JP3594520B2 - Optical communication device - Google Patents

Optical communication device Download PDF

Info

Publication number
JP3594520B2
JP3594520B2 JP27441499A JP27441499A JP3594520B2 JP 3594520 B2 JP3594520 B2 JP 3594520B2 JP 27441499 A JP27441499 A JP 27441499A JP 27441499 A JP27441499 A JP 27441499A JP 3594520 B2 JP3594520 B2 JP 3594520B2
Authority
JP
Japan
Prior art keywords
optical
optical signal
optical communication
communication
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27441499A
Other languages
Japanese (ja)
Other versions
JP2001103010A (en
Inventor
正樹 橋浦
益男 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP27441499A priority Critical patent/JP3594520B2/en
Publication of JP2001103010A publication Critical patent/JP2001103010A/en
Application granted granted Critical
Publication of JP3594520B2 publication Critical patent/JP3594520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線リモコン機器やIrDA赤外通信機器などに適用され、赤外線信号等の光信号を送信または受信する光信号素子を用いた光通信装置に関する。
【0002】
【従来の技術】
光通信(例えばIrDA)は光信号と外乱光(雑音)のS/N比によって通信距離が決まる。よって、外乱光が大きい屋外等の場所で光通信を行う場合は、通信角度(光信号の入射角/放射角)を極力絞って指向性のある光通信を行う必要がある。
通信角度を絞る方法としては、例えば、光信号を透過する光信号透過窓(光通信窓)に外乱光を遮光する遮光板を備え付ける方法や、光信号素子を光信号透過窓から所定距離はなして筺体内部に配置する方法がある。
【0003】
また、発光素子に用いる赤外線LEDや受光素子に用いるフォトダイオードの有効通信角度は、一般的に±15°程度であり、通信角度を広くする方法として、複数の光信号素子をそれぞれの通信角度を考慮して配置する方法がある。
【0004】
例えば、特開平10−93145号公報には、複数のIrDA赤外線発光素子ダイオードを放射状に配置し、各IrDA赤外線発光素子ダイオードの間に干渉防止シールド部材を設けたIrDA赤外線発光ダイオードのモジュール構造とその制御方法が提案されている。
【0005】
図4は従来技術による光通信部の部品配置を示す図である。図4において、41は光信号素子、42は光信号素子41を実装する基板、43は光信号の波長を透過する光信号透過窓、44は筺体、45は外乱光を遮光する遮光部を示す。
図4に示す従来技術の光通信部では、光信号素子41の有効通信角度はそれぞれ±15であり、各光信号素子41を、光軸が30°になるように基板42に放射状に配置することで、全体の有効通信角度を90°としている。
また、通信角度以外から入射される外乱光の影響を受けにくくするために、光信号透過窓43の大きさを最小限の大きさにし、さらに遮光板48を光信号透過窓45の外部に設けている。
【0006】
【発明が解決しようとする課題】
しかしながら、図4に示す従来技術の光通信部のように、基板上に複数個の光信号素子を放射状に配置する場合、光信号透過窓の開口面積が大きくなる。また、外乱光の影響を受けにくくするために、光信号素子を光通信透過窓から内部方向に少し離して配置する場合、離せば離すほど、光信号透過窓の開口面積は大きくなる。
これは通信角度を大きくすればするほど顕著になり、光通信装置全体が大きくなってしまう問題がある。つまり、外乱光の影響が受けにくい構造と、通信角度を大きくすることは相反する関係である。
【0007】
特開平10−93145号公報に記載のモジュール構造についても、広い通信角度を有するが、外乱光の影響が受け易いという問題がある。
【0008】
本発明は以上の事情を考慮してなされたものであり、例えば、光信号を透過する光信号透過窓の領域を小さくし、光通信部が光通信角度範囲以外から入射される外乱光の影響を少なくすることができる光通信装置を提供する。
【0009】
【課題を解決するための手段】
本発明は、光信号の波長を透過する光信号透過窓及び光信号透過窓を介し光軸を中心にして所定の光通信角度範囲で光信号を送信または受信することが可能な光信号素子を二次元的に複数配置した基板を有する光通信部と、前記光通信部を設置する筐体と、前記光通信部の各光信号素子を制御する光通信制御部と、光通信を実行するための各種指示や通信データを入出力する入出力部と、前記入出力部によって入力された各通信データを所定の手順に基づいて光信号から通信データまたは通信データから光信号に変換処理するデータ処理部とを備え、前記複数の光信号素子は基板上に各光軸が前方一か所でほぼ交わるように凹状に配置され、前記光信号透過窓は各光軸がほぼ交わる近辺でかつ前記基板の前方に前記基板から所定の距離をあけて配置され光信号を透過させるのに必要となる実質的に最小限の寸法を有することを特徴とする光通信装置である。
【0010】
本発明によれば、光信号を透過する光信号透過窓の領域(通信開口面積)を小さくし、光通信部に対して光通信角度範囲以外から入射される外乱光の影響を少なくすることができる。このため、広い光通信角度範囲をもちながら、光通信部の小型化や信頼性の高い光通信が可能になる。
【0011】
周囲の外乱光を遮光する遮光部をさらに備え、前記遮光部は、前記光信号透過窓の外側かつ前記光信号素子が光信号を送信または受信する光通信角度範囲に沿って前記筺体に設置された構成にしてもよい。
この構成によれば、光通信角度範囲以外から入射される外乱光を直接遮光するので、広い光通信角度範囲をもちながら、光通信部に対してより効果的に外乱光の影響を少なくすることができる。
【0012】
前記遮光部は、前記光信号素子が光信号を送信または受信する光通信角度範囲に沿った表面が外乱光の反射防止状態に形成された構成にしてもよい。
この構成によれば、外乱光の反射を防止することができるので、広い光通信角度範囲をもちながら、光通信部に対してより効果的に外乱光の影響を少なくすることができる。
【0013】
前記光通信部は、複数の光信号素子を配列した基板を、その各光軸が前方一か所でほぼ交わるように凹状に複数配置した構成にしてもよい。
この構成によれば、光信号透過窓の領域を大きくすることなく、光信号の強度を大きくして送信することができ、かつ光信号の受信感度を上げることができる。
【0014】
前記光信号素子が、発光素子と受光素子とが一体成型されたモジュールに構成してもよい。
この構成によれば、光通信部を小型にすることができる。
【0015】
この発明による光通信装置は、前記光通信部の各光信号素子を制御する光通信制御部と、光通信を実行するための各種指示や通信データを入出力する入出力部と、前記入出力部によって入力された通信データを所定の手順に基づいて光信号から通信データまたは通信データから光信号に変換処理するデータ処理部とを備える
【0016】
【発明の実施の形態】
以下、図に示す実施例に基づいて本発明を詳述する。なお、本発明はこれによって限定されるものではない。
【0017】
図1は本発明の一実施例である光通信装置の構成を示すブロック図である。 1は光通信装置を示し、光通信装置1は赤外線リモコン機器やIrDA赤外通信機器などに適用される。
2は光通信を送信または受信する光信号素子を実装した基板からなる光通信部を示す。光通信部2の詳細構成については図2及び図3で説明する。
【0018】
3は光通信部2の各光信号素子を制御する光通信制御部を示し、光通信制御部3は、光信号素子を発光素子として発光駆動する発光駆動回路、光信号素子が受光素子として受光した光信号をノイズ除去して増幅駆動する増幅回路などから構成される。
4は通信データを処理するデータ処理部を示し、CPU、各種記憶媒体などから構成され、通信データを光信号または光信号を通信データに変換する。
5は光通信を実行するための各種指示や通信データを入出力する入出力部を示し、入力部として小型キースイッチ、タッチパネル、出力部としてLCD(液晶表示ディスプレイ)、ELディスプレイなどで構成される。
【0019】
図2は本発明の一実施例である光通信部の部品配置を示す図である。図2において、21は光軸を中心にして所定の光通信角度範囲で光信号を送信または受信することが可能な光信号素子を示し、発光素子と受光素子とが一体成型されたモジュールに構成されている。
発光素子としてはIrDA赤外LED、受光素子としてはPINフォトダイオードが用いられる。
【0020】
22は光通信素子21を実装する基板であり、ガラスエポキシ基板などで構成される。
23は光信号である赤外光の波長を透過する樹脂またはガラスフィルタで形成された光信号透過窓(光通信窓)を示し、光信号透過窓23は、通信角度を狭くしない程度に小さく設計することで、外乱光の影響を抑制する役割ももつ。
【0021】
本実施例では、光信号素子21の数は3個であり、それぞれの通信角度はIrDA規格に準じた±15°の場合である。各光信号素子21は30°の角度を付けて光信号透過窓23に対して凹状に配置する。
つまり、基板22に3個の光信号素子21を通信角度分だけ光軸を順次シフトし、その各光軸が前方一か所でほぼ交わるように凹状に配置する。
この実施例は、光通信素子の通信角度が±15°の場合であるが、そのほかの通信角度であってもよい。
【0022】
光信号透過窓23は、各光軸がほぼ交わる近辺でかつ光通信部2の前部に配置される。この結果、通信角度範囲以外の視野角が極力持たないため、外乱光の影響が受けにくくなる。
【0023】
24は基板22及び光信号透過部23を配置する筺体を示し、アルミダイキャスト、樹脂などで構成される。
25は周囲の外乱光を遮光する遮光部を示し、遮光部25は、光信号透過窓23の外側かつ光信号素子21が光信号を送信または受信する光通信角度範囲に沿って筺体24に設置される。
【0024】
本実施例では、遮光部25は、赤外光を透過しない金属や樹脂などの板状のもので構成されている。好ましくは外乱光の赤外光を反射しにくいように、反射防止多層膜や艶消し塗装などによる反射防止処理を施すのが好ましい。
また、遮光部25は板状のものでなく、筒状のものや、筺体24を変形した構造でもよい。
【0025】
図2に示すように、基板22を光信号透過窓23から距離αだけ内部に配置することで、光信号素子21が外乱光の影響を受けにくい構造にする。
図4に示すように、凸型に光信号素子21が配置されている場合、距離αが大きくなればなるほど、光信号透過窓23の大きさ、または遮光部25の通信開口面積は大きくなるが、凹型に配置することで、小さくすることができる。
【0026】
また、基板22を距離αだけ内部に配置しつつ、遮光部25を有することで、より光信号素子が外乱光の影響を受けにくくすることができる。これは、基板22に配置された光信号素子21の中で、中央に近い光信号素子に対して特に有効である。
【0027】
図3は本発明の他の実施例である光通信部の部品配置を示す図である。図3に示すように、光通信部2は、複数の光信号素子21が配列された基板22をその各光軸が前方一か所でほぼ交わるように凹状に複数配置されている。また、図3において、
(1)複数の光信号素子を、その各光軸が平行になるように基板に配置すれば、光通信部2の発光強度や受信感度が向上する。
(2)複数の光信号素子を配列した複数の基板を、各基板上の光信号素子の光軸が前方で交わるように凹型に配置すれば、基板前方に配置する光信号透過窓23の大きさを小さくすることができる。
結果、光通信部2は三次元的に小さくすることができる。
また、光信号素子の配列、及びその基板の配置を共に凹型にすることにより、光信号透過窓の大きさを最小にすることができる。
【0028】
つまり、光信号素子21が二次元的に配置された基板22を、光信号信透過窓23に対して外向きに凹型に3枚配置している。光信号素子の通信角度は±l5°の場合、基板22は通信角度に応じて、光軸を30°ずらして配置される。このような配置にすることで、三次元的に光信号素子を凹型に配置することができ、光信号透過窓23の大きさや、遮光部25の通信開口面積を小さくすることができる。
この構成により、光信号素子が外乱光の影響を避けつつ、光信号の強度を大きくして送信することができ、かつ光信号の受信感度を上げることができる。
【0029】
【発明の効果】
本発明によれば、光信号を透過する光信号透過窓の領域(通信開口面積)を小さくし、光通信部に対して光通信角度範囲以外から入射される外乱光の影響を少なくすることができる。このため、光通信部の小型化や信頼性の高い光通信が可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例である光通信装置の構成を示すブロック図である。
【図2】本発明の一実施例である光通信部の部品配置を示す図である。
【図3】本発明の他の実施例である光通信部の部品配置を示す図である。
【図4】従来技術による光通信部の部品配置を示す図である。
【符号の説明】
1 光通信装置
2 光通信部
21 光信号素子
22 基板
23 光信号透過窓
24 筺体
25 遮光部
3 光通信制御部
4 データ処理部
5 入出力部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical communication device that is applied to an infrared remote control device, an IrDA infrared communication device, or the like, and uses an optical signal element that transmits or receives an optical signal such as an infrared signal.
[0002]
[Prior art]
In optical communication (for example, IrDA), the communication distance is determined by the S / N ratio of an optical signal and disturbance light (noise). Therefore, when performing optical communication in a place such as outdoors where disturbance light is large, it is necessary to perform directional optical communication by narrowing the communication angle (incident angle / radiation angle of optical signal) as much as possible.
Examples of the method of narrowing the communication angle include a method of providing a light-shielding plate that shields disturbance light in an optical signal transmission window (optical communication window) that transmits an optical signal, and a method in which an optical signal element is separated from the optical signal transmission window by a predetermined distance. There is a method of arranging it inside the housing.
[0003]
In addition, the effective communication angle of the infrared LED used for the light emitting element and the photodiode used for the light receiving element is generally about ± 15 °, and as a method of widening the communication angle, a plurality of optical signal elements are set to each communication angle. There is a way to place it in consideration.
[0004]
For example, Japanese Unexamined Patent Publication No. 10-93145 discloses a module structure of an IrDA infrared light emitting diode in which a plurality of IrDA infrared light emitting element diodes are radially arranged and an interference prevention shield member is provided between each IrDA infrared light emitting element diode. A control method has been proposed.
[0005]
FIG. 4 is a diagram showing a component arrangement of an optical communication unit according to the related art. In FIG. 4, reference numeral 41 denotes an optical signal element, 42 denotes a substrate on which the optical signal element 41 is mounted, 43 denotes an optical signal transmission window that transmits the wavelength of the optical signal, 44 denotes a housing, and 45 denotes a light blocking unit that blocks disturbance light. .
In the conventional optical communication unit shown in FIG. 4, the effective communication angles of the optical signal elements 41 are each ± 15, and the optical signal elements 41 are radially arranged on the substrate 42 such that the optical axis is 30 °. Thus, the entire effective communication angle is 90 °.
Further, in order to reduce the influence of disturbance light incident from other than the communication angle, the size of the optical signal transmission window 43 is minimized, and a light shielding plate 48 is provided outside the optical signal transmission window 45. ing.
[0006]
[Problems to be solved by the invention]
However, when a plurality of optical signal elements are radially arranged on a substrate as in the conventional optical communication unit shown in FIG. 4, the opening area of the optical signal transmission window becomes large. In addition, when the optical signal element is disposed slightly inward from the optical communication transmission window in order to reduce the influence of disturbance light, the opening area of the optical signal transmission window increases as the distance increases.
This becomes more conspicuous as the communication angle is increased, and there is a problem that the entire optical communication device becomes large. In other words, a structure that is not easily affected by disturbance light and an increase in the communication angle are in conflict with each other.
[0007]
The module structure described in JP-A-10-93145 also has a wide communication angle, but has a problem that it is easily affected by disturbance light.
[0008]
The present invention has been made in consideration of the above circumstances, and for example, reduces the area of an optical signal transmission window that transmits an optical signal, and causes the optical communication unit to be affected by disturbance light incident from outside the optical communication angle range. And an optical communication device capable of reducing the number of optical signals.
[0009]
[Means for Solving the Problems]
The present invention provides an optical signal transmitting window that transmits a wavelength of an optical signal, and an optical signal element capable of transmitting or receiving an optical signal within a predetermined optical communication angle range around an optical axis through the optical signal transmitting window. An optical communication unit having a plurality of two-dimensionally arranged substrates, a housing for installing the optical communication unit, an optical communication control unit for controlling each optical signal element of the optical communication unit , and executing optical communication An input / output unit that inputs and outputs various instructions and communication data, and a data process that converts each communication data input by the input / output unit from an optical signal to communication data or from communication data to an optical signal based on a predetermined procedure. Part , the plurality of optical signal elements are arranged on the substrate in a concave shape so that each optical axis substantially intersects at one point in front, the optical signal transmission window is near the intersection of each optical axis and the substrate at a predetermined distance from the substrate to the front of A optical communication device characterized by having a substantially minimum dimensions required for transmitting the arranged optical signal.
[0010]
ADVANTAGE OF THE INVENTION According to this invention, the area | region (communication opening area) of the optical signal transmission window which transmits an optical signal is made small, and the influence of the disturbance light which injects into an optical communication part from other than an optical communication angle range is reduced. it can. Therefore, it is possible to reduce the size of the optical communication unit and achieve highly reliable optical communication while having a wide optical communication angle range.
[0011]
The optical device further includes a light-shielding unit that shields ambient light, and the light-shielding unit is installed in the housing outside the optical signal transmission window and along an optical communication angle range in which the optical signal element transmits or receives an optical signal. May be adopted.
According to this configuration, since the disturbance light incident from outside the optical communication angle range is directly shielded, the influence of the disturbance light on the optical communication unit can be reduced more effectively while having a wide optical communication angle range. Can be.
[0012]
The light-shielding portion may be configured such that a surface along an optical communication angle range in which the optical signal element transmits or receives an optical signal is formed in a state of preventing disturbance light from being reflected.
According to this configuration, since the reflection of disturbance light can be prevented, the influence of disturbance light on the optical communication unit can be reduced more effectively while having a wide optical communication angle range.
[0013]
The optical communication unit may have a configuration in which a plurality of substrates on which a plurality of optical signal elements are arranged are arranged in a concave shape such that their optical axes substantially intersect at one location in front.
According to this configuration, it is possible to increase the intensity of the optical signal for transmission without increasing the area of the optical signal transmission window, and it is possible to increase the reception sensitivity of the optical signal.
[0014]
The optical signal element may be configured as a module in which a light emitting element and a light receiving element are integrally formed.
According to this configuration, the size of the optical communication unit can be reduced.
[0015]
An optical communication device according to the present invention includes: an optical communication control unit that controls each optical signal element of the optical communication unit; an input / output unit that inputs and outputs various instructions and communication data for executing optical communication; and a data processing unit for conversion into an optical signal from the communication data or communication data from the optical signal on the basis of the communication data input by the section of a predetermined procedure.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. The present invention is not limited by this.
[0017]
FIG. 1 is a block diagram showing a configuration of an optical communication device according to one embodiment of the present invention. Reference numeral 1 denotes an optical communication device, and the optical communication device 1 is applied to an infrared remote control device, an IrDA infrared communication device, or the like.
Reference numeral 2 denotes an optical communication unit including a substrate on which an optical signal element for transmitting or receiving optical communication is mounted. The detailed configuration of the optical communication unit 2 will be described with reference to FIGS.
[0018]
Reference numeral 3 denotes an optical communication control unit for controlling each optical signal element of the optical communication unit 2. The optical communication control unit 3 includes a light emitting drive circuit for driving light emission using the optical signal element as a light emitting element, and receiving light using the optical signal element as a light receiving element. It is composed of an amplifying circuit for amplifying and driving the removed optical signal by removing noise.
Reference numeral 4 denotes a data processing unit for processing communication data, which includes a CPU, various storage media, and the like, and converts the communication data into an optical signal or an optical signal into communication data.
Reference numeral 5 denotes an input / output unit for inputting and outputting various instructions and communication data for executing optical communication. The input / output unit includes a small key switch, a touch panel as an input unit, an LCD (liquid crystal display), an EL display, and the like as an output unit. .
[0019]
FIG. 2 is a diagram showing a component arrangement of an optical communication unit according to one embodiment of the present invention. In FIG. 2, reference numeral 21 denotes an optical signal element capable of transmitting or receiving an optical signal within a predetermined optical communication angle range around the optical axis, and is configured as a module in which a light emitting element and a light receiving element are integrally molded. Have been.
An IrDA infrared LED is used as the light emitting element, and a PIN photodiode is used as the light receiving element.
[0020]
Reference numeral 22 denotes a board on which the optical communication element 21 is mounted, and is made of a glass epoxy board or the like.
Reference numeral 23 denotes an optical signal transmission window (optical communication window) formed of a resin or a glass filter that transmits the wavelength of infrared light that is an optical signal. The optical signal transmission window 23 is designed to be small enough not to narrow the communication angle. By doing so, it also has a role of suppressing the influence of disturbance light.
[0021]
In the present embodiment, the number of the optical signal elements 21 is three, and each communication angle is ± 15 degrees according to the IrDA standard. Each optical signal element 21 is arranged concavely with respect to the optical signal transmission window 23 at an angle of 30 °.
That is, the three optical signal elements 21 are sequentially shifted on the substrate 22 by the communication angle, and are arranged in a concave shape so that the respective optical axes substantially intersect at one location in front.
In this embodiment, the communication angle of the optical communication element is ± 15 °, but another communication angle may be used.
[0022]
The optical signal transmission window 23 is arranged near the intersection of the optical axes and at the front of the optical communication unit 2. As a result, since the viewing angle other than the communication angle range has as little as possible, it is hardly affected by disturbance light.
[0023]
Reference numeral 24 denotes a housing in which the substrate 22 and the optical signal transmitting portion 23 are arranged, and is made of aluminum die cast, resin, or the like.
Reference numeral 25 denotes a light-shielding portion that shields ambient disturbance light. The light-shielding portion 25 is installed on the housing 24 outside the optical signal transmission window 23 and along the optical communication angle range in which the optical signal element 21 transmits or receives an optical signal. Is done.
[0024]
In the present embodiment, the light shielding portion 25 is formed of a plate-shaped material such as a metal or a resin that does not transmit infrared light. Preferably, an anti-reflection treatment such as an anti-reflection multilayer film or matte coating is preferably performed so that infrared light of disturbance light is hardly reflected.
Further, the light shielding portion 25 is not limited to a plate shape, and may be a cylindrical shape or a structure in which the housing 24 is deformed.
[0025]
As shown in FIG. 2, by arranging the substrate 22 inside the optical signal transmission window 23 by a distance α, the optical signal element 21 has a structure that is hardly affected by disturbance light.
As shown in FIG. 4, when the optical signal element 21 is arranged in a convex shape, as the distance α increases, the size of the optical signal transmission window 23 or the communication opening area of the light shielding unit 25 increases. By arranging it in a concave shape, the size can be reduced.
[0026]
In addition, by providing the light shielding portion 25 while disposing the substrate 22 inside by the distance α, the optical signal element can be made less susceptible to disturbance light. This is particularly effective for an optical signal element near the center among the optical signal elements 21 arranged on the substrate 22.
[0027]
FIG. 3 is a diagram showing a component arrangement of an optical communication unit according to another embodiment of the present invention. As shown in FIG. 3, in the optical communication unit 2, a plurality of substrates 22 on which a plurality of optical signal elements 21 are arranged are arranged in a concave shape such that respective optical axes thereof substantially intersect at one location in front. Also, in FIG.
(1) If a plurality of optical signal elements are arranged on a substrate so that their respective optical axes are parallel, the light emission intensity and reception sensitivity of the optical communication unit 2 are improved.
(2) If a plurality of substrates on which a plurality of optical signal elements are arranged are arranged in a concave shape so that the optical axes of the optical signal elements on each substrate intersect at the front, the size of the optical signal transmission window 23 disposed at the front of the substrate is increased. Can be reduced.
As a result, the optical communication unit 2 can be reduced three-dimensionally.
Further, by making the arrangement of the optical signal elements and the arrangement of the substrate thereof concave, the size of the optical signal transmission window can be minimized.
[0028]
That is, three substrates 22 on which the optical signal elements 21 are two-dimensionally arranged are arranged in a concave shape outwardly with respect to the optical signal transmission window 23. When the communication angle of the optical signal element is ± 15 °, the substrate 22 is arranged with the optical axis shifted by 30 ° according to the communication angle. With such an arrangement, the optical signal elements can be three-dimensionally arranged in a concave shape, and the size of the optical signal transmission window 23 and the communication opening area of the light shielding portion 25 can be reduced.
With this configuration, the optical signal element can transmit the optical signal with increased intensity while avoiding the influence of disturbance light, and can increase the receiving sensitivity of the optical signal.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the area | region (communication opening area) of the optical signal transmission window which transmits an optical signal is made small, and the influence of the disturbance light which injects into an optical communication part from other than an optical communication angle range is reduced. it can. For this reason, miniaturization of the optical communication unit and highly reliable optical communication become possible.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an optical communication device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a component arrangement of an optical communication unit according to an embodiment of the present invention.
FIG. 3 is a diagram showing a component arrangement of an optical communication unit according to another embodiment of the present invention.
FIG. 4 is a diagram showing a component arrangement of an optical communication unit according to the related art.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 optical communication device 2 optical communication unit 21 optical signal element 22 substrate 23 optical signal transmission window 24 housing 25 light shielding unit 3 optical communication control unit 4 data processing unit 5 input / output unit

Claims (5)

光信号の波長を透過する光信号透過窓及び光信号透過窓を介し光軸を中心にして所定の光通信角度範囲で光信号を送信または受信することが可能な光信号素子を二次元的に複数配置した基板を有する光通信部と、前記光通信部を設置する筐体と、前記光通信部の各光信号素子を制御する光通信制御部と、光通信を実行するための各種指示や通信データを入出力する入出力部と、前記入出力部によって入力された各通信データを所定の手順に基づいて光信号から通信データまたは通信データから光信号に変換処理するデータ処理部とを備え、前記複数の光信号素子は基板上に各光軸が前方一か所でほぼ交わるように凹状に配置され、前記光信号透過窓は各光軸がほぼ交わる近辺でかつ前記基板の前方に前記基板から所定の距離をあけて配置され光信号を透過させるのに必要となる実質的に最小限の寸法を有することを特徴とする光通信装置。An optical signal transmission window that transmits the wavelength of the optical signal and an optical signal element capable of transmitting or receiving an optical signal within a predetermined optical communication angle range around the optical axis through the optical signal transmission window in a two-dimensional manner. An optical communication unit having a plurality of arranged substrates, a housing for installing the optical communication unit, an optical communication control unit for controlling each optical signal element of the optical communication unit, and various instructions for executing optical communication; An input / output unit that inputs and outputs communication data, and a data processing unit that converts each communication data input by the input / output unit from an optical signal to communication data or from communication data to an optical signal based on a predetermined procedure. the plurality of optical signal device is the optical axis is arranged in a concave so as to substantially intersect at one point ahead on the substrate, the optical signal transmission window is the forward near a and the substrate the optical axes intersect approximately They are arranged from the substrate at a predetermined distance Optical communication device characterized by having a substantially minimum dimensions required for transmitting the signal. 周囲の外乱光を遮光する遮光部をさらに備え、前記遮光部は、前記光信号透過窓の外側かつ前記光信号素子が光信号を送信または受信する光通信角度範囲に沿って前記筐体に設置されたことを特徴とする請求項1記載の光通信装置。The optical device further includes a light-shielding portion that shields ambient light, and the light-shielding portion is provided on the housing outside the optical signal transmission window and along an optical communication angle range in which the optical signal element transmits or receives an optical signal. The optical communication device according to claim 1, wherein: 前記遮光部は、前記光信号素子が光信号を送信または受信する光通信角度範囲に沿った表面が外乱光の反射防止状態に形成されたことを特徴とする請求項2記載の光通信装置。The optical communication device according to claim 2, wherein the light shielding unit has a surface along an optical communication angle range in which the optical signal element transmits or receives an optical signal formed in a state in which disturbance light is prevented from being reflected. 前記光通信部は、複数の光信号素子を配列した基板を、その各光軸が前方一か所でほぼ交わるように凹状に複数配置したことを特徴とする請求項1記載の光通信装置。2. The optical communication device according to claim 1, wherein the optical communication unit includes a plurality of substrates on which a plurality of optical signal elements are arranged, and the plurality of substrates are arranged in a concave shape such that respective optical axes substantially intersect at one location in front. 前記光信号素子が、発光素子と受光素子とが一体成型されたモジュールであることを特徴とする請求項1記載の光通信装置。The optical communication device according to claim 1, wherein the optical signal element is a module in which a light emitting element and a light receiving element are integrally molded.
JP27441499A 1999-09-28 1999-09-28 Optical communication device Expired - Fee Related JP3594520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27441499A JP3594520B2 (en) 1999-09-28 1999-09-28 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27441499A JP3594520B2 (en) 1999-09-28 1999-09-28 Optical communication device

Publications (2)

Publication Number Publication Date
JP2001103010A JP2001103010A (en) 2001-04-13
JP3594520B2 true JP3594520B2 (en) 2004-12-02

Family

ID=17541349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27441499A Expired - Fee Related JP3594520B2 (en) 1999-09-28 1999-09-28 Optical communication device

Country Status (1)

Country Link
JP (1) JP3594520B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264299A (en) * 2002-03-11 2003-09-19 Honda Motor Co Ltd Light receiving device, light emitting device and optical radio communication device
WO2013035161A1 (en) * 2011-09-06 2013-03-14 株式会社日立製作所 Sensor terminal
JP6066051B2 (en) * 2012-11-28 2017-01-25 株式会社デンソー Infrared equipment
JP2015026533A (en) * 2013-07-26 2015-02-05 株式会社クワガタ Infrared floodlight projector
CN114236715B (en) * 2021-12-31 2023-07-28 网络通信与安全紫金山实验室 Receiving and transmitting optical device and system for wireless optical communication

Also Published As

Publication number Publication date
JP2001103010A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
US8405636B2 (en) Optical position sensing system and optical position sensor assembly
US11489993B2 (en) Camera assembly and electronic device
JP2006229922A (en) Camera module
US20210133421A1 (en) Under-screen fingerprint identification apparatus, lcd fingerprint identification system and electronic device
TWM532056U (en) Fingerprint identify apparatus
WO2021087741A1 (en) Under-screen fingerprint recognition apparatus, lcd fingerprint recognition system, and electronic device
CN110458105B (en) Fingerprint identification device and electronic equipment
JP4329824B2 (en) Display device
WO2019161759A1 (en) Mobile terminal
JP3594520B2 (en) Optical communication device
JP6197955B2 (en) Display device, vehicle
CN210381052U (en) Electronic device
JPH1145155A (en) Touch switch device
KR100735380B1 (en) A Camera Module
EP2740003B1 (en) Optical assembly for a light sensor
WO2021213005A1 (en) Electronic device
US20160313629A1 (en) Camera module
JPH05336043A (en) Optical communication unit
JP2004320304A (en) Case structure of remote control light receiving electronic apparatus
JP2000243985A (en) Infrared light guide member
TWI772871B (en) Optical lens, imaging module and electronic device
JPH1145144A (en) Touch switch device
CN111511131B (en) Outer frame, terminal housing and terminal
US20220295036A1 (en) Vehicle body structure having camera
JPH1023360A (en) Signal receiving device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees