JP3594848B2 - Switch control device in signal transmission line - Google Patents

Switch control device in signal transmission line Download PDF

Info

Publication number
JP3594848B2
JP3594848B2 JP25693799A JP25693799A JP3594848B2 JP 3594848 B2 JP3594848 B2 JP 3594848B2 JP 25693799 A JP25693799 A JP 25693799A JP 25693799 A JP25693799 A JP 25693799A JP 3594848 B2 JP3594848 B2 JP 3594848B2
Authority
JP
Japan
Prior art keywords
signal
switch
voltage
signal transmission
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25693799A
Other languages
Japanese (ja)
Other versions
JP2001086664A (en
Inventor
堅二 安孫子
学 関澤
嘉昭 橋浦
幸雄 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Denki Co Ltd
Tohoku Electric Power Co Inc
Original Assignee
Osaka Denki Co Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Denki Co Ltd, Tohoku Electric Power Co Inc filed Critical Osaka Denki Co Ltd
Priority to JP25693799A priority Critical patent/JP3594848B2/en
Publication of JP2001086664A publication Critical patent/JP2001086664A/en
Application granted granted Critical
Publication of JP3594848B2 publication Critical patent/JP3594848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号伝送線路自体を開閉する開閉器を制御すると共に、信号伝送線路により伝送される信号を受信し、或いは受信及び送信を行う、信号伝送線路における開閉器制御装置(開閉器制御子局と開閉器制御親局の両方を含む)の改良に関するものである。
【0002】
【従来の技術】
ネットワーク化された配電線路には、事故時の停電区間の限定化や、他フィーダからの負荷融通のために、配電線路自体を開閉する開閉器が設けられており、これらの開閉器には、配電線路を信号伝送路として伝送されてくる搬送信号を受信して制御する開閉器制御子局(以下単に子局という)が設置されており、また、これらの子局に監視や制御のための指令信号を送る開閉器制御親局(以下単に親局という)が設置されている。
【0003】
従来の子局の一例は図5に示されるような回路構成になっている。21は配電線路22を開閉する開閉器である。この開閉器21の両側(A側とB側)に配電線路22に伝送されてくる配電線搬送の電圧信号(配電線路22自体の線路電圧を含む)を検出する計器用変圧器等の電圧センサ23,24が設けられている。制御回路25は、親局からの指令に応じて開閉器21の開閉状態を制御すると共に、電圧センサ23,24からの線路電圧検出信号の有無によって切換スイッチ26を線路電圧検出信号を出力する電圧センサ側に切り換えて、その電圧センサが検出する配電線搬送の電圧信号を信号受信回路27に入力させるようにしている。このシステムでは、配電線路22によって親局から伝送される搬送信号は電圧信号のみが使用されており、制御回路25は電圧センサ23,24の出力について、開閉器21のA側とB側の配電線路22の線路電圧を常時監視しており、配電線路22の線路電圧が存在する側に優先受信方向を決定し、その方向に切換スイッチ26を切り換える。両側に線路電圧が存在する場合(開閉器21が閉じている場合)及びいずれの側にも線路電圧が存在しない場合(停電状態の場合)には、予め定められた優先受信方向の側、例えばA側に切り換える。
【0004】
なお、親局は、図5に示される子局と同様の回路構成の他に、信号送信回路を有すると共に、制御回路は通信線によって送られてくる上位からの指令により開閉器を制御する構成のものである。
【0005】
電力線搬送通信、特に線間注入方式の配電線搬送通信においては、親局を変電所などの電源端に設置し、配電線路上の子局と対向通信を行うのが一般的である。
【0006】
この場合、子局も信号送信回路を有するが、複数親局からの信号受信及び複数親局への信号送信など、通信の輻輳を避けるため、また、信号送受信回路を必要最小限とするため、予め優先送受信方向を決めて通信を行っている。
【0007】
【発明が解決しようとする課題】
従来例の場合には、子局が属する配電系統全体(ループ点の場合は2つの変電所系統)に親局から指令信号が送信され、子局では線路電圧が印加されている側に必ず親局が接続されていて、親局からの信号を受信できることを前提としているものであるが、配電線路のシステム構成によっては以下のような問題が生じる。
(1)信号伝送線路である配電線路は開閉器の開閉により伝送ルートや伝送条件が変更されてしまい、送受信方向に親局が存在せず無応答となるなど、子局の設置や運用において制約を受けることとなる。例えば、図5に示されるように、開閉器21が開いていて、切換スイッチ26がA側優先受信方向となっている時に、配電系統が変更されて、B側に親局が接続されるようになった場合には、親局から信号を受信できない。例えば、図6に示されるように、それまで子局28が開いていることによって変電所29、親局30、子局31からなる配電系統と、変電所32、子局33からなる配電系統に分離されていたところ、非自動化区間へのシステム拡張時等のために、子局28を閉じ、子局33を開くことによって、変電所29、親局30、子局31、子局28からなる配電系統と、変電所32からなる配電系統に系統変更されたとすると、親局30から子局33へのアクセスが不可能となる。
(2)親局は変電所に近い側に設置されているのが普通であるので、特に子局から親局へ信号を送る場合、変電所のインピーダンスに比べて子局から親局までの配電線路のインピーダンスが大きくなる。そのために、送信する電圧信号の減衰が大きく、伝送信頼性が問題となる。
【0008】
(発明の目的)
本発明の第1の目的は、上述した課題を解決し、系統システム運用の利便性向上、伝送信頼性の向上、コスト低減を合わせて実現することができる、信号伝送線路における開閉器制御装置を提供することである。
【0009】
本発明の第2の目的は、開閉器が開いている場合に、受信信号が到来した側の信号伝送線路に送信信号を確実に送り出すことができる、子局として扱われる場合に好適な信号伝送線路における開閉器制御装置を提供することである。
【0010】
【課題を解決するための手段】
上記第1の目的を達成するために、請求項1記載の本発明は、信号伝送線路自体を開閉する開閉器を制御すると共に、信号伝送線路によって伝送されてくる信号を受信する信号伝送線路における開閉器制御装置において、前記開閉器の一方の側の信号伝送線路の電圧信号を検出する第1の電圧センサと、前記開閉器の他方の側の信号伝送線路の電圧信号を検出する第2の電圧センサと、前記開閉器の一方の側の信号伝送線路の電流信号を検出する電流センサと、前記開閉器の開状態に応じて前記第1の電圧センサの出力を選択し、前記開閉器の閉状態に応じて前記電流センサの出力を選択する選択手段と、該選択手段を介して前記第1の電圧センサの電圧信号と前記電流センサの電流信号のいずれか一方を受信する第1の受信手段と、前記第2の電圧センサが検出した電圧信号を受信する第2の受信手段とを有することを特徴とするものである。
【0011】
また、上記第2の目的を達成するために、請求項2記載の本発明は、請求項1記載の信号伝送線路における開閉器制御装置において、前記信号伝送線路に信号を送り出す送信手段と、前記開閉器の両側の信号伝送線路のうちの前記送信手段からの信号を送り出す側を、信号を受信した側に切り換える切換手段とを有することを特徴とするものである。
【0012】
【発明の実施の形態】
図1は、本発明の実施の一形態を示す開閉器制御子局の回路図である。1は配電線路2を開閉する開閉器である。この開閉器1の両側(A側とB側)に配電線路2の電圧信号(配電線搬送信号としての)を検出する計器用変圧器等の電圧センサ3,4が設けられ、配電線路2のA側に電流信号(配電線搬送信号としての)を検出する変流器等の電流センサ5が設けられている。電圧センサ3と電流センサ5の検出信号は切換スイッチ6によっていずれか一方が選択されて、信号受信回路7に入力され、電圧センサ4の検出信号は直接信号受信回路8に入力される。信号受信回路7,8により受信された信号は、制御回路9に送られる。制御回路9は受信信号の内容に応じて開閉器1の開閉を制御すると共に、開閉器1を開状態に制御する場合にはそれに連動して切換スイッチ6を電圧センサ3の側に切り換え、開閉器1を閉状態に制御する場合にはそれに連動して切換スイッチ6を電流センサ5の側に切り換える。
【0013】
開閉器1が開状態の場合、切換スイッチ6は電圧センサ3側に切り換えられているので、電圧センサ3,4を介して信号受信回路7,8のいずれもが信号受信可能状態であり、配電線路2のA側からでも、B側からでも親局から信号が送られてくれば、その信号を受信し、その信号に応じて制御回路9は動作を行う。したがって、開閉器1が開状態であっても、A,B両側の電圧信号を受信することができる。
【0014】
開閉器1が閉状態の場合、切換スイッチ6は電流センサ5側に切り換えられている。電流センサ5は、A側からの信号は直接に、そして、B側からの信号は開閉器1を通して検出し、信号受信回路7に入力する。電圧センサ4は、B側からの信号は直接に、そして、A側からの信号は開閉器1を通して検出し、信号受信回路8に入力する。したがって、開閉器1が閉状態であれば、A,B両側の電圧信号と電流信号を受信することができる。
【0015】
配電線路2が開閉器1により開いている場合には、電流信号はA側にもB側にも流れず、配電線路2が開閉器1により閉じている場合には、電流信号はA側にもB側にも流れるので、電流センサ5はA側に設置するだけで足りる。常識的な考え方では、2つの電圧センサにより検出された電圧信号の受信及び1つの電流センサにより検出された電流信号の受信を共に行う場合には、3つの信号受信回路が必要となるが、それだと、子局のコストが高くなり、形状も大型化する。この点を図1の実施形態では信号受信回路を2つにして解決している。
【0016】
また、図1の実施形態では、電圧信号と電流信号の両方で受信するようにしているので、伝送信頼性を向上させることができる。その理由の詳細を図2により説明する。図2(a)の場合のように、受信点(子局)以降の信号に対するインピーダンスが大きい場合(負荷が少ない、または並列共振)には、電圧信号の減衰が少ないので(電流信号は小さくなる)、電圧信号で送信するのが有利である。逆に、図2(b)の場合のように、受信点(子局)以降の信号に対するインピーダンスが小さい場合(負荷が大きい、または直列共振)には、電圧信号の減衰が大きいので(電流信号は大きくなる)、電流信号で送信するのが有利である。したがって、同一の信号を電圧信号と電流信号の両方で送信すれば、伝送信頼性を向上させることができる。図2(b)の場合とは、例えば、変電所の近くに設置された親局へ子局から送信する場合や、親局より変電所側に設置された子局へ送信する場合等である。
【0017】
図3は、信号送信回路を有する本発明の実施の他の形態を示す開閉器制御子局の回路図である。図1の実施形態と異なる点は、信号送信回路10を有すると共に、信号送信回路10からの送信信号を電圧センサ3,4のいずれを介して配電線路2へ送り出すかを選択する切換スイッチ11を有する点である。
【0018】
例えば、開閉器1が開状態で、親局からの指令信号がA側の電圧信号によって検出されたとすると、制御回路9は信号受信回路7からの受信信号の入力により配電線路2のA側で信号を受信したと判別し、切換スイッチ11をA側、即ち、電圧センサ3の側に切り換え、親局からの指令信号に応答した応答信号を信号送信回路10から電圧センサ3を介して配電線路2のA側に送り出す。また、開閉器1が閉状態であれば、制御回路9は無条件で切換スイッチ11をA側、即ち、電圧センサ3の側に切り換え、親局からの指令信号に応答した応答信号を信号送信回路10から電圧センサ3を介して配電線路2のA側及び開閉器1を介して配電線路2のB側に送り出す。
【0019】
図3に示される回路構成のものは、親局として用いることができる。この場合の親局としての回路構成を図4に示す。親局として用いられる場合には、制御回路9は、通信線12によって送られてくる上位の指令所(不図示)からの指令信号を通信線モデム13を介して受信することにより開閉器1を制御する構成のものとなり、配電線路2により伝送されてくる搬送信号によっては開閉器1を制御しない。信号受信回路7,8は子局からの応答信号を受信する。
【0020】
システム起動時に、上位の指令所から親局に対しその親局が管轄する子局のアドレスとその子局が設置されている配電線路2上の方向(親局からみてA側またはB側)が通信線12により送信されてくるので、制御回路9はそれを記憶しておく。制御回路9は、管轄する子局に対する監視または制御の指令信号を通信線12により上位の指令所から受け取った時、予め記憶しているその子局の設置されている方向(AまたはB)に切換スイッチ11を切り換え、信号送信回路10は子局へ指令信号を送信する。
【0021】
なお、本発明は、配電線路の開閉器制御装置のみならず、信号伝送線路が受信点で開閉されるデータ伝送システムにおける開閉器制御装置にも適用することができる。
【0022】
【発明の効果】
以上説明したように、請求項1記載の本発明によれば、開閉器が開いている場合に開閉器の両側の信号伝送線路の電圧信号を受信可能にし、開閉器が閉じている場合に同一の信号を電圧信号と電流信号で受信可能にし、2つの電圧センサと1つの電流センサを設置しているにもかかわらず受信手段を2つにしたから、系統システム運用の利便性向上、伝送信頼性の向上、コスト低減を合わせて実現することができる。
【0023】
また、請求項2記載の本発明によれば、開閉器の両側の信号伝送線路のうちの送信手段からの信号を送り出す側を、信号を受信した側に切り換えるようにしたから、開閉器が開いている場合に、受信信号が到来した側の信号伝送線路に送信信号を確実に送り出すことができ、子局として扱われる場合に好適なものにすることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態である、配電線路における開閉器制御子局を示す回路図である。
【図2】電圧信号で送信する方が有利な場合と電流信号で送信する方が有利な場合を説明する図である。
【図3】本発明の実施の他の形態である、配電線路における開閉器制御子局を示す回路図である。
【図4】本発明の実施の他の形態である、配電線路における開閉器制御親局を示す回路図である。
【図5】配電線路における開閉器制御子局の従来例を示す回路図である。
【図6】配電系統の変更の一例を示す図である。
【符号の説明】
1 開閉器
2 配電線路
3,4 電圧センサ
5 電流センサ
6 切換スイッチ
7,8 信号受信回路
9 制御回路
10 信号送信回路
11 切換スイッチ
12 通信線
13 通信線モデム
[0001]
BACKGROUND OF THE INVENTION
The present invention controls a switch that opens and closes a signal transmission line itself, receives a signal transmitted by the signal transmission line, or receives and transmits a switch control device (switch controller in a signal transmission line). (Including both the station and the switch control master station).
[0002]
[Prior art]
The networked distribution line is provided with a switch that opens and closes the distribution line for the purpose of limiting the power outage section at the time of an accident and load interchange from other feeders. Switch control slave stations (hereinafter referred to simply as slave stations) that receive and control the carrier signal transmitted using the distribution line as a signal transmission path are installed, and these slave stations are used for monitoring and control. A switch control master station (hereinafter simply referred to as a master station) for sending command signals is installed.
[0003]
An example of a conventional slave station has a circuit configuration as shown in FIG. A switch 21 opens and closes the distribution line 22. Voltage sensor such as an instrument transformer for detecting a voltage signal (including the line voltage of the distribution line 22 itself) transmitted to the distribution line 22 on both sides (A side and B side) of the switch 21 23 and 24 are provided. The control circuit 25 controls the open / close state of the switch 21 in accordance with a command from the master station, and outputs a line voltage detection signal from the changeover switch 26 according to the presence or absence of the line voltage detection signal from the voltage sensors 23 and 24. By switching to the sensor side, the voltage signal for distribution line conveyance detected by the voltage sensor is input to the signal receiving circuit 27. In this system, only the voltage signal is used as the carrier signal transmitted from the master station by the distribution line 22, and the control circuit 25 distributes the output of the voltage sensors 23 and 24 on the A side and B side of the switch 21. The line voltage of the line 22 is constantly monitored, the priority reception direction is determined on the side where the line voltage of the distribution line 22 exists, and the changeover switch 26 is switched in that direction. When there is a line voltage on both sides (when the switch 21 is closed) and there is no line voltage on either side (in the case of a power failure), for example, a preferential receiving direction side, for example Switch to A side.
[0004]
In addition to the circuit configuration similar to that of the slave station shown in FIG. 5, the master station has a signal transmission circuit, and the control circuit controls the switch according to a command from the host sent by the communication line. belongs to.
[0005]
In power line carrier communication, in particular, line-to-line type distribution line carrier communication, a master station is generally installed at a power supply terminal such as a substation, and opposite communication is performed with a slave station on the distribution line.
[0006]
In this case, although the slave station also has a signal transmission circuit, in order to avoid communication congestion such as signal reception from multiple master stations and signal transmission to the multiple master stations, and to minimize the signal transmission and reception circuit, Communication is performed with a preferential transmission / reception direction determined in advance.
[0007]
[Problems to be solved by the invention]
In the case of the conventional example, a command signal is transmitted from the master station to the entire distribution system to which the slave station belongs (in the case of a loop point, two substation systems), and the slave station must be connected to the side to which the line voltage is applied. It is assumed that the stations are connected and can receive signals from the master station. However, the following problems occur depending on the system configuration of the distribution line.
(1) Distribution lines that are signal transmission lines are restricted in the installation and operation of slave stations, such as the transmission route and transmission conditions being changed by opening and closing the switch, resulting in no response because there is no master station in the transmission / reception direction. Will receive. For example, as shown in FIG. 5, when the switch 21 is open and the changeover switch 26 is in the A side priority reception direction, the distribution system is changed so that the master station is connected to the B side. If it becomes, the signal cannot be received from the master station. For example, as shown in FIG. 6, when the slave station 28 is open until then, a distribution system consisting of a substation 29, a master station 30, and a slave station 31, and a distribution system consisting of a substation 32 and a slave station 33 are provided. When separated, the substation 29, the master station 30, the slave station 31, and the slave station 28 are formed by closing the slave station 28 and opening the slave station 33 for system expansion to a non-automated section. If the system is changed to a power distribution system including a power distribution system and a substation 32, access from the master station 30 to the slave station 33 becomes impossible.
(2) Since the master station is usually installed on the side close to the substation, especially when sending signals from the slave station to the master station, the power distribution from the slave station to the master station compared to the impedance of the substation The impedance of the line increases. Therefore, the attenuation of the voltage signal to be transmitted is large, and transmission reliability becomes a problem.
[0008]
(Object of invention)
A first object of the present invention is to provide a switch control device in a signal transmission line that solves the above-described problems and can be realized with improved convenience of system system operation, improved transmission reliability, and reduced cost. Is to provide.
[0009]
A second object of the present invention is a signal transmission suitable for a case where a transmission signal can be reliably sent out to a signal transmission line on the side where a reception signal arrives when the switch is opened, and is handled as a slave station. It is providing the switch control apparatus in a track | line.
[0010]
[Means for Solving the Problems]
In order to achieve the first object, the present invention according to claim 1 is a signal transmission line for controlling a switch for opening and closing the signal transmission line itself and receiving a signal transmitted by the signal transmission line. In the switch control device, a first voltage sensor that detects a voltage signal of the signal transmission line on one side of the switch, and a second voltage sensor that detects a voltage signal of the signal transmission line on the other side of the switch A voltage sensor; a current sensor that detects a current signal of a signal transmission line on one side of the switch; and an output of the first voltage sensor is selected according to an open state of the switch; Selection means for selecting the output of the current sensor according to the closed state, and first reception for receiving either the voltage signal of the first voltage sensor or the current signal of the current sensor via the selection means Means and said first Is characterized in that it has a second receiving means is a voltage sensor for receiving the voltage signal detected in the.
[0011]
In order to achieve the second object, the present invention according to claim 2 is the switch control device in the signal transmission line according to claim 1, wherein the transmission means for sending a signal to the signal transmission line, Of the signal transmission lines on both sides of the switch, there is provided switching means for switching a side for sending a signal from the transmission means to a side for receiving the signal.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram of a switch control slave station showing an embodiment of the present invention. Reference numeral 1 denotes a switch for opening and closing the distribution line 2. Voltage sensors 3 and 4 such as instrument transformers for detecting the voltage signal of the distribution line 2 (as the distribution line conveyance signal) are provided on both sides (A side and B side) of the switch 1. A current sensor 5 such as a current transformer for detecting a current signal (as a distribution line carrying signal) is provided on the A side. Either one of the detection signals of the voltage sensor 3 and the current sensor 5 is selected by the selector switch 6 and is input to the signal receiving circuit 7, and the detection signal of the voltage sensor 4 is input directly to the signal receiving circuit 8. The signals received by the signal receiving circuits 7 and 8 are sent to the control circuit 9. The control circuit 9 controls the opening and closing of the switch 1 according to the content of the received signal. When the switch 1 is controlled to be in the open state, the changeover switch 6 is switched to the voltage sensor 3 side in conjunction with the switching. When the device 1 is controlled to be closed, the changeover switch 6 is switched to the current sensor 5 side in conjunction with the control.
[0013]
When the switch 1 is in the open state, since the changeover switch 6 is switched to the voltage sensor 3 side, both of the signal receiving circuits 7 and 8 are in a signal receivable state via the voltage sensors 3 and 4, and power distribution If a signal is sent from the parent station from the A side or the B side of the line 2, the signal is received and the control circuit 9 operates according to the signal. Therefore, even when the switch 1 is in the open state, the voltage signals on both sides A and B can be received.
[0014]
When the switch 1 is closed, the changeover switch 6 is switched to the current sensor 5 side. The current sensor 5 detects the signal from the A side directly and the signal from the B side through the switch 1 and inputs it to the signal receiving circuit 7. The voltage sensor 4 detects the signal from the B side directly and the signal from the A side through the switch 1 and inputs it to the signal receiving circuit 8. Therefore, when the switch 1 is in the closed state, the voltage signal and current signal on both sides of A and B can be received.
[0015]
When the distribution line 2 is opened by the switch 1, the current signal does not flow to the A side or the B side, and when the distribution line 2 is closed by the switch 1, the current signal is directed to the A side. Since it flows also to the B side, it is sufficient to install the current sensor 5 on the A side. In common sense, when both the reception of the voltage signal detected by two voltage sensors and the reception of the current signal detected by one current sensor are performed, three signal reception circuits are required. Then, the cost of the slave station becomes high and the shape becomes large. This problem is solved by using two signal receiving circuits in the embodiment of FIG.
[0016]
Further, in the embodiment of FIG. 1, since reception is performed with both a voltage signal and a current signal, transmission reliability can be improved. Details of the reason will be described with reference to FIG. As in the case of FIG. 2A, when the impedance to the signal after the reception point (child station) is large (the load is small or parallel resonance), the voltage signal is less attenuated (the current signal becomes small). ), It is advantageous to transmit with a voltage signal. On the contrary, as shown in FIG. 2B, when the impedance of the signal after the reception point (slave station) is small (the load is large or series resonance), the voltage signal is greatly attenuated (current signal). It is advantageous to transmit with a current signal. Therefore, transmission reliability can be improved by transmitting the same signal as both a voltage signal and a current signal. The case of FIG. 2B is, for example, a case where transmission is performed from a slave station to a master station installed near the substation, or a case where transmission is performed from the master station to a slave station installed on the substation side. .
[0017]
FIG. 3 is a circuit diagram of a switch control slave station showing another embodiment of the present invention having a signal transmission circuit. 1 is different from the embodiment of FIG. 1 in that it has a signal transmission circuit 10 and a selector switch 11 for selecting whether the transmission signal from the signal transmission circuit 10 is sent out to the distribution line 2 via any of the voltage sensors 3 and 4. It is a point to have.
[0018]
For example, if the switch 1 is in the open state and the command signal from the master station is detected by the voltage signal on the A side, the control circuit 9 receives the received signal from the signal receiving circuit 7 on the A side of the distribution line 2. It is determined that a signal has been received, the changeover switch 11 is switched to the A side, that is, the voltage sensor 3 side, and a response signal in response to a command signal from the master station is sent from the signal transmission circuit 10 via the voltage sensor 3 to the distribution line. 2 to the A side. If the switch 1 is closed, the control circuit 9 unconditionally switches the changeover switch 11 to the A side, that is, the voltage sensor 3 side, and transmits a response signal in response to the command signal from the master station. The circuit 10 is sent to the A side of the distribution line 2 via the voltage sensor 3 and the B side of the distribution line 2 via the switch 1.
[0019]
The circuit configuration shown in FIG. 3 can be used as a master station. A circuit configuration as a master station in this case is shown in FIG. When used as a master station, the control circuit 9 receives the command signal from a higher-level command station (not shown) sent by the communication line 12 via the communication line modem 13, thereby switching the switch 1. The switch 1 is not controlled by the carrier signal transmitted through the distribution line 2. The signal receiving circuits 7 and 8 receive response signals from the slave stations.
[0020]
When the system is started up, the address of the slave station managed by the master station and the direction on the distribution line 2 where the slave station is installed (A side or B side from the master station) communicate with the master station Since it is transmitted by the line 12, the control circuit 9 stores it. When the control circuit 9 receives a monitoring or control command signal for the slave station under its control from a higher-level command station via the communication line 12, the control circuit 9 switches to the previously stored direction (A or B) of the slave station. The switch 11 is switched, and the signal transmission circuit 10 transmits a command signal to the slave station.
[0021]
The present invention can be applied not only to a switch control device for a distribution line, but also to a switch control device in a data transmission system in which a signal transmission line is opened and closed at a reception point.
[0022]
【The invention's effect】
As described above, according to the present invention, the voltage signal of the signal transmission line on both sides of the switch can be received when the switch is open, and the same when the switch is closed. Can be received as voltage and current signals, and there are two receiving means despite the fact that two voltage sensors and one current sensor are installed, improving the convenience of system operation and transmission reliability. The improvement in performance and cost reduction can be realized together.
[0023]
According to the second aspect of the present invention, since the signal transmission side of the signal transmission lines on both sides of the switch is switched to the signal receiving side, the switch is opened. Therefore, it is possible to reliably send the transmission signal to the signal transmission line on the side where the reception signal has arrived, and it is possible to make it suitable for the case where it is handled as a slave station.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a switch control slave station in a distribution line according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a case where it is advantageous to transmit using a voltage signal and a case where transmission using a current signal is advantageous.
FIG. 3 is a circuit diagram showing a switch control slave station in a distribution line according to another embodiment of the present invention.
FIG. 4 is a circuit diagram showing a switch control master station in a distribution line according to another embodiment of the present invention.
FIG. 5 is a circuit diagram showing a conventional example of a switch control slave station in a distribution line.
FIG. 6 is a diagram illustrating an example of a change in a distribution system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Switch 2 Distribution line 3, 4 Voltage sensor 5 Current sensor 6 Changeover switch 7, 8 Signal receiving circuit 9 Control circuit 10 Signal transmission circuit 11 Changeover switch 12 Communication line 13 Communication line modem

Claims (2)

信号伝送線路自体を開閉する開閉器を制御すると共に、信号伝送線路によって伝送されてくる信号を受信する信号伝送線路における開閉器制御装置において、前記開閉器の一方の側の信号伝送線路の電圧信号を検出する第1の電圧センサと、前記開閉器の他方の側の信号伝送線路の電圧信号を検出する第2の電圧センサと、前記開閉器の一方の側の信号伝送線路の電流信号を検出する電流センサと、前記開閉器の開状態に応じて前記第1の電圧センサの出力を選択し、前記開閉器の閉状態に応じて前記電流センサの出力を選択する選択手段と、該選択手段を介して前記第1の電圧センサの電圧信号と前記電流センサの電流信号のいずれか一方を受信する第1の受信手段と、前記第2の電圧センサが検出した電圧信号を受信する第2の受信手段とを有することを特徴とする信号伝送線路における開閉器制御装置。In the switch control device in the signal transmission line that controls the switch that opens and closes the signal transmission line itself and receives the signal transmitted by the signal transmission line, the voltage signal of the signal transmission line on one side of the switch A first voltage sensor for detecting a voltage, a second voltage sensor for detecting a voltage signal of a signal transmission line on the other side of the switch, and a current signal of a signal transmission line on one side of the switch A current sensor that selects the output of the first voltage sensor according to an open state of the switch, and a selector that selects an output of the current sensor according to a closed state of the switch. A first receiving means for receiving one of the voltage signal of the first voltage sensor and the current signal of the current sensor via a second, and a second receiving means for receiving the voltage signal detected by the second voltage sensor. Receiving means Switch control unit in the signal transmission line and having a. 前記信号伝送線路に信号を送り出す送信手段と、前記開閉器の両側の信号伝送線路のうちの前記送信手段からの信号を送り出す側を、信号を受信した側に切り換える切換手段とを有することを特徴とする請求項1記載の信号伝送線路における開閉器制御装置。Transmitting means for sending a signal to the signal transmission line, and switching means for switching the signal sending side from the transmission means of the signal transmission lines on both sides of the switch to the signal receiving side. The switch control device in the signal transmission line according to claim 1.
JP25693799A 1999-09-10 1999-09-10 Switch control device in signal transmission line Expired - Lifetime JP3594848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25693799A JP3594848B2 (en) 1999-09-10 1999-09-10 Switch control device in signal transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25693799A JP3594848B2 (en) 1999-09-10 1999-09-10 Switch control device in signal transmission line

Publications (2)

Publication Number Publication Date
JP2001086664A JP2001086664A (en) 2001-03-30
JP3594848B2 true JP3594848B2 (en) 2004-12-02

Family

ID=17299447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25693799A Expired - Lifetime JP3594848B2 (en) 1999-09-10 1999-09-10 Switch control device in signal transmission line

Country Status (1)

Country Link
JP (1) JP3594848B2 (en)

Also Published As

Publication number Publication date
JP2001086664A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
US6008971A (en) Fault protection arrangement for electric power distribution systems
US5387902A (en) Data networks
US20080303353A1 (en) Network-based aircraft secondary electric power distribution system
EP0946917A1 (en) Electronic bus system
US7099959B1 (en) Network comprising a plurality of network nodes and at least one star node
JP3594848B2 (en) Switch control device in signal transmission line
KR101466912B1 (en) Automatic Block System using Optical Communication
JP3679944B2 (en) Information transmission equipment
JP2894544B2 (en) Distribution line remote monitoring and control system
JP3209080B2 (en) Amplifying device for distribution line carrier signal and distribution line carrier system using the same
JPH05219664A (en) Monitor-control system for power distribution system
JPH06183348A (en) Operation control device
JP4073570B2 (en) Transmission system for digital communication
JP2782452B2 (en) Signal transmission method
JP2002314554A (en) Communication equipment for vehicle
JP3508983B2 (en) Distribution line transport system
JPH10108365A (en) Power distribution system monitor/controller
JPH10215274A (en) Network connection device and its method
JPH10150734A (en) Power distribution facility
JPH10276121A (en) Power line transmission device
JPH0624341A (en) Decentralized operation managing system
JPS62117435A (en) Loop-like network controller
JPH02253741A (en) Network equipment
JPS59114646A (en) System switching system
JPH0777378B2 (en) Relay device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Ref document number: 3594848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term