JP3595295B2 - High attenuation polymer - Google Patents

High attenuation polymer Download PDF

Info

Publication number
JP3595295B2
JP3595295B2 JP2001327790A JP2001327790A JP3595295B2 JP 3595295 B2 JP3595295 B2 JP 3595295B2 JP 2001327790 A JP2001327790 A JP 2001327790A JP 2001327790 A JP2001327790 A JP 2001327790A JP 3595295 B2 JP3595295 B2 JP 3595295B2
Authority
JP
Japan
Prior art keywords
polymer
damping
graphite
filler
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327790A
Other languages
Japanese (ja)
Other versions
JP2003128850A (en
Inventor
勝廣 西山
健 富安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2001327790A priority Critical patent/JP3595295B2/en
Publication of JP2003128850A publication Critical patent/JP2003128850A/en
Application granted granted Critical
Publication of JP3595295B2 publication Critical patent/JP3595295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い剛性と高い制振性能を有する高分子系複合材料(PMC:Polymer Matrix Composite)に関し、特に、ポリエチレン系の高減衰能ポリマーに関するものである。
【0002】
【従来の技術】
近年、高分子系複合材料(PMC)は軽量化という観点から様々な分野に用いられている。特に、自動車および航空宇宙産業の分野への進出はめざましいものがある。代表的なPMCは、ABS樹脂、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリブチルテレフタレート(PBT)などのポリマーを母相とし、強化相にはガラスファイバー、ガラスビーズ、マイカ、ホイスカー、炭素繊維などのフィラーが用いられている。
【0003】
このようなPMCに求められる性能は、一般的には高剛性、高減衰能性、耐摩耗性、耐候性などであるが、自動車や音響・家電産業の分野では高剛性、高減衰能性、リサイクル性、低コスト化がさらに重要である。特にポリマーの特徴である制振性をさらに向上させた高剛性・高減衰能ポリマーが求められている。
【0004】
【発明が解決しようとする課題】
上述したように、ある程度高い剛性と制振性を有するPMCが開発されているが、特に自動車や音響・家電産業の分野で使われる制振材料としては、剛性および制振性のいずれも未だ不十分であった。
【0005】
本発明の目的は上述した課題を解消して、十分に高い剛性と制振性を備えた高減衰能ポリマーを提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明の高減衰能ポリマーは、3〜120μmの銅被覆層を設けた板状グラファイトが1〜48体積%、残部がプリエチレンからなることを特徴とするものである。
【0007】
本発明では所定量の板状グラファイトを含有させることで、フィラーとなる板状グラファイトが有する局所的な層間すべりとポリマーに密着したフィラー間に存在するポリマーが持つ応力緩和機構が働くことによってポリマーが高減衰能化する。また、この作用効果は特にポリエチレン系ポリマーに本発明を適用することで顕著に発現し、低振幅領域における振動においても優れた減衰能特性を有するとの従来にはない効果を得ることができる。
【0008】
好適な具体例としては、ガラスファイバー、ガラスビーズ、マイカ、ホイスカーおよび炭素繊維の少なくとも1種類からなるフィラーを0.5〜48体積%含むことがある。本発明をより効果的に達成することができるため好ましい態様となる。
【0009】
【発明の実施の形態】
本発明の高減衰能ポリマーの特徴は、その組成を、1〜48体積%の板状グラファイトと残部のポリエチレンとから構成する点にある。ここで、フィラーとしての板状グラファイトを1〜48体積%と限定するのは、1体積%未満であると減衰機構の働きが不充分であり、48体積%を超えると成形性が悪くなるためである。また、板状グラファイトとしては板状のグラファイトであればその寸法は特に限定しないが、常識的に考えると例えばアスペクト比(直径/厚さ)が10〜10のグラファイトを使用することが好ましい。
【0010】
また、好ましい態様の一例として、上記組成の高減衰能ポリマー中に、ガラスファイバー、ガラスビーズ、マイカ、ホイスカーおよび炭素繊維の少なくとも1種類からなるフィラーを0.5〜48体積%含ませる。これらのフィラーは高剛性と高減衰能性を達成するのにより効果がある。ここで、その添加量を0.5〜48体積%とすることが好ましいのは、0.5体積%未満であると減衰機構の働きが不充分であり、48体積%を超えると成形性が悪くなるためである。
【0011】
さらに、好ましい態様の他の例として、板状グラファイトに3〜120μmの銅被覆層を設ける。銅の被覆層を設けることで、板状グラファイトをポリエチレン中に混合する際、互いの摩耗などで形状が小さくなるのを防止できるとともに、フィラー同士で応力緩和作用が発現してより高い減衰能を得ることができるためである。ここで、銅被覆層の厚さを3〜120μmとするのが好ましいのは、3μm未満であると摩耗による被覆層の破壊を防止することが困難であり、120μmを超えるとグラファイトの層間すべりによる応力伝達が不充分になるためである。
【0012】
上述した構成の本発明の高減衰能ポリマーにおいて、高分子材料の高剛性・高減衰能化のためには、▲1▼フィラー形状は板状であること、▲2▼母相との接着性が大きいことの二つの要素が重要である。減衰機構について考察すると以下のようになる。
【0013】
図1は母相に分散するフィラーの状態を示す模式図である。図1において(a)は母相に対するフィラーの含有量が少ない場合であり、(b)は含有量が多い場合を示す。フィラーの含有量が少ない場合にはフィラーは単に母相に分散しているのみであるから、減衰能はフィラーの形状のみに依存しフィラー表面の高分子は非拘束の状態にあるが、剪断変形によって振動エネルギーの熱エネルギーへの変換が生ずる。この場合の減衰能はそれほど大きくはならない。
【0014】
しかし、フィラーの含有量が増加すると二枚の板の間に高分子が拘束された状態になるので高分子の剪断変形に伴うエネルギー損失は極めて大きいものとなる。さらに、図2に示すように、(a)フィラーと母相との密着性が優れている場合と、(b)フィラーと母相との密着性が乏しい場合とがある。密着性が優れた方が応力の伝達が大きいので減衰能が増大する。また、さらに大きな減衰能を得るためには、高分子の剪断変形によるエネルギー損失のみでは不十分であると考えられる。本発明では、板状のグラファイトを用いることで、高分子の剪断変形の他にグラファイト層間のすべり変形によるエネルギー損失も高減衰能に寄与している。
【0015】
以下、本発明の基礎となる参考例について説明する。
まず、板状グラファイトを準備した。板状グラファイトの大きさは、180×180μmおよび350×350μmの板状部分の寸法で、厚さは20μmであった。板状グラファイトの表面には、母材との密着性を向上させるために、アミノシランによるコーティングおよびエポキシ系の樹脂によるコーティングを施した。板状のグラファイトのポリエチレンへの添加量は、0、0.5、1、10、20、30、40、48、60体積%の9種類とした。その後、板状のグラファイトとポリエチレンとを混合し、混合物を射出成形した。射出成形の条件は、シリンダー温度が250℃、金型温度が80℃、加工圧力が4.9×10−2〜0.15GPaであった。
【0016】
射出成形体の形状はそれぞれ100×60×10mmであった。これを加工して、全長が100mm、掴み部が6×6mmの角柱で、測定部が直径7mmで長さ20mmの丸棒のねじり試験片を得た。得られた板状のグラファイト添加量の異なるねじり試験片に対し、格別に減衰能および剛性率の測定を行った。減衰能および剛性率の測定は、ねじり振り子型測定装置を用いて行い、減衰能は自由減衰波形から算出した。1×10−3ストレインの歪振幅下における減衰能の値を求めた結果を以下の表1に示す。
【0017】
【表1】

Figure 0003595295
【0018】
表1の結果から、板状グラファイトの添加量を1〜48体積%とすると、高い減衰能と高い剛性率を得られることがわかる。
【0019】
次に、板状グラファイトの添加量を20体積%としたねじり試験片に対して、減衰能の歪振幅依存性を求めた。減衰能の歪振幅依存性は、最大表面剪断歪振幅1×10−5〜9×10−3の範囲で測定した。結果を図3に示す。
【0020】
図3には、比較のために、純Mg、汎用のMg合金(AZ63A)、代表的なMg系制振合金であるK1X1合金(米国、Weissmannらが開発した合金)およびMCM合金(本発明者らが開発した合金であり、MCM−Dはダイカスト合金であり、MCM−Cは鋳造合金である)、片状黒鉛鋳鉄(FC20)、高分子材料の中で減衰能が最も大きい6−ナイロン(PA)、フィラー無添加のPBT(ポリブチレンテレフタレート)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)およびPE(ポリエチレン)、さらにセラミックスのSiのデータも併記した。また、20体積%のガラスフレークを含むPBT(PBT−GF4015)と20体積%のガラスフレークを含むPET(PET−GF4015)を参考のため併記した。なお、本発明の基礎となる20体積%の板状グラファイトを含むポリエチレンはPE−G20と表記した。
【0021】
図3の結果から、本発明の基礎となるPE−G20は高分子材料の中でも最も大きな減衰能を有し、しかも低歪振幅領域から極めて大きな減衰能を有するという理想的な高減衰能材料であることがわかる。
【0022】
【発明の効果】
以上の説明から明らかなように、本発明によれば、所定の鋼被覆層を設けた所定量の板状グラファイトを含有させているため、フィラーとなる板状グラファイトが有する局所的な層間すべりとポリマーに密着したフィラー間に存在するポリマーが持つ応力緩和機構が働くことによってポリマーが高減衰能化する。また、この作用効果は特にポリエチレン系ポリマーに本発明を適用することで顕著に発現し、低振幅領域における振動においても優れた減衰能特性を有するとの従来にはない効果を得ることができる。
【図面の簡単な説明】
【図1】(a)および(b)はそれぞれフィラーの母相への分散状態を示す模式図である。
【図2】(a)および(b)はそれぞれフィラーと母相の密着性を表す模式図である。
【図3】本発明の高減衰能ポリマーにおける減衰能の歪振幅依存性を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer-based composite material (PMC: Polymer Matrix Composite) having high rigidity and high vibration damping performance, and more particularly to a polyethylene-based high-damping polymer.
[0002]
[Prior art]
In recent years, polymer composite materials (PMC) have been used in various fields from the viewpoint of weight reduction. In particular, the entry into the automotive and aerospace industries is remarkable. A typical PMC has a polymer such as ABS resin, polyamide (PA), polyethylene terephthalate (PET), or polybutyl terephthalate (PBT) as a matrix, and glass fiber, glass beads, mica, whisker, and carbon fiber as a reinforcing phase. Fillers are used.
[0003]
The performance required for such a PMC is generally high rigidity, high damping ability, abrasion resistance, weather resistance, and the like, but high rigidity, high damping ability, Recyclability and cost reduction are even more important. In particular, there is a need for a high-rigidity, high-damping-capacity polymer that further improves the vibration damping characteristic of the polymer.
[0004]
[Problems to be solved by the invention]
As described above, PMCs with a certain degree of rigidity and vibration damping properties have been developed. However, as vibration damping materials used particularly in the fields of the automobile and the acoustic and home appliance industries, both rigidity and vibration damping properties are not yet available. Was enough.
[0005]
An object of the present invention is to solve the above-mentioned problems and to provide a high damping polymer having sufficiently high rigidity and vibration damping properties.
[0006]
[Means for Solving the Problems]
The high attenuation polymer of the present invention is characterized in that plate-like graphite provided with a copper coating layer having a thickness of 3 to 120 μm is 1 to 48% by volume, and the balance is made of preethylene.
[0007]
In the present invention, by containing a predetermined amount of plate-like graphite, the polymer is present by the local interlayer slip of the plate-like graphite serving as a filler and the stress relaxation mechanism of the polymer present between the filler adhered to the polymer acts. Increases damping capacity. In addition, this effect is particularly remarkable when the present invention is applied to a polyethylene-based polymer, and it is possible to obtain an unprecedented effect of having excellent damping ability characteristics even in vibration in a low amplitude region.
[0008]
As a preferred specific example, the filler containing at least one of glass fibers, glass beads, mica, whiskers, and carbon fibers may contain 0.5 to 48% by volume. This is a preferred embodiment because the present invention can be more effectively achieved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A feature of the high attenuation polymer of the present invention is that the composition is composed of 1 to 48% by volume of plate-like graphite and the balance of polyethylene. Here, the reason why the plate-like graphite as a filler is limited to 1 to 48% by volume is that if it is less than 1% by volume, the function of a damping mechanism is insufficient, and if it exceeds 48% by volume, moldability deteriorates. It is. Further, As the plate-like graphite its dimensions are not particularly limited as long as it is a plate-like graphite is preferably sensibly considered when for example an aspect ratio (diameter / thickness) using a graphite 10 to 10 6.
[0010]
In addition, as an example of a preferred embodiment, a filler composed of at least one of glass fiber, glass beads, mica, whisker, and carbon fiber is contained in the high attenuation polymer having the above composition in an amount of 0.5 to 48% by volume. These fillers are more effective in achieving high rigidity and high damping ability. Here, it is preferable that the addition amount is 0.5 to 48% by volume. When the addition amount is less than 0.5% by volume, the function of the damping mechanism is insufficient, and when it exceeds 48% by volume, the moldability is deteriorated. Because it gets worse.
[0011]
Further, as another example of a preferred embodiment, a copper coating layer having a thickness of 3 to 120 μm is provided on plate-like graphite. By providing a copper coating layer, when mixing plate-like graphite in polyethylene, it is possible to prevent the shape from becoming smaller due to mutual abrasion, etc. This is because they can be obtained. Here, it is preferable that the thickness of the copper coating layer be 3 to 120 μm. If the thickness is less than 3 μm, it is difficult to prevent the destruction of the coating layer due to abrasion, and if the thickness exceeds 120 μm, the interlayer slip of graphite is caused. This is because the stress transmission becomes insufficient.
[0012]
In the high damping ability polymer of the present invention having the above-described structure, in order to increase the rigidity and the high damping ability of the polymer material, (1) the filler shape is plate-like, and (2) adhesiveness with the matrix. Two factors are important. The damping mechanism is considered as follows.
[0013]
FIG. 1 is a schematic view showing the state of the filler dispersed in the matrix. In FIG. 1, (a) shows the case where the content of the filler with respect to the mother phase is small, and (b) shows the case where the content is large. When the content of the filler is small, the filler is simply dispersed in the matrix, so the damping ability depends only on the shape of the filler, and the polymer on the filler surface is in an unconstrained state, but the shear deformation This results in the conversion of vibration energy to heat energy. The damping capacity in this case is not so great.
[0014]
However, when the content of the filler increases, the polymer is restrained between the two plates, so that the energy loss accompanying the shear deformation of the polymer becomes extremely large. Further, as shown in FIG. 2, there are a case where (a) the adhesion between the filler and the matrix is excellent and a case where (b) the adhesion between the filler and the matrix is poor. The better the adhesion, the greater the transmission of stress, so the damping capacity increases. Further, it is considered that energy loss due to shear deformation of the polymer alone is not sufficient to obtain a larger damping ability. In the present invention, by using plate-like graphite, not only shear deformation of the polymer but also energy loss due to slip deformation between graphite layers contributes to high damping ability.
[0015]
Hereinafter, a reference example serving as a basis of the present invention will be described.
First, plate-like graphite was prepared. The size of the plate-like graphite was 180 × 180 μm and 350 × 350 μm, and the thickness was 20 μm. The surface of the plate-like graphite was coated with an aminosilane and a coating with an epoxy resin in order to improve the adhesion to the base material. The amount of the plate-like graphite added to the polyethylene was set to 0, 0.5, 1, 10, 20, 30, 40, 48, and 60% by volume. Thereafter, plate-like graphite and polyethylene were mixed, and the mixture was injection-molded. The injection molding conditions were as follows: the cylinder temperature was 250 ° C., the mold temperature was 80 ° C., and the processing pressure was 4.9 × 10 −2 to 0.15 GPa.
[0016]
The shape of each injection molded article was 100 × 60 × 10 mm. This was processed to obtain a torsion test piece of a round bar having a total length of 100 mm, a grip portion of 6 × 6 mm, a measuring portion of 7 mm in diameter and a length of 20 mm. The damping capacity and the rigidity of the obtained torsion test pieces having different amounts of graphite added were measured. The measurement of the damping capacity and the rigidity was performed using a torsional pendulum type measuring device, and the damping capacity was calculated from the free damping waveform. Table 1 below shows the result of obtaining the value of the damping ability under the strain amplitude of 1 × 10 −3 strain.
[0017]
[Table 1]
Figure 0003595295
[0018]
From the results in Table 1, it can be seen that when the addition amount of the plate-like graphite is 1 to 48% by volume, a high damping capacity and a high rigidity can be obtained.
[0019]
Next, the strain amplitude dependency of the damping capacity was determined for a torsion test piece in which the addition amount of the plate-like graphite was 20% by volume. The strain amplitude dependency of the damping capacity was measured in the range of the maximum surface shear strain amplitude of 1 × 10 −5 to 9 × 10 −3 . The results are shown in FIG.
[0020]
FIG. 3 shows, for comparison, pure Mg, a general-purpose Mg alloy (AZ63A), a K1X1 alloy (an alloy developed by Weissmann et al., USA) which is a typical Mg-based damping alloy, and an MCM alloy (the present inventors). MCM-D is a die-cast alloy, MCM-C is a cast alloy), flaky graphite cast iron (FC20), and 6-nylon with the largest damping ability among polymer materials ( PA), filler-free PBT (polybutylene terephthalate), PC (polycarbonate), PET (polyethylene terephthalate), PE (polyethylene), and ceramics Si 3 N 4 are also shown. In addition, PBT (PBT-GF4015) containing 20% by volume of glass flake and PET (PET-GF4015) containing 20% by volume of glass flake are also shown for reference. In addition, polyethylene containing 20% by volume of plate-like graphite, which is the basis of the present invention, was described as PE-G20.
[0021]
From the results shown in FIG. 3, it can be seen that PE-G20, which is the basis of the present invention, is an ideal high-damping material that has the largest damping ability among polymer materials and has an extremely large damping ability from a low strain amplitude region. You can see that there is.
[0022]
【The invention's effect】
As is clear from the above description, according to the present invention, since a predetermined amount of plate-like graphite provided with a predetermined steel coating layer is contained, local interlayer slip of plate-like graphite serving as a filler is reduced. By the action of the stress relaxation mechanism of the polymer existing between the fillers adhered to the polymer, the polymer has a high damping ability. In addition, this effect is particularly remarkable when the present invention is applied to a polyethylene-based polymer, and it is possible to obtain an unprecedented effect of having excellent damping ability characteristics even in vibration in a low amplitude region.
[Brief description of the drawings]
FIGS. 1 (a) and 1 (b) are schematic diagrams each showing a dispersion state of a filler in a matrix. FIG.
FIGS. 2A and 2B are schematic diagrams each showing the adhesion between a filler and a matrix.
FIG. 3 is a graph showing the strain amplitude dependence of the damping ability of the high damping ability polymer of the present invention.

Claims (2)

3〜120μmの銅被覆層を設けた板状グラファイトが1〜48体積%、残部がポリエチレンからなることを特徴とする高減衰能ポリマー。A high-damping polymer comprising 1 to 48% by volume of plate-like graphite provided with a copper coating layer having a thickness of 3 to 120 [mu] m , with the balance being polyethylene. ガラスファイバー、ガラスビーズ、マイカ、ホイスカーおよび炭素繊維の少なくとも1種類からなるフィラーを0.5から48堆積%含む請求項1記載の高減衰能ポリマー。2. The high attenuation polymer according to claim 1, comprising 0.5 to 48% by weight of a filler comprising at least one of glass fibers, glass beads, mica, whiskers and carbon fibers.
JP2001327790A 2001-10-25 2001-10-25 High attenuation polymer Expired - Fee Related JP3595295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327790A JP3595295B2 (en) 2001-10-25 2001-10-25 High attenuation polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327790A JP3595295B2 (en) 2001-10-25 2001-10-25 High attenuation polymer

Publications (2)

Publication Number Publication Date
JP2003128850A JP2003128850A (en) 2003-05-08
JP3595295B2 true JP3595295B2 (en) 2004-12-02

Family

ID=19143962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327790A Expired - Fee Related JP3595295B2 (en) 2001-10-25 2001-10-25 High attenuation polymer

Country Status (1)

Country Link
JP (1) JP3595295B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281466A (en) * 2004-03-29 2005-10-13 Idemitsu Kosan Co Ltd Carbon fiber-containing fiber-reinforced resin composition with small warpage distortion and its molded article
JP2008291859A (en) * 2007-05-22 2008-12-04 Ps Mitsubishi Construction Co Ltd External temporary structure for seismically-isolated structure
CN110582538B (en) * 2017-04-21 2022-05-06 Nok株式会社 Rubber composition for torsional vibration damper and torsional vibration damper
CN112912439A (en) * 2018-09-03 2021-06-04 马来西亚国家石油公司 Reinforced polymer material and method for producing reinforced polymer material
CN111041588A (en) * 2019-12-31 2020-04-21 江苏锵尼玛新材料股份有限公司 Novel high-cutting-resistance ultra-high molecular weight polyethylene fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2003128850A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
Jyoti et al. Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor
EP1533337B1 (en) Thermally conductive body and method of manufacturing the same
US6710109B2 (en) Thermally conductive and high strength injection moldable composition
Molnár et al. Impact fracture study of multicomponent polypropylene composites
Sreekala et al. Dynamic mechanical properties of oil palm fiber/phenol formaldehyde and oil palm fiber/glass hybrid phenol formaldehyde composites
CN105273365B (en) Sheet molding compounds comprising surface modified glass filler
WO2007148820A1 (en) Resin material
Bhagat et al. Effect of graphite filler on mechanical behavior of epoxy composites
EP1881943A1 (en) Fabrication methods of metal/polymer/ceramic matrix composites containing randomly distributed or directionally aligned nanofibers
CA2595543A1 (en) Fiber reinforced plastic wire for strength member of overhead transmission cable, method for manufacturing the same, and overhead transmission cable using the same
Kwon et al. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites
Yilmazer Tensile, flexural and impact properties of a thermoplastic matrix reinforced by glass fiber and glass bead hybrids
Senturk et al. Evaluation of hybrid effect on the thermomechanical and mechanical properties of calcite/SGF/PP hybrid composites
JP3595295B2 (en) High attenuation polymer
Liang et al. Effects of glass bead content and surface treatment on viscoelasticity of filled polypropylene/elastomer hybrid composites
WO2013069271A1 (en) Polymer structure
Shivamurthy et al. Influence of SiO 2 fillers on sliding wear resistance and mechanical properties of compression moulded glass epoxy composites
Zhao et al. Study of the mechanical properties of mica‐filled polypropylene‐based GMT composite
Zhamu et al. Properties of a reactive‐graphitic‐carbon‐nanofibers‐reinforced epoxy
JPH08277342A (en) Vibration damping thermoplastic resin composition and molding obtained from the same
Li et al. Synergistic effect of polyfunctional silane coupling agent and styrene acrylonitrile copolymer on the water‐resistant and mechanical performances of glass fiber–reinforced polyamide 6
He et al. Effects of novolac resin modification on mechanical properties of carbon fiber/epoxy composites
Chang et al. The addition of clay on the mechanical properties of surface‐treated CF‐filled PA66 composites
Altan et al. An experimental study on mechanical behavior of nanographene/epoxy nanocomposites
WO2002053647A1 (en) Vibration-damping material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Ref document number: 3595295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees