JP3593631B2 - Iron / manganese removal method and removal device - Google Patents

Iron / manganese removal method and removal device Download PDF

Info

Publication number
JP3593631B2
JP3593631B2 JP2001390737A JP2001390737A JP3593631B2 JP 3593631 B2 JP3593631 B2 JP 3593631B2 JP 2001390737 A JP2001390737 A JP 2001390737A JP 2001390737 A JP2001390737 A JP 2001390737A JP 3593631 B2 JP3593631 B2 JP 3593631B2
Authority
JP
Japan
Prior art keywords
water
treated
filtration
tank
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001390737A
Other languages
Japanese (ja)
Other versions
JP2003190973A (en
Inventor
修 廣田
陽介 佐藤
Original Assignee
株式会社竹村製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹村製作所 filed Critical 株式会社竹村製作所
Priority to JP2001390737A priority Critical patent/JP3593631B2/en
Publication of JP2003190973A publication Critical patent/JP2003190973A/en
Application granted granted Critical
Publication of JP3593631B2 publication Critical patent/JP3593631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Filtering Materials (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下水及び伏流水等の被処理水中の鉄・マンガンを除去して被処理水を産業用水(雑用水、工業用水、消雪水、工事用水等)や上水(飲料水等)に役立たせることができる鉄・マンガンの除去方法及び除去装置に関する。
【0002】
【従来の技術】
地下水及び伏流水等の被処理水中の鉄・マンガンを除去する方法には、酸化材を添加しながら凝集沈殿を行う方法や比較的処理時間を長くとる鉄バクテリア等の微生物を利用する方法もあるが、最も多く用いられているのが酸化雰囲気を維持するための酸化剤を添加しながら酸化鉄・マンガン酸化物を濾過材表面に添着させた自触媒、酸化触媒を充填層にして被処理水を通過させて処理する接触濾過法である。
接触濾過法は、被処理水中の鉄・マンガンが酸化された当初に個体表面に付着する性質のあることを利用していて、付着したマンガン酸化物などそれ自身が酸化雰囲気にあれば、触媒的に酸化を促進して流入してきた鉄、マンガンを酸化し、濾過材表面に付着させて連続的に除去する原理によっている。
【0003】
図9は、被処理水から鉄・マンガンを除去する従来の除去装置に用いられる濾過タンクの部分透視側面図である。濾過タンクは、上部に被処理水を内部に供給する散水ノズル15、下部に濾過された処理水を集水する集水ストレーナ16を有しており、その間には、母体表面にマンガン酸化物を添着した濾材粒子から構成された濾過層14及び支持砂利層17、18が配置されている。このような従来の濾過装置には、砂利層が必要であり、砂利層があるので必然的に小型化することは困難である。
【0004】
【発明が解決しようとする課題】
濾過を継続的に続けていると、やがて濾過できない限界点が表われる。これは鉄分に関しては、物理濾過なので濾過材濾過層の目詰まりを生じるためである。マンガンに関しては、濾過材表面に添着したマンガン酸化物がマンガンを添着し続けて肥大化し、やがては吸着できない状況になるためである。
ここで逆洗浄を行うと、物理的濾過の障害物である酸化鉄は、濾過とは反対の流れにより排出されて目詰まりは解消される。一方、マンガンを吸着して肥大化したマンガン酸化物も同様にその表皮が剥離し排出されるが、その際濾過材に添着されていた元のマンガン酸化物も剥離し排出される場合があり、その結果マンガン酸化物が減少してマンガン除去に影響が生じてくる。
マンガンは、PH10以上の雰囲気下においては、自然完全酸化を完結できるので、その賦活・再生にはPH10以上の環境が必要になる。
また、工業用水などに用いる水は、このような方法で鉄・マンガンを除去しているが、従来の除去装置(濾過装置)は、除鉄を行う濾過塔と除マンガンを行う濾過塔の2つの塔があり、その結果除去装置の大型化を招いていた。
【0005】
本発明は、このような事情によりなされたものであり、地下水及び伏流水等の被処理水から鉄及びマンガン等を新規な構造の濾過手段により除去し、さらに滅菌処理を施すことにより、被処理水を産業用水(雑用水、工業用水、消雪水、工事用水等)や上水(飲料水等)に利用する鉄・マンガンの除去方法及びこの方法を実施するに際して用いられ、小形化された除去装置を提供する。
【0006】
【課題を解決するための手段】
本発明は、地下水及び伏流水等の被処理水から鉄及びマンガン等を除去し、さらに滅菌処理を施す方法及びこの方法を実施する除去装置において、除去装置に設けられる濾過タンクは、1塔のみであり、この濾過タンクで除鉄・除マンガンを行うことを特徴としている。そして、濾過タンクは、集水ストレーナとその上に配置された濾過層とを収納し、この濾過層は、粘土を数回焼結してなり緻密な多孔性を有する粒子を母体とし、マンガン酸化物をこの母体に添着した濾材粒子から構成され、濾材粒子の粒径は、粒径0.28〜0.65mmであり、集水ストレーナの目幅0.15〜0.25mmであることを特徴としている。
除鉄用濾過材と除マンガン用濾過材とでは、濾過材に求める要求が異なる(例えば、除鉄は物理的濾過なので線速度(濾過速度)を遅くし、除マンガンは吸着除去なので接触時間(接触面積・濾過速度)を遅くする必要がある)ので濾過材を十分検討し、濾材粒子の粒径を限定することにより双方の要求を満足させることができた。また、濾過タンク内の濾過層下部に目幅を限定した集水ストレナーを用いることにより、従来必要とされた濾過材支持砂利を不要とし、タンク自体を小型化することが可能になる。
【0007】
また、本発明では、除鉄用凝集剤を用いずに滅菌剤を酸化剤として使用するので凝集装置が不要になる。これは滅菌剤として使用する次亜塩素酸ナトリウムで生成される水酸化第二鉄のクラスタが小さく、従来の濾過材径では通過してしまったが上記のような粒径の細かにすると十分に濾過が可能になる。
本発明で用いられる濾過層は、粘土を数回焼結してなり緻密な多孔性を有する粒子を母体とし、マンガン酸化物をこの母体に添着した濾材粒子から構成されるが、濾材粒子の母体には、粘土を数回焼成した緻密な多孔性を有する、例えば、シャモット基材が用いられる。シャモット基材は、マンガン酸化物に対する密着性が優れ比重も見掛け比重で1.0位であり、急速濾過用に適している。
このような母体を回転式反応釜内で塩化マンガン(MnCl・4HO)と過マンガン酸カリウム(KMnO)とで交互に反応させて、これを数回繰り返し、最後に焼き付けを行う。塩化マンガンと過マンガン酸カリウムの一定量を反応させると、粘着性の茶褐色〜黒褐色のマンガンの高級酸化物(MnO・Mn,MnO・HO)が生成する((1)、(2)式参照)。この酸化物を母体に添着し、焼結させて濾材粒子を得る。
NaZ+MnCl→MnZ+2NaCl ・・・(1)
MnZ+2KMnO→KZ・MnO・Mn ・・・(2)
【0008】
本発明の鉄・マンガンの除去方法に用いられる除去装置は、濾過を行うと共に逆洗浄、濾過洗浄及び循環洗浄などの処理を行う。逆洗浄は、物理的な濾過により蓄積している鉄分を除去する。濾過洗浄は、酸化剤を投入して濾過層に用いられているマンガン酸化物の賦活・再生を行う。さらに、循環洗浄により処理水のPHを10以上にしてマンガン酸化物の賦活・再生を行う。
濾過洗浄において、従来技術では被処理水で洗浄する方法と濾過処理を行った処理水を用いて洗浄する方法とがある。前者は被処理水で洗浄するために洗浄の効果が期待できない。後者は、処理水を貯留する設備を必要としている。
本発明では、システムの小型化がなされているので、濾過洗浄に要する水量が少なくてすみ、その結果システム内で洗浄水として用いるための処理水を蓄える洗浄水タンクを必要に応じて設置することができる。
また、濾過材に使用しているマンガン酸化物は、その触媒機能が劣化してくる。触媒機能を賦活・再生させるためにはPH10付近の賦活水の存在が必要である。そのため、本発明では、洗浄水として用いられる処理水に酸化剤、例えば、次亜塩素酸ナトリウムを混入させてPH10付近に調整した賦活水を用い、この賦活水を閉塞循環させてマンガン酸化物の賦活・再生を行う。
【0009】
次に、本発明の濾過処理における鉄・マンガンの除去機構を説明する。
1.除鉄について
水中の鉄分を除去するには、鉄分を不溶性の酸化物に変えてこれを濾過材(濾過層)により濾過させる。
鉄は、アルカリ度のある水中において、重炭酸鉄の形で溶存している。そして、適量のCOの存在下において安定している((3)式参照)。
Fe(HCO←→FeCO+CO+HO ・・・(3)
COが減少して平衡が破れると、(3)式の右辺の反応に進み、炭酸鉄を生じ、更に加水分解して無色の水酸化第一鉄(Fe(OH))を生ずる((4)式参照)。
FeCO+HO→Fe(OH)+CO↑ ・・・(4)
水酸化第一鉄は、酸素混入と時間経過と共に容易に酸化されて、溶解度が0.01ppm以下の難溶性で赤錆色の水酸化第二鉄(Fe(OH))に変化する((5)式参照)。
2Fe(OH)+1/2 O+HO→2Fe(OH)・・・(5)
【0010】
水中の鉄分は、次亜塩素酸ナトリウムの酸化反応によって水酸化第二鉄に変化する((6)式参照)。
2Fe2++NaClO+5HO→2Fe(OH)+NaCl+4H・・・(6)
次亜塩素酸ナトリウムにより酸化された水酸化第二鉄は不溶性であるので、濾過材通過中に濾過される((7)式参照)。
Fe(HCO+NaClO+HO→2Fe(OH)↓+NaCl・・・(7)
また、接触酸化されたγ−オキシ水酸化鉄は、濾過材に吸着されて除鉄される((8)式参照)。
Z−MnO・Mn+4Fe(HCO→Z−[MnO]−[γ−FeOOH]+8CO+2HO ・・・(8)
2.除マンガンについて
【0011】
水中のマンガン分と次亜塩素酸ナトリウムの酸化反応((9)式参照)により黒褐色の二酸化マンガン水和物が生成される。
マンガンの溶存比は、鉄に比較すると、はるかに少ないが、鉄のように容易には空気で酸化されず、次亜塩素酸ナトリウムによる酸化が容易である。これは、鉄がPH7以上で自然酸化するのに対し、マンガンはPH10以上でないと自然完全酸化をしないことによる。
Mn2++NaClO+2HO→MnO・HO+NaCl+2H・・・(9)
酸化剤である次亜塩素酸ナトリウムを連続注入してマンガンを濾過材表面で接触酸化させ、濾過材に吸着させて除去する((10)式参照)。Zは、母体を示す。
Z−[MnO(OH)]+Mn(HCO+NaOCl→Z−[MnO(OH)+2CO+NaCl ・・・(10)
【0012】
【発明の実施の形態】
以下、図1乃至図8を参照して発明の実施の形態を説明する。
図1は、鉄・マンガンの除去装置の概略システム図、図2は、図1の除去装置を用いて、鉄・マンガンを除去する流れを説明するフロー図、図3は、図1の除去装置を用いた濾過の流れを説明する概略システム図、図4は、図1の除去装置を用いた逆洗浄の流れを説明する概略システム図、図5は、図1の除去装置を用いた濾過洗浄の流れを説明する概略システム図、図6は、図1の除去装置を用いた循環洗浄の流れを説明する概略システム図、図7は、図1に示される除去装置の概略図、図8は、図1の除去装置に用いられる濾過タンクの部分透視側面図である。図1及び図7に示すように、鉄・マンガンの除去装置10は、1塔の濾過タンク1、五方切換弁2、調整弁3、酸化ポンプを有する酸化装置4、逆洗水槽5及び制御盤6を有している。この除去装置10には、井戸水を被処理水8として配管により接続されている。井戸から導出された配管Iは、三方切換弁9を介して配管A、Gにより除去装置10に接続されている。配管Aには濾過・逆洗ポンプ7が配置され、被処理水8を除去装置10内部に供給するように構成されている。配管Gは、逆洗水槽5に接続されている。
【0013】
濾過タンク1は、被処理水8を上部から供給する配管Bに接続され、被処理水8を濾過してなる処理水を供給する配管Cに接続されている。五方切換弁2には、配管A、配管B、配管C、配管D及び配管Hが接続されている。酸化装置4からは、酸化剤が酸化装置弁を介して配管Aに供給されるようになっている。逆洗水槽5は、例えば、250リットルの容量があり、配管Eに接続されて処理水が供給されるように構成され、配管Gに接続されて槽内に蓄えられた処理水を配管Aに供給されるように構成されている。配管Eは、分岐弁を介して配管D及び配管Fに接続され、配管Fは、処理水を外部に供給するように構成されている。制御盤6は、除去装置内部で行われる濾過、逆洗浄、濾過洗浄、循環洗浄を適正に処理されるように調整する。
図8は、濾過タンク1の内部を説明する部分透視側面図である。濾過タンクは、上部に被処理水を内部に供給する散水ノズル12、下部に濾過された処理水を集水する集水ストレーナ13を有しており、その間には、粘土を数回焼結してなり緻密な多孔性を有する粒子を母体とし、マンガン酸化物をこの母体に添着した濾材粒子から構成された濾過層11が形成されている。濾材粒子の粒径は、0.28〜0.65mmである。集水ストレーナの目幅は、0.15〜0.25mmである。この実施例の濾過タンクの断面積は、例えば、0.126mであり、その処理能力は、例えば、2.5m/時間である。
【0014】
次に、図2及び図3を参照して制御盤により制御された被処理水を濾過して処理水とする流れを説明する。なお、図2は、除去装置の動作を自動制御するシステムフローを示す図であるが、濾過−逆洗浄−濾過洗浄工程を説明するフロー図であり、循環洗浄は含まれていない。この除去装置で濾過処理を行うと、後処理として逆洗浄及び濾過洗浄は必ず行わなければならないが、循環洗浄は必ず行わなければならない処理ではない。装置の濾過状態が劣化したら適宜行う処理であるので図2に示すフローには含めなかった。
まず、三方切換弁9を濾過処理する方向に切換えて、井戸などからの被処理水8を配管Iを通して配管Aに供給し、濾過・逆洗ポンプ7により除去装置10の内部に供給する。そして、配管Aを通過中に酸化装置4から次亜塩素酸ナトリウムなどの酸化剤を酸化装置弁を通して被処理水に供給する。配管Aの被処理水は、五方切換弁2を介して配管Bにより濾過タンク1に供給され、濾過処理が開始する。このとき装置内の圧力が高ければ、給水ポンプ(濾過・逆洗ポンプ7)を停止し、所定の圧力になるまで運転待機の状態を維持する。所定の圧力になったら給水ポンプ及び酸化装置内の酸化ポンプの運転を開始させる。所定時間になったら濾過処理は終了し、逆洗浄処理に移行する。
【0015】
配管Bから供給される被処理水は、図8に示すように、散水ノズル12から濾過層11へ流れ、濾過されて処理水として集水ストレーナ13を介して外部に供給される。濾過タンク1下部から導出する供給された処理水は、配管C、五方切換弁2、配管D、分岐弁の経路を通り、分岐弁から逆洗水槽5の繋がる配管E及び処理水取り出し口に繋がる配管Fに供給される。この様に、被処理水は、濾過されて処理水として処理水取り出し口から外部に供給される。この処理水は、濾過処理により鉄及びマンガンが除去される(例えば、鉄は0.3ppm以下、マンガンは0.05ppm以下にすることができる)。この実施例の除去装置の濾過速度は、例えば、20m/時間である。
【0016】
次に、図2及び図4を参照して逆洗浄処理の流れを説明する。
逆洗浄は、濾過処理後に行われ、物理的な濾過により蓄積している鉄分を濾過層から除去することを目的としている。まず、三方切換弁9を操作して逆洗水槽5の処理水を配管Gから配管Aに供給する。このとき配管Aの処理水には酸化剤を混入させない。配管Aの処理水は、濾過・逆洗ポンプ7の運転により、五方切換弁2まで流され、五方切換弁2を操作して配管Cに流され、濾過タンク1に供給されて逆洗運転が開始される。すなわち、濾過タンク下部から集水ストレーナ及び濾過層を通って上部から配管Bに流れるようにして逆洗浄が所定時間行われる。配管Bに流れた処理水は、五方切換弁2の切換えにより配管Hを通って排水口から外部へ排出される。
本発明では、濾過タンクを1塔のみ用いるのでシステムの小型化がなされ、その結果逆洗浄に要する水量が少なくすることができる。
【0017】
次に、図2及び図5を参照して濾過洗浄処理の流れを説明する。
濾過洗浄は、逆洗浄処理後に行われ、酸化剤を投入して濾過層に用いられているマンガン酸化物の賦活・再生を行うことを目的としている。まず、三方切換弁9を操作して井戸などから被処理水8を配管Aに流し、濾過・逆洗ポンプ7を運転させて配管Aの被処理水を送り出す。このとき配管Aの被処理水には酸化装置弁を開いて酸化装置6から酸化剤を酸化ポンプにより混入させる。配管Aの被処理水は、五方切換弁2を操作して配管Bに流し、濾過タンク1に供給されて濾過洗浄処理が開始する。すなわち、濾過タンク上部から濾過層及び集水ストレーナを通って下部から配管Cに流れるようにして濾過洗浄が所定時間行われる。配管Cに流れた処理水は、五方切換弁2の切換えにより配管Hを通って排水口から外部へ排出される。この実施例の除去装置の濾過洗浄速度は、例えば、20m/時間である。
【0018】
次に、図6を参照して循環洗浄処理の流れを説明する。
循環洗浄は、例えば、濾過洗浄後、濾過を行い逆洗水槽に処理水が蓄えられた後に行われ、処理水のPHを10以上にしてマンガン酸化物の賦活・再生を行うことを目的としている。まず、三方切換弁9を操作して逆洗水槽5の処理水を配管Gから配管Aに供給する。このとき配管Aの処理水には酸化装置弁を開いて酸化装置6から酸化剤を酸化ポンプにより混入させる。配管Aの処理水は、濾過・逆洗ポンプ7の運転により、五方切換弁2まで流され、五方切換弁2を操作して配管Bに流され、濾過タンク1に供給されて循環洗浄運転が開始される。すなわち、濾過タンク上部から濾過層及び集水ストレーナを通って配管Cに流れるようにし、配管Cの処理水が五方切換弁2を操作して逆洗水槽4に供給される。この様にして、循環洗浄が所定時間行われる。
【0019】
濾過材に使用しているマンガン酸化物は、その触媒機能が劣化してくる。触媒機能を賦活・再生させるためにはPH10以上の処理水の存在が必要である。そのため、このように、洗浄水として用いられる処理水に次亜塩素酸ナトリウムなどの酸化剤を混入させてPH10以上に調整した賦活水とし、これを閉塞循環させてマンガン酸化物の賦活・再生を行う。
【0020】
【発明の効果】
地下水及び伏流水等の被処理水から鉄及びマンガンを1塔の濾過タンクにより除去することにより、装置の小形化が達成されるので従来では設置出来なかった家庭や小規模事業所でも地下水を利用することが可能となった。
【図面の簡単な説明】
【図1】本発明の鉄・マンガンの除去装置の概略システム図。
【図2】図1の除去装置を用いて鉄・マンガンを除去する流れを説明するフロー図。
【図3】図1の除去装置を用いた濾過の流れを説明する概略システム図。
【図4】図1の除去装置を用いた逆洗浄の流れを説明する概略システム図。
【図5】図1の除去装置を用いた濾過洗浄の流れを説明する概略システム図。
【図6】図1の除去装置を用いた循環洗浄の流れを説明する概略システム図。
【図7】図1の除去装置の概略図。
【図8】図1の除去装置に用いる本発明に係る濾過タンクの部分透視側面図。
【図9】従来の除去装置に用いられる濾過タンクの部分透視側面図。
【符号の説明】
1・・・濾過タンク、 2・・・五方切換弁、 3・・・調整弁、 4・・・酸化装置、 5・・・逆洗水槽、 6・・・制御盤、 10・・・鉄・マンガンの除去装置、 11、14・・・濾過層、 12、15・・・散水ノズル、 13、16・・・集水ストレーナ、 17、18・・・支持砂利層。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention removes iron and manganese in the water to be treated such as groundwater and underground water, and converts the water to be treated to industrial water (miscellaneous water, industrial water, snow water, construction water, etc.) or tap water (drinking water, etc.). The present invention relates to a method and an apparatus for removing iron and manganese, which can be used for water.
[0002]
[Prior art]
Methods for removing iron and manganese in water to be treated such as groundwater and underground water include a method of performing coagulation and sedimentation while adding an oxidizing material and a method of using microorganisms such as iron bacteria that require a relatively long treatment time. However, the most frequently used autocatalysts, in which iron oxide and manganese oxide are attached to the surface of a filter medium while adding an oxidizing agent to maintain an oxidizing atmosphere, And a contact filtration method in which treatment is performed.
The contact filtration method utilizes the property that iron and manganese in the water to be treated adhere to the surface of the solid at the beginning of oxidation, and if the manganese oxide itself is in an oxidizing atmosphere, it becomes catalytic. It is based on the principle of oxidizing iron and manganese that have flowed in by promoting oxidation and attaching them to the surface of the filter medium to remove them continuously.
[0003]
FIG. 9 is a partially transparent side view of a filtration tank used in a conventional removal device for removing iron and manganese from water to be treated. The filtration tank has a sprinkling nozzle 15 for supplying the water to be treated into the upper part, and a water collecting strainer 16 for collecting the filtered treated water at the lower part. The filter layer 14 and the support gravel layers 17 and 18 composed of the attached filter medium particles are arranged. Such a conventional filtering device requires a gravel layer, and it is difficult to reduce the size because the gravel layer is present.
[0004]
[Problems to be solved by the invention]
If the filtration is continuously continued, a limit point at which the filtration cannot be performed eventually appears. This is because the iron content is physical filtration, which causes clogging of the filter medium filtration layer. As for manganese, the manganese oxide attached to the surface of the filter medium continues to attach manganese and enlarges, and eventually becomes unable to be adsorbed.
When back washing is performed here, iron oxide, which is an obstacle to physical filtration, is discharged by a flow opposite to the filtration, and clogging is eliminated. On the other hand, the manganese oxide that has become enlarged by adsorbing manganese also has its epidermis peeled off and discharged, but at that time, the original manganese oxide attached to the filter material may also be peeled off and discharged, As a result, the amount of manganese oxide decreases, which affects manganese removal.
Manganese can complete the natural complete oxidation under an atmosphere of PH 10 or more, so an environment of PH 10 or more is required for activation and regeneration.
In addition, water used for industrial water or the like removes iron and manganese by such a method. Conventional removal devices (filtration devices) include a filtration tower for removing iron and a filtration tower for removing manganese. There were two towers, which resulted in an increase in the size of the removal device.
[0005]
The present invention has been made in view of such circumstances, and removes iron, manganese, and the like from treated water, such as groundwater and underground water, by a filtering means having a novel structure, and further performs sterilization processing to remove the treated water. Water and industrial water (miscellaneous water, industrial water, snow removal water, construction water, etc.) and tap water (drinking water, etc.) are used to remove iron and manganese and used to carry out this method. A removal device is provided.
[0006]
[Means for Solving the Problems]
The present invention relates to a method for removing iron and manganese and the like from the water to be treated such as groundwater and underground water, and further performing a sterilization treatment, and a removing apparatus for performing the method. And it is characterized in that iron and manganese are removed in this filtration tank. The filtration tank accommodates a water collecting strainer and a filtration layer disposed thereon, and the filtration layer is formed by sintering clay several times and having fine porous particles as a base material and manganese oxidation. The filter material particles have a particle diameter of 0.28 to 0.65 mm and a mesh width of the water collecting strainer of 0.15 to 0.25 mm. And
There are different requirements for filter media between iron-removing media and manganese-removing media (for example, iron removal is a physical filtration, so the linear velocity (filtration speed) is slowed down. It is necessary to slow down the contact area and the filtration rate), so that both requirements could be satisfied by sufficiently examining the filter medium and limiting the particle size of the filter medium particles. Further, by using a water collecting strainer having a limited mesh width below the filtration layer in the filtration tank, the conventionally required filter material supporting gravel is not required, and the tank itself can be reduced in size.
[0007]
Further, in the present invention, a sterilizing agent is used as an oxidizing agent without using a coagulant for removing iron, so that a coagulating device is not required. This is because the cluster of ferric hydroxide generated by sodium hypochlorite used as a sterilant is small and has passed with the conventional filter media diameter, but it is sufficient to make the particle size as above small Filtration becomes possible.
The filter layer used in the present invention is composed of filter medium particles obtained by sintering clay several times and having dense porosity as a base, and manganese oxide attached to the base. For example, a chamotte base material having dense porosity obtained by firing clay several times is used. The chamotte base material has excellent adhesion to manganese oxide, and has a specific gravity of about 1.0 in apparent specific gravity, and is suitable for rapid filtration.
Such a matrix is alternately reacted with manganese chloride (MnCl 2 .4H 2 O) and potassium permanganate (KMnO 4 ) in a rotary reactor, and this is repeated several times, followed by baking. When a certain amount of manganese chloride and potassium permanganate are reacted, sticky brown to dark brown manganese higher oxides (MnO.Mn 2 O 7 , MnO 2 .H 2 O) are produced ((1), (See equation (2)). This oxide is attached to a base and sintered to obtain filter medium particles.
Na 2 Z + MnCl 2 → MnZ + 2NaCl (1)
MnZ + 2KMnO 4 → K 2 Z · MnO · Mn 2 O 7 (2)
[0008]
The removing device used in the method for removing iron and manganese of the present invention performs not only filtration but also processes such as back washing, filtration washing, and circulation washing. Backwashing removes accumulated iron by physical filtration. In the filtration washing, an oxidizing agent is added to activate and regenerate the manganese oxide used in the filtration layer. Further, activation and regeneration of the manganese oxide is performed by setting the pH of the treated water to 10 or more by circulation cleaning.
In the filtration washing, in the related art, there are a method of washing with water to be treated and a method of washing with treated water that has been subjected to a filtration treatment. The former cannot be expected to be effective because it is washed with the water to be treated. The latter requires equipment for storing treated water.
In the present invention, since the size of the system is reduced, the amount of water required for filtration and cleaning can be reduced, and as a result, a cleaning water tank for storing treated water for use as cleaning water in the system can be installed as necessary. Can be.
In addition, the catalytic function of manganese oxide used as a filter material deteriorates. In order to activate and regenerate the catalytic function, the presence of activating water near PH10 is required. For this reason, in the present invention, an oxidizing agent, for example, activated water mixed with sodium hypochlorite and adjusted to around PH10 is used in the treated water used as the washing water, and the activated water is closed and circulated to reduce the manganese oxide. Activate and regenerate.
[0009]
Next, the mechanism for removing iron and manganese in the filtration treatment of the present invention will be described.
1. To remove iron in water for iron removal, iron is converted into an insoluble oxide, which is filtered through a filter (filter layer).
Iron is dissolved in alkaline water in the form of iron bicarbonate. And it is stable in the presence of an appropriate amount of CO 2 (see equation (3)).
Fe (HCO 3 ) 2 ← → FeCO 3 + CO 2 + H 2 O (3)
When CO 2 decreases and the equilibrium is broken, the reaction proceeds to the reaction on the right side of the equation (3) to generate iron carbonate and further hydrolyze to generate colorless ferrous hydroxide (Fe (OH) 2 ) (( 4) See formula).
FeCO 3 + H 2 O → Fe (OH) 2 + CO 2 ↑ (4)
Ferrous hydroxide is easily oxidized with the mixing of oxygen and the passage of time, and changes into a hardly soluble, red-rust-colored ferric hydroxide (Fe (OH) 3 ) having a solubility of 0.01 ppm or less ((5) ) Expression).
2Fe (OH) 2 + 1 / 2O 2 + H 2 O → 2Fe (OH) 3 (5)
[0010]
The iron content in the water is changed to ferric hydroxide by the oxidation reaction of sodium hypochlorite (see formula (6)).
2Fe 2+ + NaClO + 5H 2 O → 2Fe (OH) 3 + NaCl + 4H + (6)
Since the ferric hydroxide oxidized by sodium hypochlorite is insoluble, it is filtered while passing through the filter medium (see equation (7)).
Fe (HCO 3 ) 2 + NaClO + H 2 O → 2Fe (OH) 3 ↓ + NaCl (7)
Further, the oxidized γ-iron oxyhydroxide is adsorbed on the filter medium and removed from the iron (see equation (8)).
Z-MnO · Mn 2 O 7 + 4Fe (HCO 3 ) 2 → Z- [Mn 2 O] 3- [γ-FeOOH] 4 + 8CO 2 + 2H 2 O (8)
2. About manganese removal [0011]
Oxidation reaction between manganese in water and sodium hypochlorite (see equation (9)) produces black-brown manganese dioxide hydrate.
The dissolved ratio of manganese is much smaller than that of iron, but it is not easily oxidized by air like iron, and is easily oxidized by sodium hypochlorite. This is because iron naturally oxidizes at a pH of 7 or more, whereas manganese does not spontaneously complete oxidation at a pH of 10 or more.
Mn 2+ + NaClO + 2H 2 O → MnO 2 .H 2 O + NaCl + 2H + (9)
Sodium hypochlorite, which is an oxidizing agent, is continuously injected to oxidize manganese in contact with the surface of the filter material and adsorbed and removed by the filter material (see equation (10)). Z indicates a mother.
Z- [MnO (OH) 2 ] + Mn (HCO 3 ) 2 + NaOCl → Z- [MnO (OH) 2 ] 2 + 2CO 2 + NaCl (10)
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
1 is a schematic system diagram of an iron / manganese removing device, FIG. 2 is a flowchart illustrating a flow of removing iron / manganese using the removing device of FIG. 1, and FIG. 3 is a removing device of FIG. FIG. 4 is a schematic system diagram illustrating a flow of filtration using the removing device of FIG. 1, FIG. 4 is a schematic system diagram illustrating a flow of back washing using the removing device of FIG. 1, and FIG. FIG. 6 is a schematic system diagram illustrating the flow of circulation cleaning using the removal device of FIG. 1, FIG. 7 is a schematic diagram of the removal device shown in FIG. 1, and FIG. FIG. 2 is a partial perspective side view of a filtration tank used in the removal device of FIG. 1. As shown in FIGS. 1 and 7, the iron / manganese removing device 10 includes a filtration tower 1, a five-way switching valve 2, a regulating valve 3, an oxidizing device 4 having an oxidation pump, a backwash water tank 5, and a control tank. It has a board 6. Well water is treated as the treated water 8 and connected to the removing device 10 by piping. The pipe I led out of the well is connected to a removing device 10 via pipes A and G via a three-way switching valve 9. A filtration / backwash pump 7 is disposed in the pipe A, and is configured to supply the water 8 to be removed into the removing device 10. The pipe G is connected to the backwash water tank 5.
[0013]
The filtration tank 1 is connected to a pipe B that supplies the water 8 to be treated from above, and is connected to a pipe C that supplies treated water obtained by filtering the water 8 to be treated. The pipe A, the pipe B, the pipe C, the pipe D, and the pipe H are connected to the five-way switching valve 2. The oxidizing agent is supplied from the oxidizing device 4 to the pipe A via the oxidizing valve. The backwash water tank 5 has a capacity of, for example, 250 liters, and is configured to be connected to a pipe E to be supplied with treated water, and to be connected to a pipe G to supply treated water stored in the tank to a pipe A. It is configured to be supplied. The pipe E is connected to a pipe D and a pipe F via a branch valve, and the pipe F is configured to supply treated water to the outside. The control panel 6 adjusts the filtration, back washing, filtration washing, and circulation washing performed inside the removing device so that they are properly processed.
FIG. 8 is a partially transparent side view for explaining the inside of the filtration tank 1. The filtration tank has a sprinkling nozzle 12 for supplying the water to be treated into the upper part, and a collecting strainer 13 for collecting the filtered treated water at the lower part. In the meantime, the clay is sintered several times. The filter layer 11 is formed of fine particles having fine porosity as a matrix, and filter material particles in which manganese oxide is attached to the matrix. The particle size of the filter medium particles is 0.28 to 0.65 mm. The mesh width of the water collecting strainer is 0.15 to 0.25 mm. The cross-sectional area of the filtration tank of this embodiment is, for example, 0.126 m 2 , and its processing capacity is, for example, 2.5 m 3 / hour.
[0014]
Next, the flow of filtering the water to be treated, which is controlled by the control panel, into treated water will be described with reference to FIGS. Although FIG. 2 is a diagram showing a system flow for automatically controlling the operation of the removing device, it is a flowchart for explaining a filtration-backwashing-filtration washing process, and does not include circulation washing. When a filtration treatment is performed by this removing apparatus, back washing and filtration washing must be performed as post-treatments, but circulation washing is not a treatment that must be performed. Since the process is appropriately performed when the filtration state of the apparatus deteriorates, it is not included in the flow shown in FIG.
First, the three-way switching valve 9 is switched to the direction of the filtration treatment, and the water 8 to be treated from a well or the like is supplied to the pipe A through the pipe I, and is supplied to the inside of the removing device 10 by the filtration / backwash pump 7. Then, an oxidizing agent such as sodium hypochlorite is supplied from the oxidizer 4 to the water to be treated through the oxidizer valve while passing through the pipe A. The water to be treated in the pipe A is supplied to the filtration tank 1 through the pipe B via the five-way switching valve 2, and the filtration process starts. At this time, if the pressure in the apparatus is high, the water supply pump (filtration / backwash pump 7) is stopped, and the operation standby state is maintained until the pressure reaches a predetermined pressure. When the pressure reaches a predetermined value, the operation of the water supply pump and the oxidation pump in the oxidation device is started. When the predetermined time has elapsed, the filtration process ends, and the process proceeds to the backwashing process.
[0015]
As shown in FIG. 8, the water to be treated supplied from the pipe B flows from the sprinkling nozzle 12 to the filtration layer 11, is filtered, and is supplied as treated water to the outside via the water collecting strainer 13. The supplied treated water derived from the lower portion of the filtration tank 1 passes through a pipe C, a five-way switching valve 2, a pipe D, a branch valve, and a pipe E connecting the branch valve to the backwash water tank 5 and a treated water outlet. It is supplied to the connecting pipe F. In this manner, the water to be treated is filtered and supplied to the outside from the treated water outlet as treated water. In this treated water, iron and manganese are removed by filtration (for example, iron can be reduced to 0.3 ppm or less and manganese can be reduced to 0.05 ppm or less). The filtration speed of the removing device of this embodiment is, for example, 20 m / hour.
[0016]
Next, the flow of the reverse cleaning process will be described with reference to FIGS.
The back washing is performed after the filtration treatment, and is intended to remove the accumulated iron content from the filtration layer by physical filtration. First, the three-way switching valve 9 is operated to supply the treated water in the backwash water tank 5 from the pipe G to the pipe A. At this time, no oxidizing agent is mixed in the treated water of the pipe A. The treated water in the pipe A is caused to flow to the five-way switching valve 2 by the operation of the filtration / backwashing pump 7, to flow through the pipe C by operating the five-way switching valve 2, supplied to the filtration tank 1, and backwashed. Operation is started. That is, the backwash is performed for a predetermined time by flowing from the lower part of the filtration tank through the water collecting strainer and the filtration layer to the pipe B from the upper part. The treated water flowing into the pipe B is discharged to the outside from the drain through the pipe H by switching the five-way switching valve 2.
In the present invention, since only one filtration tank is used, the size of the system is reduced, and as a result, the amount of water required for backwashing can be reduced.
[0017]
Next, the flow of the filtration cleaning process will be described with reference to FIGS.
The filtration washing is performed after the back washing treatment, and is intended to activate and regenerate the manganese oxide used in the filtration layer by adding an oxidizing agent. First, the three-way switching valve 9 is operated to flow the water to be treated 8 from the well or the like to the pipe A, and the filtration / backwash pump 7 is operated to send out the water to be treated in the pipe A. At this time, the oxidizing valve is opened and the oxidizing agent is mixed into the water to be treated in the pipe A by the oxidizing pump from the oxidizing device 6. The water to be treated in the pipe A is flowed into the pipe B by operating the five-way switching valve 2 and is supplied to the filtration tank 1 to start the filtration and washing processing. That is, the filter washing is performed for a predetermined time by flowing from the upper part of the filtration tank through the filtration layer and the water collecting strainer to the pipe C from the lower part. The treated water flowing into the pipe C is discharged to the outside from the drain through the pipe H by switching the five-way switching valve 2. The filtering and washing speed of the removing apparatus of this embodiment is, for example, 20 m / hour.
[0018]
Next, the flow of the circulation cleaning process will be described with reference to FIG.
Circulation washing is performed, for example, after filtration and washing, filtration is performed after treated water is stored in a backwash water tank, and the purpose is to activate and regenerate manganese oxide by setting the pH of treated water to 10 or more. . First, the three-way switching valve 9 is operated to supply the treated water in the backwash water tank 5 from the pipe G to the pipe A. At this time, the oxidizing valve is opened and the oxidizing agent is mixed into the treated water of the pipe A from the oxidizing device 6 by the oxidizing pump. The treated water in the pipe A is caused to flow to the five-way switching valve 2 by the operation of the filtration / backwashing pump 7, and then to the pipe B by operating the five-way switching valve 2, supplied to the filtration tank 1 and circulated. Operation is started. That is, the treated water in the pipe C is supplied to the backwash water tank 4 by operating the five-way switching valve 2 by flowing the water from the upper part of the filtration tank through the filtration layer and the water collecting strainer to the pipe C. In this way, the circulation cleaning is performed for a predetermined time.
[0019]
The catalytic function of manganese oxide used as a filter material deteriorates. In order to activate and regenerate the catalyst function, the presence of treated water having a pH of 10 or more is required. Therefore, as described above, the activated water adjusted to PH 10 or more by mixing an oxidizing agent such as sodium hypochlorite into the treated water used as the washing water, and closing and circulating the activated water to activate and regenerate the manganese oxide. Do.
[0020]
【The invention's effect】
By removing iron and manganese from treated water, such as groundwater and underground water, using a single filtration tank, the size of the equipment can be reduced, so that groundwater can be used in homes and small businesses that could not be installed conventionally. It became possible to do.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of an apparatus for removing iron and manganese according to the present invention.
FIG. 2 is a flowchart illustrating a flow of removing iron and manganese using the removal device of FIG. 1;
FIG. 3 is a schematic system diagram illustrating a flow of filtration using the removal device of FIG. 1;
FIG. 4 is a schematic system diagram illustrating a flow of back washing using the removal apparatus of FIG. 1;
FIG. 5 is a schematic system diagram illustrating a flow of filtration and washing using the removal device of FIG. 1;
FIG. 6 is a schematic system diagram illustrating a flow of circulating cleaning using the removal apparatus of FIG. 1;
FIG. 7 is a schematic diagram of the removing device of FIG. 1;
FIG. 8 is a partially transparent side view of a filtration tank according to the present invention used in the removing device of FIG. 1;
FIG. 9 is a partially transparent side view of a filtration tank used in a conventional removal device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Filtration tank, 2 ... Five-way switching valve, 3 ... Regulating valve, 4 ... Oxidizing apparatus, 5 ... Backwash water tank, 6 ... Control panel, 10 ... Iron -Manganese removal device, 11, 14 ... filtration layer, 12, 15 ... watering nozzle, 13, 16 ... water collecting strainer, 17, 18 ... support gravel layer.

Claims (2)

被処理水に酸化剤を添加する工程と、粘土を数回焼結してなり緻密な多孔性を有する粒子を母体とし、マンガン酸化物をこの母体に添着した濾材粒子から構成された濾過層及び集水ストレーナを収納した濾過タンクに被処理水を通過させて被処理水に含まれている鉄及びマンガンを除去する工程と、通常使用する取り出し口から処理水を取り出す工程中において、この処理水を分岐し逆洗水として逆洗水槽に蓄える手段を有し、前記逆洗水槽から前記処理水で前記濾過タンク内を逆洗浄する工程と、前記逆洗浄後に、前記被処理水に酸化剤を供給して濾過洗浄を行って前記マンガン酸化物を賦活再生する工程とを具備し、前記濾材粒子径は、0.28〜0.65mmであり、前記集水ストレーナの目幅は、0.15〜0.25mmであり、且つ前記被処理水に酸化剤を添加する工程が行われる酸化装置、前記濾過タンク及び前記逆洗水槽は、1つの鉄・マンガンの除去装置内に収納され、前記逆洗水槽に蓄えられた処理水に酸化剤を添加してPH10以上に調整してなる賦活水を前記濾過タンク内に供給し、この賦活水を閉塞循環させて前記マンガン酸化物を賦活再生する工程をさらに具備したことを特徴とする鉄・マンガンの除去方法。A step of adding an oxidizing agent to the water to be treated, and a filter layer composed of filter medium particles obtained by sintering the clay several times and having dense porous particles as a matrix, and manganese oxide attached to the matrix. During the process of removing the iron and manganese contained in the water to be treated by passing the water through the filtration tank containing the collecting strainer and the process of taking out the treated water from the normally used outlet, Having a means for branching and storing in a backwash water tank as backwash water, a step of backwashing the inside of the filtration tank with the treated water from the backwash water tank, and after the backwash, an oxidizing agent is added to the water to be treated. Supplying and filtering and washing to activate and regenerate the manganese oxide, the filter medium particle diameter is 0.28 to 0.65 mm, and the mesh width of the water collecting strainer is 0.15 to 0.15 mm. 0.20.25 mm, and The oxidizer for adding an oxidizing agent to the water to be treated is performed, the filtering tank and the backwash water tank is housed in the apparatus for removing a single iron-manganese, treated water stored in the backwash water tank Supplying an activation water adjusted to PH 10 or more by adding an oxidizing agent to the filtration tank, and activating and regenerating the manganese oxide by closing and circulating the activation water. the method of removing the iron-manganese. 被処理水に添加する酸化剤を供給する酸化装置と、濾過タンクと、前記濾過タンクに収納され、粘土を数回焼結してなり緻密な多孔性を有する粒子を母体とし、マンガン酸化物をこの母体に添着した濾材粒子から構成された濾過層と、前記濾過タンクに収納され、この濾過層を通過した処理水を集める集水ストレーナと、前記濾過タンクから取り出された処理水を分岐して逆洗水として逆洗水槽に蓄える手段とを具備し、前記濾材粒子径は、0.28〜0.65mmであり、前記集水ストレーナの目幅は、0.15〜0.25mmであり、前記逆洗水槽から前記処理水を用いて前記濾過タンク内を逆洗浄し、前記逆洗浄後に前記被処理水に酸化剤を供給して濾過洗浄を行って前記マンガン酸化物を賦活再生し、且つ前記被処理水に酸化剤を添加する工程が行われる酸化装置、前記濾過タンク及び前記逆洗水槽は、1つの装置内に収納され、前記逆洗水槽に蓄えられた処理水に酸化剤を供給する酸化装置より前記酸化剤を添加してPH10以上に調整してなる賦活水を前記濾過タンク内に供給し、この賦活水を閉塞循環させて前記マンガン酸化物を賦活再生することを特徴とする鉄・マンガンの除去装置。An oxidizing device that supplies an oxidizing agent to be added to the water to be treated, a filtration tank, and a fine porosity particle, which is housed in the filtration tank and is obtained by sintering clay several times, is used as a base material, and manganese oxide is produced. A filtration layer composed of filter material particles attached to the base, a water collection strainer that is stored in the filtration tank and collects treated water that has passed through the filtration layer, and a treatment water extracted from the filtration tank are branched. Means for storing backwash water in a backwash water tank, the filter medium particle diameter is 0.28 to 0.65 mm, the mesh width of the water collecting strainer is 0.15 to 0.25 mm, The inside of the filtration tank is backwashed with the treated water from the backwash water tank, and after the backwash, an oxidizing agent is supplied to the water to be treated to perform filtration washing to activate and regenerate the manganese oxide, and Add an oxidizing agent to the water to be treated Oxidation device process is performed to the filtrate tank and the backwash water tank is housed in a single device, adding the oxidizing agent from the oxidizing unit for supplying an oxidant to the treated water stored in the backwash water tank An iron / manganese removal apparatus, characterized in that activation water adjusted to a pH of 10 or more is supplied into the filtration tank, and the activation water is closed and circulated to activate and regenerate the manganese oxide .
JP2001390737A 2001-12-25 2001-12-25 Iron / manganese removal method and removal device Expired - Lifetime JP3593631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390737A JP3593631B2 (en) 2001-12-25 2001-12-25 Iron / manganese removal method and removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390737A JP3593631B2 (en) 2001-12-25 2001-12-25 Iron / manganese removal method and removal device

Publications (2)

Publication Number Publication Date
JP2003190973A JP2003190973A (en) 2003-07-08
JP3593631B2 true JP3593631B2 (en) 2004-11-24

Family

ID=27598527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390737A Expired - Lifetime JP3593631B2 (en) 2001-12-25 2001-12-25 Iron / manganese removal method and removal device

Country Status (1)

Country Link
JP (1) JP3593631B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056592A (en) * 2014-07-17 2014-09-24 符瞰 Preparation method of medical stone manganese removal filter material and application of material to removal of manganese ions in underground water
CN105999850A (en) * 2016-07-08 2016-10-12 吴印强 Efficient composite carborundum filter material and preparing method and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160202A (en) * 2005-12-13 2007-06-28 Kawamoto Pump Mfg Co Ltd Water purifying device
JP5019094B2 (en) * 2005-12-15 2012-09-05 株式会社川本製作所 Water purifier
JP4892318B2 (en) * 2006-11-13 2012-03-07 敏一 山濱 Groundwater treatment method and treatment apparatus
JP5477068B2 (en) * 2010-03-11 2014-04-23 三浦工業株式会社 Water treatment system
CN109205685B (en) * 2017-07-03 2022-04-26 东莞东阳光科研发有限公司 Continuous preparation method of high-nickel ternary precursor for lithium ion battery
CN108128937A (en) * 2018-02-05 2018-06-08 湖南青冲锰业有限公司 A kind of water purifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056592A (en) * 2014-07-17 2014-09-24 符瞰 Preparation method of medical stone manganese removal filter material and application of material to removal of manganese ions in underground water
CN104056592B (en) * 2014-07-17 2016-04-06 符瞰 The preparation method of medical stone demanganization filtrate and the application for removing manganese ion in underground water thereof
CN105999850A (en) * 2016-07-08 2016-10-12 吴印强 Efficient composite carborundum filter material and preparing method and application thereof
CN105999850B (en) * 2016-07-08 2019-01-29 河北银达环保科技有限公司 High efficiency composition Buddha's warrior attendant sand filtering material and its preparation method and application

Also Published As

Publication number Publication date
JP2003190973A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP4538314B2 (en) Method for water treatment containing iron, manganese and arsenic
Knocke et al. Soluble manganese removal on oxide‐coated filter media
US4534867A (en) System for removing iron and/or other chemically reducing substances from potable water
JP3593631B2 (en) Iron / manganese removal method and removal device
CN111804304A (en) Core-shell structure composite filter material, preparation method and application thereof, ammonia nitrogen wastewater treatment method and device
JP3705590B2 (en) Water purification method for manganese-containing water
JPH0734911B2 (en) Water filtering device and method for removing impurities
US7273556B2 (en) Method for treating water containing manganese
JP2003290784A (en) Iron and manganese remover and method for the same
JP3786885B2 (en) Water purification method for manganese-containing water
JP3779634B2 (en) Long fiber filtration device
JP3729365B2 (en) Method and apparatus for treating manganese-containing water
EP1697263B1 (en) Method for the removal of metals from a metal-containing aqueous medium
JP6383725B2 (en) Water treatment equipment
JP2520206B2 (en) Activated carbon treatment method for water
JP3226565B2 (en) Wastewater treatment method
JP2002143880A (en) Device for biological treatment of waste water
CN216890263U (en) Device for synchronously removing ammonia nitrogen, iron and manganese in water through two-way flow water inlet catalytic oxidation
RU2139255C1 (en) Water treatment filter
JP2014046245A (en) Method for removing arsenic in raw water
GB2141119A (en) Apparatus and process for removing iron and/or other chemically reducing substances from potable water
JP3616837B2 (en) Washing wastewater treatment method
JPH05192672A (en) Method for operating water treating equipment and the same
CN210945272U (en) Biological iron removal system and underground water treatment system with same
RU2238788C1 (en) Method of production of filter material for water purification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Ref document number: 3593631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term