期律表(IUPAC無機化学命名法改訂版、1989)の第10族元素の化合物であり、ニッケル、パラジウム、白金からなる群から選ばれる元素の各種化合物が使用可能である。その具体例としては、塩化ニッケル、硫酸ニッケル、過塩素酸ニッケル等のニッケルの無機酸塩;酢酸ニッケル、シュウ酸ニッケル等のニッケルの有機酸塩;ニッケルアセチルアセトネート、ニッケルフタロシアニン等のニッケル錯体;塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、硫酸パラジウム、硝酸パラジウム等のパラジウムの無機酸塩;酢酸パラジウム、トリフルオロ酢酸パラジウム、シアン化パラジウム等のパラジウムの有機酸塩;パラジウムアセチルアセトネート、ビス(アリル)パラジウム、ジクロロ(1,5−シクロオクタジエン)パラジウム、ジクロロビス(アセトニトリル)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、カルボニルトリス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリエチルホスフィン)パラジウム、ジアセトビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム、ビス[1,2−ビス(ジフェニルフォスフィノ)エタン]パラジウム、テトラアミンパラジウムナイトレート、テトラキス(アセトニトリル)パラジウムテトラフルオロボレート等のパラジウム錯体;塩化白金、ヨウ化白金等の白金の無機酸塩;白金アセチルアセトネート等の白金錯体等を挙げることができる。これらの中で好ましい第10族遷移金属化合物(a)はパラジウムの化合物とニッケルの化合物であり、さらに好ましい第10族遷移金属化合物(a)はパラジウムの化合物である。好ましい第10族遷移金属化合物(a)の具体例は、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、硫酸パラジウム、硝酸パラジウム、酢酸パラジウムジクロロビス(アセトニトリル)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム及びパラジウムアセチルアセトネートである。
【0007】
(b)助触媒
本発明の方法において使用される助触媒(b)とは、第10族遷移金属化合物(a)と相互作用をして、ノルボルネン系モノマーに対する重合活性種を生成せしめる化合物のことである。かかる化合物の例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム;メチルアルミノキサン等のアルミニウムオキシ化合物;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド、メチルアルミニウムセスキクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、塩化亜鉛、四塩化珪素、四塩化錫、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、三塩化硼素、三フッ化硼素、フェニルボロンジクロリド、塩化ガリウム等のハロゲン原子を含有するルイス酸;テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸ジメチルアニリニウム、トリエチルアンモニウムテトラフェニル硼酸トリメチルスルホニウム、テトラ(ペンタフルオロフェニル)硼酸トリエチルアンモニウム、テトラ(ペンタフロオロフェニル)ジメチルアニリニウム、テトラ(ペンタフルオロフェニル)硼酸トリメチルスルホニウム、テトラ(ペンタフルオロフェニル)硼酸トリチル、テトラフェニル硼酸フェロセニウム、テトラ(ペンタフルオロフェニル)硼酸フェロセニウム、テトラフェニル硼酸(テトラフェニルポルフィリンマンガン)等の遷移金属と反応してイオン性の錯体を形成する化合物等を挙げることができる。これらの中で好ましい助触媒(b)はハロゲン原子を含有するルイス酸及び遷移金属化合物と反応してイオン性の錯体を形成する化合物である。最も好ましい助触媒(b)はエチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、三フッ化硼素、テトラ(ペンタフロオロフェニル)硼酸ジメチルアニリニウム、テトラ(ペンタフルオロフェニル)硼酸トリメチルスルホニウム、テトラ(ペンタフルオロフェニル)硼酸トリチルである。
【0008】
(c)ノルボルネン系モノマー
本発明において使用されるノルボルネン系モノマーは、一般式[I]で表わされる化合物である。
Figure 0003595863
(式中、R1〜R12はそれぞれ独立に水素原子、ハロゲン原子、水酸基、アミノ基および炭素数1〜20の有機基からなる群から選ばれる置換基を示し、R5とR7は環を形成してもよい。nは0以上の整数を示す。)
【0009】
ここに、R〜R12における置換基の一員である炭素数1〜20の有機基の具体例としてはメチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等のアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;メチリデン基、エチリデン基、ビニル基、アリル基等の不飽和炭化水素基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリーロキシ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;アセチルオキシ基等のアシルオキシ基;トリメチルシリル基等のシリル基;ジメチルアミノ基、ジエチルアミノ基等のアルキルアミノ基;カルボキシル基;シアノ基;並びに上記アルキル基、アリール基およびアラルキール基の水素原子の一部がハロゲン原子、水酸基、アミノ基、カルボキシル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、シリル基、アルキルアミノ基あるいはシアノ基で置換された基を挙げることができる。
〜R12として好ましい置換基は、水素原子;炭素数1〜20のアルキル基、特に好ましくは炭素数1〜10のアルキル基;炭素数1〜20のアリール基、特に好ましくは炭素数1〜10のアリール基;炭素数1〜20のアラルキル基、特に好ましくは炭素数1〜10のアラルキル基;および炭素数1〜20の不飽和炭化水素基、特に好ましくは炭素数1〜10の不飽和炭化水素基からなる群から選ばれる置換基である。
【0010】
一般式[I]で表される好ましいノルボルネン系モノマーの具体例としては、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−ブチルノルボルネン、5−フェニルノルボルネン、5−ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、エチリデンノルボルネン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、5−アセチルノルボルネン、5−アセチルオキシノルボルネン、5−メトキシカルボニルノルボルネン、5−エトキシカルボニルノルボルネン、5−メチル−5−メトキシカルボニルノルボルネン、5−シアノノルボルネン、8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−メトキシカルボニルテトラシクロドデセン、8−シアノテトラシクロドデセン等を列挙することができる。
【0011】
成形に際してこれらのノルボルネン系モノマーは単独または複数で使用される。また、ノルボルネン系ポリマーの有する優れた性質を損なわない範囲、すなわち一般には全モノマー中のノルボルネン系モノマーの割合が50重量%を下回らない範囲でノルボルネン系モノマーと共重合性を持つ、下記に示す他のモノマーをノルボルネン系モノマーと一緒に用いることができる。
【0012】
(d)他のモノマー
かかる他のモノマーの例としてはエチレン、プロピレン、1−ブテン、4−メチルペンテン−1、1−ヘキセン、1−オクテン等のα−オレフィン;スチレン等のアルケニル芳香族炭化水素;メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル;塩化ビニル等の不飽和ハロゲン化炭化水素;メチルアクリレート、エチルアクリレート、メチルメタクリレート等のα,β−不飽和カルボン酸エステル;アクリロニトリル等の不飽和ニトリル;酢酸ビニル等のカルボン酸ビニル等を挙げることができる。
【0013】
(e)反応原液
本発明にいう反応原液とは、(I)重合あるいは共重合させるモノマーからなる液体、(II)当該モノマーに第10族遷移金属化合物(a)を含有する液体、あるいは(III)当該モノマーに助触媒(b)を含有する液体をいう。反応原液は少なくとも(II)と(III)に分けて成形器に注入されるが、注入される原液のうち少なくとも一つの反応原液にはノルボルネン系モノマーを含有する。各反応原液には同一または異種のノルボルネン系モノマー、他のモノマー、あるいはそれらの混合物を含有してよい。また、全ての反応原液中のモノマー組成は同じでも異なっていてもよい。成形体の組成を均一にする上においては全反応原液中のモノマー組成は等しい方が好ましい。
第10族遷移金属化合物(a)や助触媒(b)の濃度は任意に設定できるが、反応原液の成形器中への注入に際して、第10族遷移金属化合物(a)と助触媒(b)のモル比が一定に保たれるような速度で注入される。尚、第10族遷移金属化合物(a)や助触媒(b)を含有しない反応原液、同一または異なった(a)や(b)を含有する別の反応原液も適宜使用できる。さらに、成形体の形状に合わせ、複数の注入口を使用することもできる。
【0014】
第10族遷移金属化合物(a)の使用量は選ばれるノルボルネン系モノマーの種類や他の成形条件によってその好適な値が異なるため、一概にその範囲を定めることはできないが、通常、使用されるモノマーに対して0.00001〜1モル%、好ましくは0.0001〜0.1モル%である。助触媒(b)の使用量も特に制限されないが、第10族遷移金属化合物(a)1モル当たり、通常0.1〜100モル、好ましくは0.5〜10モルである。
【0015】
成形温度については特に制限はなく、一般に−100〜250℃、好ましくは−50〜200℃が採用される。また、圧力についても制限はないが、一般に500kg/cm以下、好ましくは常圧〜200kg/cmで実施される。
【0016】
成形を行う雰囲気について特に制限はなく、空気中で行っても窒素等の不活性気体雰囲気下で行ってもよい。
【0017】
本発明では、様々な添加剤を配合することによってポリマーの特性を変化させることができる。例えば充填剤、発泡剤、顔料、酸化防止剤、光安定剤及び高分子改質剤などである。成形時間は短時間なので、該添加剤は反応原液のいずれか或いは全てに予め混合しておくことが望ましいが、反応原液の流れを阻害しない範囲であれば直接成形型内に仕込むか或いは反応原液を混合した後に添加してもかまわない。但し、添加剤は触媒の活性を阻害するものであってはならない。
添加剤の具体例としては、ゴム、ガラス、タルク、カーボンブラック、炭酸カルシウム、雲母等が挙げられる。これらはポリマーの耐衝撃性、曲げ弾性率を高めたり、成形収縮を低下させることのできる化合物である。これら添加剤はノルボルネン系ポリマー100重量部あたり通常0〜200重量部の範囲で、目的に応じて添加量を変えることができる。
【0018】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例によりその範囲を限定されるものではない。
なお、実施例で使用したRIM反応装置及び成形器の概略図を、図1、2に各々示した。成形器は図に示したものを重ねて止め金数個で固定して使用した。尚、実施例中で示す成形器(1)は内寸が80×130mm、厚3mmのテフロン製のスペーサーをガラス板で挟んだものであり、成形器(2)は内寸が80×130mm、厚6mmのテフロン製のスペーサーをガラス板で挟んだものである。実施例中における熱変形温度はASTMD648(試験片厚さ6mm)に、引張強度はASTM D638(試験片厚さ3mm)に、曲げ弾性率はASTM D790(試験片厚さ3mm)に、ノッチ付きアイゾット衝撃強度はASTM D256(試験片厚さ3mm)に、それぞれ従って測定した値である。
【0019】
実施例1
パラジウムアセチルアセトネートの0.001mol%ノルボルネン溶液(溶液A)とテトラ(ペンタフルオロフェニル)硼酸トリチルの0.001mol%ノルボルネン溶液(溶液B)を調製した。空気中で溶液(A)及び溶液(B)を1:1の割合で混合しながら同時に50℃の成形器(1)及び成形器(2)に流し込んだ。5分後それぞれの成形器を解体して、無色透明の、寸法が80×130×3mmの板状の成形体と寸法が80×130×6mmの板状の成形体を取り出した。前者の成形体を真空乾燥(80℃、2Torr、3時間)したところ1.2%の重量減少がみられた。該成形体の赤外吸収スペクトル及び13C−固体NMRスペクトルには炭素−炭素二重結合に基づく吸収が認められず、該成形体が飽和構造のポリノルボルネンであることが確かめられた。また、該成形体はトルエン、テトラリンといった炭化水素系溶媒に全く溶解しなかった。該成形体から機械切削によって作成した試験片について測定した熱変形温度は149℃、引張強度は520kg/cm(伸びは8.0%)、曲げ弾性率は30900kg/cm(曲げ強度は840kg/cm)、ノッチ付きアイゾット衝撃強度は6.6kg・cm/cmであった。
【0020】
実施例2
実施例1におけるノルボルネンをノルボルネンと5−メトキシカルボニルノルボルネンの4:1(モル比)混合液に変え、パラジウムアセチルアセトネート及びテトラ(ペンタフルオロフェニル)硼酸トリチルの濃度を0.005mol%に変えた以外は実施例1と同様に操作したところ、淡黄色透明の成形体が得られた。該成形体から実施例1と同様にして得た試験片の熱変形温度は171℃、引張強度は480kg/cm(伸びは7.6%)、曲げ弾性率は28400kg/cm(曲げ強度は680kg/cm)、ノッチ付きアイゾット衝撃強度は4.2kg・cm/cmであった。
【0021】
比較例1
本比較例は、メタセシス触媒を用いた開環重合型RIMの例である。実施例1におけるパラジウムアセチルアセトネートのノルボルネン溶液(溶液A)を六塩化タングステンの0.05mol%ノルボルネン溶液に変え、テトラ(ペンタフルオロフェニル)硼酸トリチルのノルボルネン溶液(溶液B)をジエチルアルミニウムクロリドの0.5mol%ノルボルネン溶液に変え、操作を窒素気流下で行った以外は実施例1と同様に操作したところ、熱変形温度が室温以下のゴム状の成形体が得られた。
【0022】
比較例2
実施例1におけるパラジウムアセチルアセトネートのノルボルネン溶液(溶液A)を、六塩化タングステンの0.001mol%ノルボルネン溶液に変え、操作を窒素気流下で行った以外は実施例1と同様に操作したところ、成形体は得られなかった。
【0023】
【発明の効果】
以上詳述したように、本発明の方法によれば、熱的性質及び機械的性質の優れた、自動車用バンパーやインパネ等の大型成形品を経済的に得ることができるのであり、工業的価値はすこぶる大きい。
【図面の簡単な説明】
【図1】図1は、本発明の実施例において使用したRIM反応装置である。これは本発明の実施態様の代表例であり、本発明は何らこれに限定されるべきものではない。
【符号の説明】
1:溶液Aを注入するシリンジ
2:溶液Bを注入するシリンジ
3:成形器
【図2】図2は、本発明の実施例において使用したRIM反応装置の成形器の概略図である。これは本発明の実施態様の代表例であり、本発明は何らこれに限定されるべきものではない。[0001]
[Industrial applications]
The present invention relates to a method for producing a norbornene-based polymer molded article and the molded article. More specifically, the present invention relates to a method for producing a norbornene-based polymer molded article by a reaction molding method using a Group 10 metal compound as a catalyst, and to the molded article.
[0002]
[Prior art]
Among the various resin molding methods, the reaction molding method generally called RIM is an excellent molding method having features such as being able to mold a large and complicated shape, an inexpensive molding die, and low energy required for molding. This method is widely used in a system that satisfies the condition that polymerization occurs by mixing two or more kinds of reaction stock solutions and that the polymerization is rapid.
Reaction molding of norbornene-based monomers is also known. For example, JP-A-58-129003 discloses a reaction molding method of dicyclopentadiene. However, conventionally known reaction molding of norbornene-based monomers is limited to those using a so-called metathesis catalyst system comprising a group 6 transition metal compound or the like and a cocatalyst such as alkylaluminum. In addition, they have been limited to those comprising a ring-opened polymer of a norbornene-based monomer. Ring-opened polymers of norbornene monomers have excellent mechanical properties such as impact strength, but have disadvantages such as low heat resistance and poor weather resistance because an unsaturated chain is inevitably introduced into the main chain. .
On the other hand, norbornene polymers having an additional structure have higher heat resistance and better weatherability than ring-opened polymers, but their molded products by reaction molding are not known, and molding is performed by melt molding such as injection molding. I had to rely on the law. Examples of the norbornene-based polymer having an additional structure to be subjected to melt molding include a polymer disclosed in Japanese Patent Publication No. 4-14685. Furthermore, the norbornene-based polymer having higher heat resistance and an additional structure containing a large number of ring structures has a high melting temperature and has a disadvantage that it cannot be substantially melt-molded. Examples of such polymers include metallocene-catalyzed polynorbornenes [catalyst, 33 (8) 536-544 (1991)] and norbornene-based polymers disclosed in JP-A-4-63807. As described above, at present, it is a fact that a rational molding method comparable to a ring-opening polymer is not known for norbornene-based polymers having an additional structure.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances. That is, an object of the present invention is to provide a method for producing a molded article of a norbornene-based polymer having an additional structure and a molded article thereof.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on polymerization and molding of norbornene-based polymers in order to achieve the above object, and as a result, when a specific transition metal compound is used as a catalyst for reaction molding, substantially unsaturated bond is formed. The present inventors have found that a molded article containing no and having remarkably excellent heat resistance and mechanical properties can be obtained, and have completed the present invention.
[0005]
That is, according to the present invention, in a reaction molding method of injecting a reaction stock solution into a mold and polymerizing in the mold to obtain a polymer molded body, at least (A) a Group 10 transition metal compound (a) is used as the reaction stock solution. ) And (B) a reaction solution containing the cocatalyst (b), and at least one reaction solution is substantially unsaturated containing a norbornene-based monomer represented by the general formula [I]. An object of the present invention is to provide a method for producing a norbornene-based polymer molded article containing no bond, and a molded article thereof.
Figure 0003595863
(Wherein, R 1 to R 12 each independently represent a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, an amino group and an organic group having 1 to 20 carbon atoms, and R 5 and R 7 are A ring may be formed, and n represents an integer of 0 or more.)
Hereinafter, the present invention will be described in more detail.
[0006]
(A) Group 10 transition metal compound The group 10 transition metal compound (a) used in the method of the present invention is a compound of a group 10 element of the periodic table (IUPAC revised edition of inorganic chemical nomenclature, 1989). In addition, various compounds of elements selected from the group consisting of nickel, palladium, and platinum can be used. Specific examples thereof include inorganic salts of nickel such as nickel chloride, nickel sulfate and nickel perchlorate; organic acid salts of nickel such as nickel acetate and nickel oxalate; nickel complexes such as nickel acetylacetonate and nickel phthalocyanine; Inorganic acid salts of palladium, such as palladium chloride, palladium bromide, palladium iodide, palladium sulfate, palladium nitrate; organic acid salts of palladium, such as palladium acetate, palladium trifluoroacetate, and palladium cyanide; palladium acetylacetonate, bis ( Allyl) palladium, dichloro (1,5-cyclooctadiene) palladium, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium, carbonyltris (triphenylphosphine) palladium, dichlorobis ( Triethylphosphine) palladium, diacetbis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, dichloro [1,2-bis (diphenylphosphino) ethane] palladium, bis [1,2-bis (diphenylphosphino) [Ethane] palladium complexes such as palladium, tetraamine palladium nitrate and tetrakis (acetonitrile) palladium tetrafluoroborate; inorganic salts of platinum such as platinum chloride and platinum iodide; and platinum complexes such as platinum acetylacetonate. it can. Of these, preferred Group 10 transition metal compounds (a) are palladium compounds and nickel compounds, and more preferred Group 10 transition metal compounds (a) are palladium compounds. Specific examples of preferred Group 10 transition metal compounds (a) include palladium chloride, palladium bromide, palladium iodide, palladium sulfate, palladium nitrate, palladium acetate dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium and palladium acetyl Acetonate.
[0007]
(B) Co-catalyst The co-catalyst (b) used in the method of the present invention is a compound that interacts with the Group 10 transition metal compound (a) to generate a polymerization active species for norbornene-based monomers. It is. Examples of such compounds include alkylaluminums such as trimethylaluminum, triethylaluminum, triisopropylaluminum and triisobutylaluminum; aluminum oxy compounds such as methylaluminoxane; dimethylaluminum chloride, diethylaluminum chloride, diisobutylaluminum chloride, methylaluminum sesquichloride, Ethyl aluminum sesquichloride, methyl aluminum dichloride, ethyl aluminum dichloride, zinc chloride, silicon tetrachloride, tin tetrachloride, aluminum chloride, aluminum bromide, aluminum iodide, boron trichloride, boron trifluoride, phenylboron dichloride, gallium chloride Lewis acids containing halogen atoms such as triethylammonium tetraphenylborate, Dimethylanilinium nylborate, triethylammonium tetraphenyltrimethylsulfonium borate, triethylammonium tetra (pentafluorophenyl) borate, tetra (pentafluorophenyl) dimethylanilinium, trimethylsulfonium tetra (pentafluorophenyl) borate, tetra (pentafluorophenyl) Compounds which react with a transition metal such as trityl borate, ferrocenium tetraphenylborate, ferrocenium tetra (pentafluorophenyl) borate, and manganese tetraphenylborate to form an ionic complex can be exemplified. Among these, the preferred cocatalyst (b) is a compound which reacts with a halogen-containing Lewis acid and a transition metal compound to form an ionic complex. Most preferred cocatalysts (b) are ethylaluminum dichloride, ethylaluminum sesquichloride, boron trifluoride, dimethylanilinium tetra (pentafluorophenyl) borate, trimethylsulfonium tetra (pentafluorophenyl) borate, tetra (pentafluorophenyl) Trityl borate.
[0008]
(C) Norbornene-based monomer The norbornene-based monomer used in the present invention is a compound represented by the general formula [I].
Figure 0003595863
(Wherein, R 1 to R 12 each independently represent a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, an amino group and an organic group having 1 to 20 carbon atoms, and R 5 and R 7 represent a ring May be formed. N represents an integer of 0 or more.)
[0009]
Here, specific examples of the organic group having 1 to 20 carbon atoms which is a member of the substituent in R 1 to R 12 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group. Alkyl group; aryl group such as phenyl group, tolyl group, naphthyl group; aralkyl group such as benzyl group and phenethyl group; unsaturated hydrocarbon group such as methylidene group, ethylidene group, vinyl group and allyl group; methoxy group and ethoxy group Aryloxy groups such as phenoxy groups; alkoxycarbonyl groups such as methoxycarbonyl groups and ethoxycarbonyl groups; acyloxy groups such as acetyloxy groups; silyl groups such as trimethylsilyl groups; alkylamino groups such as dimethylamino groups and diethylamino groups. A carboxyl group; a cyano group; and the above-mentioned alkyl group, aryl group and Some of the hydrogen atoms of Rarukiru group include a halogen atom, a hydroxyl group, an amino group, a carboxyl group, an alkoxy group, an alkoxycarbonyl group, an acyloxy group, a silyl group, the substituted group in an alkylamino group or a cyano group.
Preferred substituents as R 1 to R 12 are a hydrogen atom; an alkyl group having 1 to 20 carbon atoms, particularly preferably an alkyl group having 1 to 10 carbon atoms; an aryl group having 1 to 20 carbon atoms, particularly preferably 1 carbon atom. An aralkyl group having 1 to 20 carbon atoms, particularly preferably an aralkyl group having 1 to 10 carbon atoms; and an unsaturated hydrocarbon group having 1 to 20 carbon atoms, particularly preferably an aralkyl group having 1 to 10 carbon atoms. A substituent selected from the group consisting of a saturated hydrocarbon group.
[0010]
Specific examples of preferred norbornene monomers represented by the general formula [I] include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, and tetracyclododecene. , Tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, ethylidene norbornene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene, 5 -Methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-cyanonorbornene, 8-methoxycarbonyltetracyclododecene, 8-methyl 8-methoxycarbonyloxy tetracyclododecene, it is possible to enumerate 8-cyano-tetracyclododecene and the like.
[0011]
At the time of molding, these norbornene monomers are used alone or in combination. In addition, the copolymer has copolymerizability with the norbornene-based monomer in a range that does not impair the excellent properties of the norbornene-based polymer, that is, in a range in which the proportion of the norbornene-based monomer in all the monomers is not less than 50% by weight. Can be used together with the norbornene-based monomer.
[0012]
(D) Other monomers Examples of such other monomers include α-olefins such as ethylene, propylene, 1-butene, 4-methylpentene-1, 1-hexene and 1-octene; alkenyl aromatic hydrocarbons such as styrene Alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; unsaturated halogenated hydrocarbons such as vinyl chloride; α, β-unsaturated carboxylic esters such as methyl acrylate, ethyl acrylate and methyl methacrylate; unsaturated nitriles such as acrylonitrile; Examples thereof include vinyl carboxylate such as vinyl.
[0013]
(E) Reaction stock solution The reaction stock solution in the present invention includes (I) a liquid composed of a monomer to be polymerized or copolymerized, (II) a liquid containing a Group 10 transition metal compound (a) in the monomer, or (III) A) a liquid containing a co-catalyst (b) in the monomer. The reaction solution is divided into at least (II) and (III) and injected into the molding machine. At least one of the reaction solutions contains a norbornene-based monomer. Each reaction stock solution may contain the same or different norbornene-based monomers, other monomers, or mixtures thereof. Further, the monomer compositions in all the reaction stock solutions may be the same or different. In order to make the composition of the molded body uniform, it is preferable that the monomer compositions in all the reaction stock solutions are equal.
The concentrations of the Group 10 transition metal compound (a) and the co-catalyst (b) can be set arbitrarily. When the reaction stock solution is injected into the molding machine, the Group 10 transition metal compound (a) and the co-catalyst (b) are used. Are injected at such a rate that the molar ratio of is kept constant. In addition, a reaction stock solution not containing the Group 10 transition metal compound (a) or the cocatalyst (b), or another reaction stock solution containing the same or different (a) or (b) can be used as appropriate. Further, a plurality of inlets can be used according to the shape of the molded body.
[0014]
Since the preferred amount of the Group 10 transition metal compound (a) varies depending on the type of the norbornene-based monomer selected and other molding conditions, its range cannot be determined without any limitation, but it is usually used. It is 0.00001 to 1 mol%, preferably 0.0001 to 0.1 mol%, based on the monomer. The amount of the cocatalyst (b) is not particularly limited, either, but is usually 0.1 to 100 mol, preferably 0.5 to 10 mol, per 1 mol of the Group 10 transition metal compound (a).
[0015]
The molding temperature is not particularly limited, and is generally -100 to 250C, preferably -50 to 200C. Although there is no limitation on the pressure, typically 500 kg / cm 2 or less, is preferably carried out at normal pressure ~200kg / cm 2.
[0016]
There is no particular limitation on the atmosphere in which the molding is performed, and the molding may be performed in air or under an inert gas atmosphere such as nitrogen.
[0017]
In the present invention, the properties of the polymer can be changed by blending various additives. For example, fillers, foaming agents, pigments, antioxidants, light stabilizers, and polymer modifiers. Since the molding time is short, it is desirable that the additive is previously mixed with any or all of the reaction stock solution. However, as long as the flow of the reaction stock solution is not hindered, the additive is directly charged into the molding die or the reaction stock solution is used. May be added after mixing. However, the additive must not inhibit the activity of the catalyst.
Specific examples of the additives include rubber, glass, talc, carbon black, calcium carbonate, mica and the like. These are compounds capable of increasing the impact resistance and flexural modulus of the polymer and reducing the molding shrinkage. The amount of these additives can be varied depending on the purpose, usually in the range of 0 to 200 parts by weight per 100 parts by weight of the norbornene-based polymer.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited by the examples.
FIGS. 1 and 2 show schematic views of the RIM reaction apparatus and the molding machine used in the examples. The molding device was used by stacking the molding devices shown in the figure and fixing them with several stoppers. The forming device (1) shown in the examples has a Teflon spacer having an inner size of 80 × 130 mm and a thickness of 3 mm sandwiched between glass plates, and the forming device (2) has an inner size of 80 × 130 mm. A 6 mm thick Teflon spacer is sandwiched between glass plates. The heat distortion temperature in the examples is ASTM D648 (test piece thickness 6 mm), the tensile strength is ASTM D638 (test piece thickness 3 mm), the flexural modulus is ASTM D790 (test piece thickness 3 mm), and the notched Izod Impact strength is a value measured according to ASTM D256 (specimen thickness 3 mm), respectively.
[0019]
Example 1
A 0.001 mol% norbornene solution of palladium acetylacetonate (solution A) and a 0.001 mol% norbornene solution of trityl tetra (pentafluorophenyl) borate (solution B) were prepared. While mixing the solution (A) and the solution (B) at a ratio of 1: 1 in the air, they were simultaneously poured into the molding machine (1) and the molding machine (2) at 50 ° C. After 5 minutes, each molding device was disassembled to take out a colorless and transparent plate-shaped molded product having a size of 80 × 130 × 3 mm and a plate-shaped molded product having a size of 80 × 130 × 6 mm. When the former compact was vacuum dried (80 ° C., 2 Torr, 3 hours), a 1.2% weight loss was observed. In the infrared absorption spectrum and the 13 C-solid NMR spectrum of the molded article, no absorption based on the carbon-carbon double bond was observed, and it was confirmed that the molded article was polynorbornene having a saturated structure. Further, the molded body did not dissolve at all in hydrocarbon solvents such as toluene and tetralin. The heat deformation temperature measured on a test piece prepared by mechanical cutting from the molded body was 149 ° C., the tensile strength was 520 kg / cm 2 (elongation was 8.0%), the flexural modulus was 30,900 kg / cm 2 (the flexural strength was 840 kg). / Cm 2 ) and the notched Izod impact strength was 6.6 kg · cm / cm.
[0020]
Example 2
Except that the norbornene in Example 1 was changed to a mixture of norbornene and 5-methoxycarbonylnorbornene in a ratio of 4: 1 (molar ratio), and the concentrations of palladium acetylacetonate and trityl tetra (pentafluorophenyl) borate were changed to 0.005 mol%. Was operated in the same manner as in Example 1 to obtain a pale yellow transparent molded product. The test piece obtained from the molded body in the same manner as in Example 1 had a heat deformation temperature of 171 ° C., a tensile strength of 480 kg / cm 2 (elongation of 7.6%), and a flexural modulus of 28400 kg / cm 2 (bending strength). Was 680 kg / cm 2 ), and the notched Izod impact strength was 4.2 kg · cm / cm.
[0021]
Comparative Example 1
This comparative example is an example of a ring-opening polymerization type RIM using a metathesis catalyst. The norbornene solution of palladium acetylacetonate (solution A) in Example 1 was changed to a 0.05 mol% solution of norbornene of tungsten hexachloride, and the norbornene solution of trityl tetra (pentafluorophenyl) borate (solution B) was replaced with a solution of diethylaluminum chloride in 0%. The same operation as in Example 1 was carried out except that the operation was changed to a 0.5 mol% norbornene solution, and the operation was performed under a nitrogen stream, to obtain a rubber-like molded body having a heat distortion temperature of room temperature or lower.
[0022]
Comparative Example 2
The same operation as in Example 1 was performed, except that the norbornene solution of palladium acetylacetonate (solution A) in Example 1 was changed to a 0.001 mol% norbornene solution of tungsten hexachloride, and the operation was performed under a nitrogen stream. No molded body was obtained.
[0023]
【The invention's effect】
As described in detail above, according to the method of the present invention, it is possible to economically obtain a large molded article such as an automobile bumper or an instrument panel, which has excellent thermal and mechanical properties. Very big.
[Brief description of the drawings]
FIG. 1 is an RIM reactor used in an embodiment of the present invention. This is a typical example of the embodiment of the present invention, and the present invention should not be limited to this.
[Explanation of symbols]
1: Syringe 2 for injecting solution A 2: Syringe 3 for injecting solution B: Molding device FIG. 2 is a schematic view of a molding device of the RIM reaction apparatus used in the embodiment of the present invention. This is a typical example of the embodiment of the present invention, and the present invention should not be limited to this.

Claims (7)

反応原液を成形型中に注入し、該成形型内にて重合せしめてポリマー成形体を得る反応成形法において、反応原液として少なくとも(A)第10族遷移金属化合物(a)を含有する反応原液及び(B)助触媒(b)を含有する反応原液を用い、かつ少なくとも一つの反応原液は一般式[I]で表されるノルボルネン系モノマーを含有することを特徴とする実質的に不飽和結合を含まないノルボルネン系ポリマー成形体の製造方法。
Figure 0003595863
(式中、R1〜R12は、それぞれ独立に水素原子、ハロゲン原子、水酸基、アミノ基および炭素数1〜20の有機基からなる群から選ばれる置換基を示し、R5とR7は環を形成してもよい。nは0以上の整数を示す。)
In a reaction molding method in which a reaction solution is injected into a mold and polymerized in the mold to obtain a polymer molded product, a reaction solution containing at least (A) a Group 10 transition metal compound (a) as a reaction solution. And (B) a reaction solution containing a cocatalyst (b), wherein at least one reaction solution contains a norbornene-based monomer represented by the general formula [I]. A method for producing a norbornene-based polymer molded article containing no.
Figure 0003595863
(Wherein, R 1 to R 12 each independently represent a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, an amino group and an organic group having 1 to 20 carbon atoms, and R 5 and R 7 represent A ring may be formed, and n represents an integer of 0 or more.)
助触媒(b)が、ハロゲン原子を含有するルイス酸或いは遷移金属と反応してイオン性の錯体を形成する化合物であることを特徴とする請求項1記載のノルボルネン系ポリマー成形体の製造方法。2. The method for producing a norbornene-based polymer molded article according to claim 1, wherein the cocatalyst (b) is a compound which reacts with a halogen atom-containing Lewis acid or a transition metal to form an ionic complex. 第10族遷移金属化合物(a)が、パラジウムの化合物またはニッケルの化合物であることを特徴とする請求項1または2に記載のノルボルネン系ポリマー成形体の製造方法。The method for producing a norbornene-based polymer molded article according to claim 1 or 2, wherein the Group 10 transition metal compound (a) is a palladium compound or a nickel compound. 第10族遷移金属化合物(a)が、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、硫酸パラジウム、硝酸パラジウム、酢酸パラジウムジクロロビス(アセトニトリル)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、または、パラジウムアセチルアセトネートであることを特徴とする請求項1〜3のいずれかに記載のノルボルネン系ポリマー成形体の製造方法。Group 10 transition metal compound (a) is palladium chloride, palladium bromide, palladium iodide, palladium sulfate, palladium nitrate, palladium acetate dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium, or palladium acetylacetonate The method for producing a norbornene-based polymer molded product according to any one of claims 1 to 3, wherein 助触媒(b)が、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、三フッ化硼素、テトラ(ペンタフロオロフェニル)硼酸ジメチルアニリニウム、テトラ(ペンタフルオロフェニル)硼酸トリメチルスルホニウム、または、テトラ(ペンタフルオロフェニル)硼酸トリチルであることを特徴とする請求項1〜4のいずれかに記載のノルボルネン系ポリマー成形体の製造方法。The cocatalyst (b) is ethylaluminum dichloride, ethylaluminum sesquichloride, boron trifluoride, dimethylanilinium tetra (pentafluorophenyl) borate, trimethylsulfonium tetra (pentafluorophenyl) borate, or tetra (pentafluorophenyl) 5. The method for producing a norbornene-based polymer molded article according to claim 1, wherein the method is trityl borate. 反応原液の成形器中への注入に際して、第10族遷移金属化合物(a)と助触媒(b)のモル比が一定に保たれるような速度で注入することを特徴とする請求項1〜5のいずれかに記載のノルボルネン系ポリマー成形体の製造方法。The injection of the undiluted reaction solution into the molding vessel is performed at such a rate that the molar ratio of the Group 10 transition metal compound (a) to the cocatalyst (b) is kept constant. 5. The method for producing a norbornene-based polymer molded article according to any one of 5. 請求項1〜6のいずれかに記載の方法によって得られる実質的に不飽和結合を含まないノルボルネン系ポリマー成形体。A norbornene-based polymer molded article substantially free of unsaturated bonds, obtained by the method according to claim 1.
JP13324795A 1995-05-31 1995-05-31 Method for producing norbornene-based polymer molded article and molded article thereof Expired - Fee Related JP3595863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13324795A JP3595863B2 (en) 1995-05-31 1995-05-31 Method for producing norbornene-based polymer molded article and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13324795A JP3595863B2 (en) 1995-05-31 1995-05-31 Method for producing norbornene-based polymer molded article and molded article thereof

Publications (2)

Publication Number Publication Date
JPH08325329A JPH08325329A (en) 1996-12-10
JP3595863B2 true JP3595863B2 (en) 2004-12-02

Family

ID=15100152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13324795A Expired - Fee Related JP3595863B2 (en) 1995-05-31 1995-05-31 Method for producing norbornene-based polymer molded article and molded article thereof

Country Status (1)

Country Link
JP (1) JP3595863B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350832B1 (en) * 1998-12-09 2002-02-26 The B. F. Goodrich Company Mold addition polymerization of norbornene-type monomers using group 10 metal complexes
JP4839636B2 (en) * 2005-03-03 2011-12-21 住友ベークライト株式会社 Method for producing cyclic olefin polymer
JP4822854B2 (en) * 2006-01-18 2011-11-24 株式会社有沢製作所 Polyamideimide resin for flexible printed wiring board, metal-clad laminate, coverlay, flexible printed wiring board, and resin composition using the resin
JP2012121956A (en) * 2010-12-07 2012-06-28 Sumitomo Bakelite Co Ltd Addition-type norbornene-based resin, method for producing the same, resin composition containing the resin, molding containing the resin, and composite member containing the molding

Also Published As

Publication number Publication date
JPH08325329A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US6265506B1 (en) Method for the preparation of copolymers of ethylene/norbornene-type monomers with cationic palladium catalysts
EP0445755B1 (en) Process for the production of norbornene- based polymers
EP0828769B1 (en) Blends and alloys of polycyclic polymers
WO1994018250A1 (en) Polyethylene, thermoplastic resin composition containing the same, and process for producing polyethylene
EP1155057A1 (en) In mold addition polymerization of norbornene-type monomers using group 10 metal complexes
JPH01185307A (en) Random copolymer and manufacture thereof
KR101154508B1 (en) Hybrid supported metallocene catalysts, method for preparing the same, and method for preparing the polyolefins using the same
RU2006136412A (en) THE COMPOSITION OF THE CATALYST CONTAINING A SHUTTLE AGENT FOR THE FORMATION OF A MULTI-BLOCK-COPOLYMER OF A HIGHER OLEFIN
JP3595863B2 (en) Method for producing norbornene-based polymer molded article and molded article thereof
US8404792B2 (en) Cyclobutene polymers and methods of making the same
JP2003238624A (en) Cyclic olefin (co)polymer, its composition and crosslinked material thereof
US3326870A (en) Copolymers of olefins and acrylonitrile and a process for producing the same
US3637611A (en) Novel alternating copolymer of multisubstituted conjugated vinyl compound and unsaturated compound and process for producing same
JP2010254880A (en) Crosslinked polymer
KR20190073264A (en) Olefin polymer, method for preparing olefin polymer, and film using the same
Makovetskii et al. Nickel catalysts for the addition polymerization of norbornene and its derivatives and for their copolymerization with ethylene
US3752788A (en) Multicomponent copolymers cotaining unsaturated ether comounds and process for the production thereof
JPS61293208A (en) Production of ring-opened copolymer
JPS63264626A (en) Ring-opened polymer and manufacture thereof
JP2832753B2 (en) Method for producing high density polyethylene with low oligomer content and high melt index ratio
JP2926428B2 (en) α-olefin copolymer and method for producing the same
JPH1017617A (en) Polyethylene and production of polyethylene
JPH01190726A (en) Hydrogenated ring-opening polymer and its production
KR102402638B1 (en) Propylene random copolymer
US5455318A (en) Method of production of polymers and copolymers of cycloalkene of norbornene type

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees