JP3593523B2 - New process for producing N, N-disubstituted amides - Google Patents

New process for producing N, N-disubstituted amides Download PDF

Info

Publication number
JP3593523B2
JP3593523B2 JP2002016360A JP2002016360A JP3593523B2 JP 3593523 B2 JP3593523 B2 JP 3593523B2 JP 2002016360 A JP2002016360 A JP 2002016360A JP 2002016360 A JP2002016360 A JP 2002016360A JP 3593523 B2 JP3593523 B2 JP 3593523B2
Authority
JP
Japan
Prior art keywords
disubstituted
represented
group
formula
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002016360A
Other languages
Japanese (ja)
Other versions
JP2003221372A (en
Inventor
徹 土屋
正人 田中
周士郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Science and Technology Agency
Priority to JP2002016360A priority Critical patent/JP3593523B2/en
Publication of JP2003221372A publication Critical patent/JP2003221372A/en
Application granted granted Critical
Publication of JP3593523B2 publication Critical patent/JP3593523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、付加価値の高い溶媒として有機合成化学の分野において汎用されているN,N−ジ置換アミド類、及びその誘導体であって、キレート剤等として有用なN,N−ジ置換−β−オキソアミド類、並びに医薬品、農薬等の原料として有用なN−置換−β−オキソラクタム類の、新規で、簡便且つ収率の高い製造方法に関するものである。
【0002】
【従来の技術】
N,N−ジ置換アミド類は有機合成化学の分野において付加価値の高い溶媒として頻繁に用いられる溶媒である。また、そのβ−オキソ誘導体であるN,N−ジ置換−β−オキソアミド類は銅、ニッケルなどの遷移金属と特異的に結合するキレート剤として知られている。
他方、本発明者らはアミドからβ−オキソチオアミドを高収率且つ選択的に合成する方法を先に見出し、特許出願している(特許第2705754号、平成9年10月9日、特許第2963983号、平成11年8月13日、米国特許5,677,444号、平成9年10月14日。)
一般にアミドから対応するチオアミドを合成することは容易でありLawesson試薬は酸素を硫黄で置き換える代表的な試薬である。これに対し、チオアミド類の硫黄を酸素で置き換える逆反応の場合、チオアミドの窒素上に水素があれば酸化銀或いは空気だけで容易に対応するアミドへ酸化的に脱硫できる。しかしチオアミドの窒素上に水素がない場合はこの様な反応は容易には起こらない。一般にこの脱硫・酸素化反応は酸化的に行なわれ、m−クロル過安息香酸等の過酸、或いは一重項酸素による酸化によって行なわれてきた。
【0003】
【発明が解決しようとする課題】
本発明は、N,N−ジ置換アミド類の新規で、簡便且つ収率の高い製造法を提供することを目的とするものであり、就中、N,N−ジ置換チオアミド類をN,N−ジ置換アミド類へと容易に、安全に、且つ安価に変換する手段を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは、N,N−ジ置換チオアミド類の脱硫・酸素化によって当該N,N−ジ置換アミド類を得る方法について鋭意研究を重ねた結果、N,N−ジ置換チオアミド類を過酸化水素で酸化することにより容易に且つ収率良く対応するN,N−ジ置換アミド類へと変換できること、並びにこの方法がN,N−ジ置換チオアミドの範疇に入る広範囲の化合物に適用可能であることを見出し、本発明を完成するに到った。
【0005】
即ち、本発明は、式[1]
【化9】

Figure 0003593523
で示される構造を基本骨格として有するN,N−ジ置換チオアミド類を過酸化水素と反応させることを特徴とする、式[2]
【化10】
Figure 0003593523
で示される構造を基本骨格として有するN,N−ジ置換アミド類の製造法に関する。
【0006】
【発明の実施の形態】
本発明で用いられる、式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類としては、例えば下記一般式[3]
【化11】
Figure 0003593523
(式中、R及びRは、それぞれ独立して置換基を有していても良い炭化水素基を表し、Rは水素原子又は置換基を有していても良い炭化水素基を表す。また、R,R及びRの何れか二つが互いに結合してそれらが結合しているN原子、或いはN原子及びC原子と一緒になって、環状構造を形成していてもよい。)で示される化合物が挙げられる。
この場合、得られる式[2]で示される構造を基本骨格として有するN,N−ジ置換アミド類は、下記一般式[4]
【化12】
Figure 0003593523
(式中、R,R及びRは前記と同じ。)
で示される。
【0007】
本発明で用いられる、式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類の他の例としては、例えば下記一般式[5]
【化13】
Figure 0003593523
(式中、R,R及びRは、それぞれ独立して置換基を有していても良い炭化水素基を表す。また、R,R及びRの何れか二つが互いに結合してそれらが結合しているN原子、或いはN原子及びC原子と一緒になって、環状構造を形成していてもよい。)で示されるN,N−ジ置換−β−オキソチオアミド誘導体が挙げられる。
この場合、得られる式[2]で示される構造を基本骨格として有するN,N−ジ置換アミド類は、下記一般式[6]
【化14】
Figure 0003593523
(式中、R,R及びRは前記と同じ。)で示されるN,N−ジ置換−β−オキソアミド誘導体となる。
【0008】
本発明で用いられる、式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類の更なる例としては、例えば下記一般式[7]
【化15】
Figure 0003593523
(式中、Rは置換基を有していても良い炭化水素基を表し、Rは置換基を有していても良い炭化水素基又は鎖中に酸素、硫黄、窒素等が介在する置換基を有していても良い炭化水素基を表す。また、RとRとが互いに結合してそれらが結合しているN原子と一緒になって、環状構造を形成していてもよい。)で示されるN−置換−β−オキソチオラクタム誘導体が挙げられる。
この場合、得られる式[2]で示される構造を基本骨格として有するN,N−ジ置換アミド類は、下記一般式[8]
【化16】
Figure 0003593523
(式中、R及びRは前記と同じ。)で示されるN−置換−β−オキソラクタム誘導体となる。
【0009】
前記一般式[3]〜[8]のそれぞれにおいて、R,R,R及びRで表される置換基を有していても良い炭化水素基における炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基の何れでもよい。このような炭化水素基の例としては、例えば、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。
具体的には、アルキル基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状又は分枝状のアルキル基が挙げられ、より具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二級ブチル基、第三級ブチル基、ペンチル基、ヘキシル基などが挙げられるが、キレート剤等の用途に用いる場合には、アルキル鎖の長さはむしろある程度長い方がよいので、必要に応じて炭素数1〜20のアルキル基の中から最適なものを適宜選択すればよい。
また、シクロアルキル基としては、例えば、炭素数3〜30、好ましくは3〜20、より好ましくは3〜10の単環、多環又は縮合環式のシクロアルキル基が挙げられ、より具体的には、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
アルケニル基としては、例えば、前記した炭素数2以上のアルキル基に1個以上の二重結合などの不飽和基を有するものが挙げられ、より具体的には、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、2−ヘキセニル基等が挙げられる。
シクロアルケニル基としては、前記したシクロアルキル基に1個以上の二重結合などの不飽和基を有するものが挙げられ、より具体的には、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
アルキニル基としては、例えば、前記した炭素数2以上のアルキル基に1個以上の三重結合などの不飽和基を有するものが挙げられ、より具体的には、エチニル基、1−プロピニル基、2−プロピニル基等が挙げられる。
アリール基としては、例えば、炭素数6〜30、好ましくは6〜20、より好ましくは6〜14の単環、多環又は縮合環式の芳香族炭化水素基が挙げられ、より具体的には、例えば、フェニル基、トリル基、キシリル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。
アラルキル基としては、例えば、炭素数7〜30、好ましくは7〜20、より好ましくは7〜15の単環、多環又は縮合環式のアラルキル基が挙げられ、より具体的には、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。
【0010】
これら炭化水素基の置換基としては、本発明に係る反応に支障を来さないものであればどのような置換基でも良いが、例えばメトキシ基、エトキシ基等のアルコキシ基、塩素原子、臭素原子等のハロゲン原子、アミノ基、例えばメチルチオ基、エチルチオ基等のアルキルチオ基、例えばアセチル基、プロピオニル基、ベンゾイル基等のアシル基等が挙げられる。
【0011】
前記一般式[3]及び[4]において、R,R及びRの何れか二つが互いに結合してそれらが結合しているN原子、或いはN原子及びC原子と一緒になって、環状構造を形成している場合、及び前記一般式[5]及び[6]において、R,R及びRの何れか二つが互いに結合してそれらが結合しているN原子、或いはN原子及びC原子と一緒になって、環状構造を形成している場合、並びに前記一般式[7]及び[8]において、RとRとが互いに結合してそれらが結合しているN原子と一緒になって、環状構造を形成している場合の環としては、環中に更に窒素原子、硫黄原子又は酸素原子を有していても良い、飽和又は不飽和の単環、多環又は縮合環式のものが挙げられ、具体例としては、例えば、ピリジン環、チアゾール環、ピペリジン環、ピペラジン環、ピロール環、モルホリン環、イミダゾール環、インドール環、キノリン環、ピリミジン環等の複素環が挙げられる。
【0012】
以下、本発明の製造法について詳細に述べる。
先ず、前記式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類、例えば前記一般式[3]で示されるN,N−ジ置換チオアミド類や、前記一般式[5]で示されるN,N−ジ置換−β−オキソチオアミド誘導体、或いは前記一般式[7]で示されるN−置換−β−オキソチオラクタム誘導体を溶媒に溶解し、これに2倍モル乃至若干過剰量の過酸化水素を含有する過酸化水素水溶液を加え、撹拌下に反応を行う。
反応は通常、上記した如くN,N−ジ置換チオアミド類を溶媒に溶解して行うが、例えば、合成されるアミドが水との相溶性がよい場合には、必ずしも溶媒を使用する必要はなく、過酸化水素水と溶媒に溶かさない原料チオアミドを懸濁状態で攪拌すれば反応の進行に伴い次第に均一な水溶液なる。
反応は両者を混合するだけで速やかに進行するので、特に加熱する必要はなく、反応温度は室温から氷点まで自由に選んで良い。但し混合直後は発熱による副反応や過酸化水素の分解をふせぐため望ましくは氷水等で冷却しながら開始した後、徐々に室温に戻すのがよい。但し、既に反応の状況がわかっている場合にはどの様な温度過程をとっても良く、場合により加熱することもあり得る。
反応の終末は、チオアミドの残存量を例えばガスクロマトグラフ、高速液体クロマトグラフ等で示される一般的な定量法で分析し、残存が認められなければそこで終了であり、それまで激しく撹拌を続ける。
【0013】
チオアミドを溶解する溶媒は過酸化水素水溶液と混合したときこれと反応することがない溶媒であって、過酸化水素水溶液と混合したときチオアミドが不溶化せず、且つ原料のチオアミド及び生成するアミドを溶解する能力を有するものであればいかなるものを用いても良いが、一般に、生成したアミドを回収する目的から、溶媒の沸点が生成するアミドの沸点と常圧下で30℃以上離れているものを用いるのが好ましい。但し溶媒が蒸留以外の方法で除去できるようなものであるか、或いは生成物が蒸留以外の方法で容易に単離出来るものであれば、溶媒としては上記反応性の問題や溶解性の問題がクリアできればどのようなものでも利用できる。 一般には、ジクロロメタン、クロロホルム、ジクロロエタン、トリクロロエタン等の炭素数1乃至2のハロゲン化炭化水素が利用し易く、好ましく用いられるが、酸、塩基、或いは金属錯体などの触媒を用いない反応なので、溶媒はハロゲン化炭化水素以外のものでも勿論使用可能であり、これに限定されるものではない。
【0014】
反応終結が確認された後、必要ならば残存過酸化水素を望ましくは無機の酸化剤、還元剤、触媒等で分解して除き、また、要すれば反応により生じた硫黄を濾過等により除去し、更に溶媒、水等を濃縮等により除いた後、残渣を蒸留等の通常行われる単離精製法により単離精製すれば目的のアミド体を得ることが出来る。 アミド体の分子量が大きいか、或いは沸点が特に高い場合は、古典的液体クロマトグラフ法、ドライカラムクロマトグラフ法、フラッシュクロマトグラフ法、高圧液体クロマトグラフ法、ゲルパーミエーションクロマトグラフ法、薄層クロマトグラフ法等のクロマトグラフ法或いは親和性による抽出法等の方法でアミドを回収することも出来るが、得られるアミドの物性を利用し他の回収方法を用いても良い。
【0015】
本発明の方法によれば、既存の方法では容易に脱硫・酸素置換できなかったチオアミドを安全且つ容易に当該アミド体へと転化させることが可能となる。これにより、本発明者らが先に見出し特許出願している、N,N−ジ置換アミドの二炭素伸長・β−オキソ化反応(日本国特許第2705754号、同第2963983号、米国特許第5677444号、Chem.Commun.1996,1621)を複数回用いて、ポリ−β−オキソアミドを合成することが極めて容易となった。これらポリ−β−オキソアミドは、金属の配位子、特に重金属抽出剤として有効であり、また、使用済み核燃料の再処理剤としても期待されている。
【0016】
【実施例】
次に、実施例により本発明を更に詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0017】
実施例1
287mg(3.2mmol)のN、N−ジメチル−チオホルムアミドをジクロロメタン2mLに溶解し、氷冷したものに、6.5mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま100分間撹拌した後、これを減圧下蒸留するとN、N−ジメチルホルムアミド171mg(単離収率74%)が得られた。
【0018】
実施例2
200mg(1.7mmol)のN、N−ジメチル−チオアセトアミドをジクロロメタン2mLに溶解し、氷冷したものに、3.5molの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま18時間撹拌した後、これを減圧下蒸留するとN、N−ジメチルアセトアミド170mg(単離収率83%)が得られた。
【0019】
実施例3
200mg(1.7mmol)のN、N−ジメチル−チオプロピオンアミドをジクロロメタン2mLに溶解し、氷冷したものに、3.6mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま20時間撹拌した後、これを減圧下蒸留するとN、N−ジメチルプロピオンアミド170mg(単離収率98%)が得られた。
【0020】
実施例4
440mg(3.0mmol)のN、N−ジメチル−3−オキソブタン酸チオアミドをジクロロメタン8mLに溶解し、氷冷したものに、6.3mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま4時間撹拌した後、減圧下蒸留するとN、N−ジメチル−3−オキソブタン酸アミド270mg(単離収率69%)が得られた。
【0021】
実施例5
50mg(0.29mmol)のN−(テトラメチレン)−3−オキソブタン酸チオアミドをジクロロメタン1mLに溶解し、氷冷したものに、0.7mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま20時間撹拌した後、減圧下蒸留するとN−(テトラメチレン)−3−オキソブタン酸アミド40mg(単離収率62%)が得られた。
【0022】
実施例6
160mg(1.0mmol)のN−メチル−3−オキソカプロチオラクタムをジクロロメタン2mLに溶解し、氷冷したものに、2.1mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま6時間撹拌した後、これを減圧下蒸留するとN−メチル−3−オキソカプロラクタム
【化17】
Figure 0003593523
89mg(単離収率62%)が得られた。
H−NMR(500MHz,CDCl)δ 1.84−1.87(m,2H),2.38−2.42(m,2H),2.83(s,3H),3.34−3.38(m,4H)。13C−NMR(125MHz,CDCl)δ 24.0,34.9,41.4,48.7,51.9,166.7,203.0。
【0023】
実施例7
190mg(1.02mmol)のN−(1−メチルエチル)−3−オキソカプロチオラクタムをジクロロメタン2mLに溶解し、氷冷したものに、2.1mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま4.5時間撹拌した後、これを減圧下蒸留するとN−(1−メチルエチル)−3−オキソカプロラクタム
【化18】
Figure 0003593523
116mg(単離収率68%)が得られた。
H−NMR(500MHz,CDCl)δ 1.09(s,3H),1.10(s,3H),1.91−1.99(m,2H),2.56(t,2H,J=7.3Hz),3.43(t,2H,J=6.1Hz),3.49(s,2H),4.80〜4.85(m,1H)。13C−NMR(125MHz,CDCl)δ 20.1,20.3,26.9,39.9,41.3,44.7,52.8,166.8,203.5。
【0024】
実施例8
200mg(1.0mmol)のN−ブチル−3−オキソカプロチオラクタムをジクロロメタン2mLに溶解し、氷冷したものに、2.1mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま7時間撹拌した後、これを減圧下蒸留するとN−2−ブチル−3−オキソカプロラクタム
【化19】
Figure 0003593523
160mg(単離収率87%)が得られた。
H−NMR(500MHz,CDCl)δ 0.88(t,3H,J=7.3Hz),1.24−1.31(m,2H),1.46−1.52(m,2H),1.96−2.01(m,2H),2.57(t,2H,J=7.0Hz),3.37(t,2H,J=7.6Hz),3.50(s,2H),3.52(t,2H,J=6.1Hz)。13C−NMR(125MHz,CDCl)δ 13.7,20.0,26.0,30.2,41.7,47.0,47.6,52.4,166.6,203.4。
【0025】
実施例9
600mg(2.34mmol)のN−オクチル−3−オキソカプロチオラクタムをジクロロメタン2mLに溶解し、氷冷したものに、4.7mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま24時間撹拌した後、これを減圧下蒸留するとN−オクチル−3−オキソカプロラクタム
【化20】
Figure 0003593523
300mg(単離収率54%)が得られた。
H−NMR(500MHz,CDCl)δ 0.79(t,3H,J=5.8Hz),1.16−1.25(m,12H),1.40−1.47(m,2H),2.54(t,2H,J=7.0Hz),3.33(t,2H,J=7.6Hz),3.48(s,2H),3.50(t,2H,J=5.7Hz)。13C−NMR(125MHz,CDCl)δ 14.2,22.8,26.3,27.1,27.3,28.5,29.4,31.9,42.6,47.4,48.3,52.6,60.6,167.1,203.7。
【0026】
実施例10
1.0g(4.1mmol)の(6R,9S)1,6−ジメチル−1−アザ−9−(1−メチルエチル)−4−オキソシクロノナン−2−チオンをジクロロメタン2mLに溶解し、氷冷したものに、8.5mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま24時間撹拌した後、これを減圧下蒸留するとクロマトグラフ及び分光学的に単一の生成物(6R,9S)1,6−ジメチル−1−アザ−9−(1−メチルエチル)シクロノナン−2,4−ジオン
【化21】
Figure 0003593523
のみが820mg(単離収率88%)得られた。
H−NMR(500MHz,CDCl)δ 0.81(d,3H,J=6.4Hz),0.93(d,3H,J=6.4Hz),0.98(d,3H,J=7.0Hz),1.21−1.33(m,2H),1.46−1.53(m,1H),1.62−1.69(m,1H),1.77−1.83(m,1H),2.12−2.17(m,1H),2.32(t,1H,J=11.0Hz),2.60−2.63(m,1H),2.68(s,3H),3.11−3.17(m,1H),3.32と3.65(ABq,2H,J=14.3Hz)。13H−NMR(125MHz,CDCl)δ 18.2,19.9,20.2,24.2,26.7,29.6,29.9,31.6,48.4,54.3,63.6,166.9,205.7。
【0027】
実施例11
190mg(1.0mmol)の1−メチル−1−アザ−4−オキソシクロノナン−2−チオンをジクロロメタン2mLに溶解し、氷冷したものに、2.1mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま8時間撹拌した後、これを減圧下蒸留すると1−メチル−1−アザ−シクロノナン−2,4−ジオン
【化22】
Figure 0003593523
146mg(単離収率85%)が得られた。
H−NMR(500MHz,CDCl)δ 1.38−1.42(m,2H),1.61−1.92(m,4H),2.40(t,2H,J=6.4Hz),2.83(s,3H),3.29−3.30(m,2H),3.45(s,2H)。13C−NMR(125MHz,CDCl)δ 23.6,25.3,26.2,31.9,41.9,47.1,53.9,166.0,208.6。
【0028】
実施例12
700mg(3.5mmol)の1−メチル−1−アザ−4−オキソシクロデカン−2−チオンをジクロロメタン10mLに溶解し、氷冷したものに、7.3mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま20時間撹拌した後、これを減圧下蒸留すると1−メチル−1−アザ−シクロデカン−2,4−ジオン
【化23】
Figure 0003593523
530mg(単離収率82%)が得られた。
H−NMR(500MHz,CDCl)δ 1.21−1.25(m,2H),1.28−1.32(m,2H),1.49−1.53(m,2H),1.62−1.66(m,2H),2.50−2.53(m, 2H),2.83(s,3H),3.28(t,2H,J=5.8Hz),3.46(s,2H)。13C−NMR(125MHz,CDCl)δ 19.0,23.6,24.3,26.0,31.8,37.0,47.2,52.4,167.6,207.8。
元素分析、実測値 C:65.27%,H:9.21%,N:7.45%。計算値(C1017NOとして)C:65.54%,H:9.35%,N:7.64%。
【0029】
実施例13
4.0g(15.6mmol)の1−ブチル−1−アザ−4−オキソシクロウンデカン−2−チオンをジクロロメタン20mLに溶解し、氷冷したものに、31.3mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま10時間撹拌した後、これを減圧下蒸留すると1−ブチル−1−アザ−シクロウンデカン−2,4−ジオン
【化24】
Figure 0003593523
3.6g(単離収率96%)が得られた。
H−NMR(500MHz,CDCl)δ 0.84(t,3H,J=7.4Hz),1.10−1.65(m,14H),1.81−1.98(m,2H),2.83−2.88(m,2H),3.35と3.47(ABq,2H,J=11.3Hz),3.60−3.69(m,1H),4.18−4.24(m,1H)。13CNMR(125MHz,CDCl)δ 13.5,19.7,22.5,23.1,23.7,26.4,27.7,29.2,42.7,45.5,48.8,54.8,171.3,203.5。
【0030】
実施例14
227mg(1.0mmol)の1−メチル−1−アザ−4,6−ジオキソシクロウンデカン−2−チオンをジクロロメタン4mLに溶解し、氷冷したものに、2.1mmolの過酸化水素を含む30%過酸化水素水溶液を静かに加えた。氷冷のまま10時間撹拌した後、これを減圧下蒸留すると1−メチル−1−アザ−シクロウンデカン−2,4,6−トリオン
【化25】
Figure 0003593523
162mg(粗収率77%)が得られた。更にこれをカラムクロマトグラフで精製し、精製品44mg(単離収率21%)を得た。
H−NMR(500MHz,CDCl)δ 1.08−1.17(m,1H),1.47−1.59(m,1H),1.62−1.68(m,4H),2.40(t,2H,J=5.5Hz),2.97−3.01(m,1H),3.08(s,3H),3.85(s,2H),4.10(s,2H),4.91−4.95(m,1H)。13C−NMR(125MHz,CDCl)δ 21.39,22.09,24.69,41.86,41.89,53.81,55.05,58.20,194.16,196.40,202.24。
【0031】
【発明の効果】
本発明は、付加価値の高い溶媒として有機合成化学の分野において汎用されているN,N−ジ置換アミド類や、その誘導体であって、キレート剤等として有用なN,N−ジ置換−β−オキソアミド類、並びに医薬品、農薬等の原料として有用なN−置換−β−オキソラクタム類等を、それぞれ対応するN,N−ジ置換チオアミド類から容易に、安全に、且つ極めて収率良く製造する方法を提供するものであり、本発明の方法によれば、既存の方法では容易に脱硫・酸素置換できなかったチオアミド類を安全且つ容易に当該アミド類へと転化させることが出来る。 また、これにより、本発明者らが先に開発したN,N−ジ置換アミドの二炭素伸長・β−オキソ化反応を複数回用いて、ポリ−β−オキソアミドを合成することが極めて容易となった。これらポリ−β−オキソアミドは、金属の配位子、特に重金属抽出剤として有効であり、また、使用済み核燃料の再処理剤としても期待されていることからも、本発明は斯業に貢献するところ極めて大なる発明である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to N, N-disubstituted amides and derivatives thereof widely used in the field of synthetic organic chemistry as solvents having high added value, and N, N-disubstituted-β useful as a chelating agent and the like. The present invention relates to a novel, simple and high-yield production method of -oxoamides and N-substituted-β-oxolactams useful as raw materials for pharmaceuticals, agricultural chemicals and the like.
[0002]
[Prior art]
N, N-disubstituted amides are solvents frequently used as high value-added solvents in the field of organic synthetic chemistry. In addition, the β-oxo derivatives, N, N-disubstituted-β-oxoamides, are known as chelating agents that specifically bind to transition metals such as copper and nickel.
On the other hand, the present inventors have previously found a method for selectively synthesizing β-oxothioamide from amide in high yield and have applied for a patent (Japanese Patent No. 2705754, a patent on October 9, 1997; No. 2,963,983, Aug. 13, 1999, US Pat. No. 5,677,444, Oct. 14, 1997.)
In general, it is easy to synthesize the corresponding thioamide from an amide, and Lawesson's reagent is a representative reagent for replacing oxygen with sulfur. On the other hand, in the case of the reverse reaction in which sulfur of thioamides is replaced with oxygen, if there is hydrogen on the nitrogen of thioamide, silver oxide or air alone can easily oxidatively desulfurize to the corresponding amide. However, such reactions do not readily occur without hydrogen on the nitrogen of the thioamide. Generally, this desulfurization / oxygenation reaction is carried out oxidatively, and has been carried out by oxidation with a peracid such as m-chloroperbenzoic acid or singlet oxygen.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel, simple, and high-yield production method of N, N-disubstituted amides. It is an object of the present invention to provide a means for easily, safely and inexpensively converting N-disubstituted amides.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for obtaining the N, N-disubstituted amides by desulfurization and oxygenation of the N, N-disubstituted thioamides. It can be converted to the corresponding N, N-disubstituted amides easily and in good yield by oxidation with hydrogen oxide, and this method is applicable to a wide range of compounds falling within the category of N, N-disubstituted thioamides. The inventors have found that the present invention has been completed.
[0005]
That is, the present invention relates to formula [1]
Embedded image
Figure 0003593523
Wherein an N, N-disubstituted thioamide having a structure represented by the following formula as a basic skeleton is reacted with hydrogen peroxide:
Embedded image
Figure 0003593523
The present invention relates to a method for producing N, N-disubstituted amides having a structure represented by the following formula:
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The N, N-disubstituted thioamides having a structure represented by the formula [1] as a basic skeleton used in the present invention include, for example, the following general formula [3]
Embedded image
Figure 0003593523
(Where R 1 And R 2 Each independently represents a hydrocarbon group which may have a substituent; 3 Represents a hydrogen atom or a hydrocarbon group which may have a substituent. Also, R 1 , R 2 And R 3 May be bonded to each other to form an annular structure together with an N atom to which they are bonded, or an N atom and a C atom. )).
In this case, the obtained N, N-disubstituted amide having a structure represented by the formula [2] as a basic skeleton is represented by the following general formula [4]
Embedded image
Figure 0003593523
(Where R 1 , R 2 And R 3 Is the same as above. )
Indicated by
[0007]
Other examples of the N, N-disubstituted thioamides having a structure represented by the formula [1] as a basic skeleton used in the present invention include, for example, the following general formula [5]
Embedded image
Figure 0003593523
(Where R 1 , R 2 And R 4 Represents a hydrocarbon group which may have a substituent independently of each other. Also, R 1 , R 2 And R 4 May be bonded to each other to form an annular structure together with an N atom to which they are bonded, or an N atom and a C atom. )), N, N-disubstituted-β-oxothioamide derivatives.
In this case, the obtained N, N-disubstituted amide having the structure represented by the formula [2] as a basic skeleton is represented by the following general formula [6]
Embedded image
Figure 0003593523
(Where R 1 , R 2 And R 4 Is the same as above. )), Is obtained as the N, N-disubstituted-β-oxoamide derivative.
[0008]
Further examples of N, N-disubstituted thioamides having a structure represented by the formula [1] as a basic skeleton used in the present invention include, for example, the following general formula [7]
Embedded image
Figure 0003593523
(Where R 1 Represents a hydrocarbon group which may have a substituent; 5 Represents a hydrocarbon group which may have a substituent or a hydrocarbon group which may have a substituent in which oxygen, sulfur, nitrogen or the like is interposed in the chain. Also, R 1 And R 5 May be bonded to each other and together with the N atom to which they are bonded, to form a cyclic structure. And N-substituted-β-oxothiolactam derivatives.
In this case, the obtained N, N-disubstituted amide having the structure represented by the formula [2] as a basic skeleton is represented by the following general formula [8]
Embedded image
Figure 0003593523
(Where R 1 And R 5 Is the same as above. )) Is obtained as the N-substituted-β-oxolactam derivative.
[0009]
In each of the general formulas [3] to [8], R 1 , R 2 , R 3 And R 4 The hydrocarbon group in the hydrocarbon group which may have a substituent may be any of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. Examples of such hydrocarbon groups include, for example, alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, aryl groups, aralkyl groups, and the like.
Specifically, examples of the alkyl group include a linear or branched alkyl group having 1 to 20, preferably 1 to 10, and more preferably 1 to 6 carbon atoms. Examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a secondary butyl group, a tertiary butyl group, a pentyl group, and a hexyl group. In this case, it is better that the length of the alkyl chain is rather long, so that an optimum one may be appropriately selected from an alkyl group having 1 to 20 carbon atoms as necessary.
Examples of the cycloalkyl group include, for example, a monocyclic, polycyclic or condensed cyclic alkyl group having 3 to 30, preferably 3 to 20, and more preferably 3 to 10 carbon atoms. Is a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, or the like.
Examples of the alkenyl group include those having an alkyl group having 2 or more carbon atoms and an unsaturated group such as one or more double bonds, and more specifically, a vinyl group, an allyl group, and 1- Examples include a propenyl group, an isopropenyl group, a 2-butenyl group, a 1,3-butadienyl group, a 2-pentenyl group, and a 2-hexenyl group.
Examples of the cycloalkenyl group include those having an unsaturated group such as one or more double bonds in the above cycloalkyl group, and more specifically, a cyclopropenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like. No.
Examples of the alkynyl group include those having an alkyl group having 2 or more carbon atoms and an unsaturated group such as one or more triple bonds, and more specifically, an ethynyl group, a 1-propynyl group, -Propynyl group and the like.
Examples of the aryl group include a monocyclic, polycyclic or condensed-ring aromatic hydrocarbon group having 6 to 30, preferably 6 to 20, and more preferably 6 to 14 carbon atoms, and more specifically, Examples include phenyl, tolyl, xylyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, biphenyl and the like.
Examples of the aralkyl group include a monocyclic, polycyclic or condensed aralkyl group having 7 to 30, preferably 7 to 20, and more preferably 7 to 15 carbon atoms. More specifically, for example, Examples include a benzyl group, a phenethyl group, a naphthylmethyl group, and a naphthylethyl group.
[0010]
As the substituent of these hydrocarbon groups, any substituent may be used as long as it does not hinder the reaction according to the present invention. Examples of the substituent include a methoxy group, an alkoxy group such as an ethoxy group, a chlorine atom, and a bromine atom. And an amino group, for example, an alkylthio group such as a methylthio group and an ethylthio group, and an acyl group such as an acetyl group, a propionyl group, and a benzoyl group.
[0011]
In the general formulas [3] and [4], R 1 , R 2 And R 3 Any two of which are bonded to each other to form a cyclic structure together with the N atom or the N atom and the C atom to which they are bonded, and the above general formulas [5] and [6] In, R 1 , R 2 And R 4 Is bonded to each other to form a cyclic structure together with the N atom or the N atom and the C atom to which they are bonded, and the above general formulas [7] and [8] In, R 1 And R 5 Are bonded to each other to form a ring structure together with the N atom to which they are bonded, the ring further has a nitrogen atom, a sulfur atom or an oxygen atom in the ring. Saturated or unsaturated monocyclic, polycyclic or fused cyclic ones, and specific examples thereof include, for example, a pyridine ring, a thiazole ring, a piperidine ring, a piperazine ring, a pyrrole ring, a morpholine ring, and an imidazole ring. And heterocycles such as an indole ring, a quinoline ring and a pyrimidine ring.
[0012]
Hereinafter, the production method of the present invention will be described in detail.
First, N, N-disubstituted thioamides having the structure represented by the formula [1] as a basic skeleton, such as the N, N-disubstituted thioamides represented by the general formula [3] and the general formula [5] The N, N-disubstituted-β-oxothioamide derivative represented by the general formula [7] or the N-substituted-β-oxothiolactam derivative represented by the general formula [7] is dissolved in a solvent. An aqueous solution of hydrogen peroxide containing an excess amount of hydrogen peroxide is added and the reaction is carried out with stirring.
The reaction is usually carried out by dissolving the N, N-disubstituted thioamides in a solvent as described above. For example, when the amide to be synthesized has good compatibility with water, it is not necessary to use a solvent. If the aqueous hydrogen peroxide and the raw material thioamide insoluble in the solvent are stirred in a suspended state, the aqueous solution becomes gradually uniform as the reaction proceeds.
Since the reaction proceeds quickly only by mixing the two, there is no particular need for heating, and the reaction temperature may be freely selected from room temperature to the freezing point. However, immediately after mixing, it is preferable to start the reaction with cooling with ice water or the like and then gradually return to room temperature in order to prevent side reactions due to heat generation and decomposition of hydrogen peroxide. However, if the state of the reaction is already known, any temperature process may be used, and heating may be performed in some cases.
At the end of the reaction, the remaining amount of thioamide is analyzed by a general quantitative method such as gas chromatography, high-performance liquid chromatography, and the like. If no residual is observed, the reaction is terminated, and vigorous stirring is continued until then.
[0013]
The solvent that dissolves thioamide is a solvent that does not react when mixed with an aqueous hydrogen peroxide solution.When mixed with an aqueous hydrogen peroxide solution, the thioamide is not insolubilized and dissolves the raw material thioamide and the generated amide. Any material may be used as long as it has the ability to perform the reaction. Generally, for the purpose of recovering the generated amide, a solvent whose boiling point is separated from the boiling point of the amide to be formed by 30 ° C. or more under normal pressure is used. Is preferred. However, if the solvent is such that it can be removed by a method other than distillation, or if the product can be easily isolated by a method other than distillation, then the above-mentioned reactivity problem and solubility problem will occur as the solvent. Anything that can be used if it can be cleared. In general, halogenated hydrocarbons having 1 to 2 carbon atoms such as dichloromethane, chloroform, dichloroethane, and trichloroethane are easily used and preferably used.However, since the reaction does not use a catalyst such as an acid, a base, or a metal complex, a solvent is used. Of course, other than the halogenated hydrocarbon can be used, and the present invention is not limited to this.
[0014]
After the completion of the reaction is confirmed, if necessary, residual hydrogen peroxide is removed by decomposition with an inorganic oxidizing agent, a reducing agent, a catalyst, or the like, and, if necessary, sulfur generated by the reaction is removed by filtration or the like. Further, after removing the solvent, water and the like by concentration or the like, the target amide can be obtained by isolating and purifying the residue by a commonly used isolation and purification method such as distillation. If the molecular weight of the amide compound is large or the boiling point is particularly high, classic liquid chromatography, dry column chromatography, flash chromatography, high pressure liquid chromatography, gel permeation chromatography, thin layer chromatography The amide can be recovered by a method such as a chromatography method such as a graph method or an extraction method based on affinity, but other recovery methods may be used by utilizing the physical properties of the obtained amide.
[0015]
According to the method of the present invention, it is possible to safely and easily convert thioamide, which could not be easily desulfurized and replaced with oxygen by the existing method, to the amide. As a result, the present inventors have previously found and filed a patent application for a two-carbon elongation / β-oxo-forming reaction of N, N-disubstituted amides (Japanese Patent Nos. 2705754 and 296983, U.S. Pat. No. 5,677,444, Chem. 1996 , 1621) multiple times to synthesize poly-β-oxoamide. These poly-β-oxoamides are effective as metal ligands, especially as heavy metal extractants, and are also expected to be used as reprocessing agents for spent nuclear fuel.
[0016]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0017]
Example 1
287 mg (3.2 mmol) of N, N-dimethyl-thioformamide was dissolved in 2 mL of dichloromethane, and a 30% aqueous hydrogen peroxide solution containing 6.5 mmol of hydrogen peroxide was gently added to the solution cooled with ice. After stirring for 100 minutes with ice cooling, this was distilled under reduced pressure to obtain 171 mg of N, N-dimethylformamide (isolation yield: 74%).
[0018]
Example 2
200 mg (1.7 mmol) of N, N-dimethyl-thioacetamide was dissolved in 2 mL of dichloromethane, and a 30% aqueous hydrogen peroxide solution containing 3.5 mol of hydrogen peroxide was gently added to the solution cooled with ice. After stirring for 18 hours while cooling on ice, this was distilled under reduced pressure to obtain 170 mg of N, N-dimethylacetamide (83% isolated yield).
[0019]
Example 3
200 mg (1.7 mmol) of N, N-dimethyl-thiopropionamide was dissolved in 2 mL of dichloromethane, and a 30% aqueous hydrogen peroxide solution containing 3.6 mmol of hydrogen peroxide was gently added to the solution cooled with ice. After stirring for 20 hours while cooling on ice, this was distilled under reduced pressure to obtain 170 mg of N, N-dimethylpropionamide (98% isolated yield).
[0020]
Example 4
440 mg (3.0 mmol) of N, N-dimethyl-3-oxobutanoic acid thioamide was dissolved in 8 mL of dichloromethane, and chilled with a 30% aqueous hydrogen peroxide solution containing 6.3 mmol of hydrogen peroxide. Was. After stirring for 4 hours while cooling on ice, distillation under reduced pressure yielded 270 mg (69% isolated yield) of N, N-dimethyl-3-oxobutanoic acid amide.
[0021]
Example 5
Dissolve 50 mg (0.29 mmol) of N- (tetramethylene) -3-oxobutanoic acid thioamide in 1 mL of dichloromethane and gently add a 30% aqueous hydrogen peroxide solution containing 0.7 mmol of hydrogen peroxide to an ice-cooled mixture. added. After stirring for 20 hours with ice cooling, distillation under reduced pressure gave N- (tetramethylene) -3-oxobutanoic acid amide (40 mg, yield 62%).
[0022]
Example 6
160 mg (1.0 mmol) of N-methyl-3-oxocaprothiolactam was dissolved in 2 mL of dichloromethane, and to a solution cooled with ice, a 30% aqueous hydrogen peroxide solution containing 2.1 mmol of hydrogen peroxide was gently added. Was. After stirring for 6 hours with ice cooling, this was distilled under reduced pressure to obtain N-methyl-3-oxocaprolactam.
Embedded image
Figure 0003593523
89 mg (62% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 1.84-1.87 (m, 2H), 2.38-2.42 (m, 2H), 2.83 (s, 3H), 3.34-3.38 (m, 4H). Thirteen C-NMR (125 MHz, CDCl 3 ) Delta 24.0, 34.9, 41.4, 48.7, 51.9, 166.7, 203.0.
[0023]
Example 7
190 mg (1.02 mmol) of N- (1-methylethyl) -3-oxocaprothiolactam was dissolved in 2 mL of dichloromethane, and cooled to ice with 30% hydrogen peroxide containing 2.1 mmol of hydrogen peroxide. The aqueous solution was added gently. After stirring for 4.5 hours while cooling with ice, the mixture was distilled under reduced pressure to give N- (1-methylethyl) -3-oxocaprolactam.
Embedded image
Figure 0003593523
116 mg (68% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 1.09 (s, 3H), 1.10 (s, 3H), 1.91-1.99 (m, 2H), 2.56 (t, 2H, J = 7.3 Hz), 3. 43 (t, 2H, J = 6.1 Hz), 3.49 (s, 2H), 4.80-4.85 (m, 1H). Thirteen C-NMR (125 MHz, CDCl 3 ) Δ 20.1, 20.3, 26.9, 39.9, 41.3, 44.7, 52.8, 166.8, 203.5.
[0024]
Example 8
200 mg (1.0 mmol) of N-butyl-3-oxocaprothiolactam was dissolved in 2 mL of dichloromethane, and a 30% aqueous hydrogen peroxide solution containing 2.1 mmol of hydrogen peroxide was gently added to the solution cooled with ice. Was. After stirring for 7 hours while cooling on ice, the mixture was distilled under reduced pressure to give N-2-butyl-3-oxocaprolactam.
Embedded image
Figure 0003593523
160 mg (87% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 0.88 (t, 3H, J = 7.3 Hz), 1.24-1.31 (m, 2H), 1.46-1.52 (m, 2H), 1.96-2.01 (M, 2H), 2.57 (t, 2H, J = 7.0 Hz), 3.37 (t, 2H, J = 7.6 Hz), 3.50 (s, 2H), 3.52 (t , 2H, J = 6.1 Hz). Thirteen C-NMR (125 MHz, CDCl 3 ) Δ 13.7, 20.0, 26.0, 30.2, 41.7, 47.0, 47.6, 52.4, 166.6, 203.4.
[0025]
Example 9
600 mg (2.34 mmol) of N-octyl-3-oxocaprothiolactam was dissolved in 2 mL of dichloromethane, and a 30% aqueous hydrogen peroxide solution containing 4.7 mmol of hydrogen peroxide was gently added to the solution cooled with ice. Was. After stirring for 24 hours with ice cooling, this was distilled under reduced pressure to obtain N-octyl-3-oxocaprolactam.
Embedded image
Figure 0003593523
300 mg (54% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 0.79 (t, 3H, J = 5.8 Hz), 1.16-1.25 (m, 12H), 1.40-1.47 (m, 2H), 2.54 (t, 2H) , J = 7.0 Hz), 3.33 (t, 2H, J = 7.6 Hz), 3.48 (s, 2H), 3.50 (t, 2H, J = 5.7 Hz). Thirteen C-NMR (125 MHz, CDCl 3 ) Δ 14.2, 22.8, 26.3, 27.1, 27.3, 28.5, 29.4, 31.9, 42.6, 47.4, 48.3, 52.6. 60.6, 167.1, 203.7.
[0026]
Example 10
Dissolve 1.0 g (4.1 mmol) of (6R, 9S) 1,6-dimethyl-1-aza-9- (1-methylethyl) -4-oxocyclononane-2-thione in 2 mL of dichloromethane and add ice To the cooled one, a 30% aqueous hydrogen peroxide solution containing 8.5 mmol of hydrogen peroxide was gently added. After stirring for 24 hours while cooling on ice, the mixture was distilled under reduced pressure, and chromatographically and spectroscopically, a single product (6R, 9S) 1,6-dimethyl-1-aza-9- (1-methylethyl) was obtained. ) Cyclononane-2,4-dione
Embedded image
Figure 0003593523
Only 820 mg (88% isolated yield) was obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 0.81 (d, 3H, J = 6.4 Hz), 0.93 (d, 3H, J = 6.4 Hz), 0.98 (d, 3H, J = 7.0 Hz), 1.21 -1.33 (m, 2H), 1.46-1.53 (m, 1H), 1.62-1.69 (m, 1H), 1.77-1.83 (m, 1H), 2 .12-2.17 (m, 1H), 2.32 (t, 1H, J = 11.0 Hz), 2.60-2.63 (m, 1H), 2.68 (s, 3H), 3 .11-3.17 (m, 1H), 3.32 and 3.65 (ABq, 2H, J = 14.3 Hz). Thirteen H-NMR (125 MHz, CDCl 3 ) Δ 18.2, 19.9, 20.2, 24.2, 26.7, 29.6, 29.9, 31.6, 48.4, 54.3, 63.6, 166.9, 205.7.
[0027]
Example 11
190 mg (1.0 mmol) of 1-methyl-1-aza-4-oxocyclononane-2-thione was dissolved in 2 mL of dichloromethane, and cooled to ice with 30% peroxide containing 2.1 mmol of hydrogen peroxide. Hydrogen aqueous solution was gently added. After stirring for 8 hours while cooling on ice, the mixture was distilled under reduced pressure to give 1-methyl-1-aza-cyclononane-2,4-dione.
Embedded image
Figure 0003593523
146 mg (85% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 1.38-1.42 (m, 2H), 1.61-1.92 (m, 4H), 2.40 (t, 2H, J = 6.4 Hz), 2.83 (s, 3H) ), 3.29-3.30 (m, 2H), 3.45 (s, 2H). Thirteen C-NMR (125 MHz, CDCl 3 ) Δ 23.6, 25.3, 26.2, 31.9, 41.9, 47.1, 53.9, 166.0, 208.6.
[0028]
Example 12
700 mg (3.5 mmol) of 1-methyl-1-aza-4-oxocyclodecane-2-thione was dissolved in 10 mL of dichloromethane, and ice-cooled, 30% peroxide containing 7.3 mmol of hydrogen peroxide was added. Hydrogen aqueous solution was gently added. After stirring for 20 hours while cooling on ice, the mixture was distilled under reduced pressure to give 1-methyl-1-aza-cyclodecane-2,4-dione.
Embedded image
Figure 0003593523
530 mg (82% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) Δ 1.21-1.25 (m, 2H), 1.28-1.32 (m, 2H), 1.49-1.53 (m, 2H), 1.62-1.66 (m , 2H), 2.50-2.53 (m, 2H), 2.83 (s, 3H), 3.28 (t, 2H, J = 5.8 Hz), 3.46 (s, 2H). Thirteen C-NMR (125 MHz, CDCl 3 ) Δ 19.0, 23.6, 24.3, 26.0, 31.8, 37.0, 47.2, 52.4, 167.6, 207.8.
Elemental analysis, found C: 65.27%, H: 9.21%, N: 7.45%. Calculated value (C 10 H 17 NO 2 C) 65.54%, H: 9.35%, N: 7.64%.
[0029]
Example 13
4.0 g (15.6 mmol) of 1-butyl-1-aza-4-oxocycloundecane-2-thione was dissolved in 20 mL of dichloromethane, and ice-cooled, containing 30% containing 31.3 mmol of hydrogen peroxide. An aqueous solution of hydrogen peroxide was gently added. After stirring for 10 hours while cooling with ice, the mixture was distilled under reduced pressure to give 1-butyl-1-aza-cycloundecane-2,4-dione.
Embedded image
Figure 0003593523
3.6 g (96% isolated yield) were obtained.
1 H-NMR (500 MHz, CDCl 3 ) [Delta] 0.84 (t, 3H, J = 7.4 Hz), 1.10-1.65 (m, 14H), 1.81-1.98 (m, 2H), 2.83-2.88 (M, 2H), 3.35 and 3.47 (ABq, 2H, J = 11.3 Hz), 3.60-3.69 (m, 1H), 4.18-4.24 (m, 1H) . Thirteen CNMR (125 MHz, CDCl 3 ) Δ 13.5, 19.7, 22.5, 23.1, 23.7, 26.4, 27.7, 29.2, 42.7, 45.5, 48.8, 54.8, 171.3, 203.5.
[0030]
Example 14
227 mg (1.0 mmol) of 1-methyl-1-aza-4,6-dioxocycloundecane-2-thione was dissolved in 4 mL of dichloromethane, and ice-cooled, containing 2.1 mmol of hydrogen peroxide. % Aqueous hydrogen peroxide was gently added. After stirring for 10 hours while cooling with ice, the mixture was distilled under reduced pressure to give 1-methyl-1-aza-cycloundecane-2,4,6-trione.
Embedded image
Figure 0003593523
162 mg (77% crude yield) were obtained. This was further purified by column chromatography to obtain 44 mg of a purified product (isolation yield: 21%).
1 H-NMR (500 MHz, CDCl 3 ) Δ 1.08-1.17 (m, 1H), 1.47-1.59 (m, 1H), 1.62-1.68 (m, 4H), 2.40 (t, 2H, J) = 5.5 Hz), 2.97-3.01 (m, 1H), 3.08 (s, 3H), 3.85 (s, 2H), 4.10 (s, 2H), 4.91- 4.95 (m, 1H). Thirteen C-NMR (125 MHz, CDCl 3 ) Δ 21.39, 22.09, 24.69, 41.86, 41.89, 53.81, 55.05, 58.20, 194.16, 196.40, 202.24.
[0031]
【The invention's effect】
The present invention relates to N, N-disubstituted amides and derivatives thereof, which are widely used in the field of organic synthetic chemistry as a high value-added solvent, and are useful as chelating agents and the like. -Oxoamides and N-substituted-β-oxolactams useful as raw materials for pharmaceuticals, agricultural chemicals, etc. can be produced easily, safely and in extremely high yield from the corresponding N, N-disubstituted thioamides. According to the method of the present invention, thioamides, which could not be easily desulfurized and replaced with oxygen by the existing method, can be safely and easily converted to the amides. In addition, this makes it extremely easy to synthesize poly-β-oxoamide using the two-carbon elongation / β-oxo-formation reaction of N, N-disubstituted amide developed earlier by the present inventors a plurality of times. became. The present invention contributes to the industry because these poly-β-oxoamides are effective as metal ligands, particularly as heavy metal extractants, and are also expected to be used as reprocessing agents for spent nuclear fuel. However, this is a very large invention.

Claims (6)

式[1]
Figure 0003593523
で示される構造を基本骨格として有するN,N−ジ置換チオアミド類を過酸化水素と反応させることを特徴とする、式[2]
Figure 0003593523
で示される構造を基本骨格として有するN,N−ジ置換アミド類の製造法。
Equation [1]
Figure 0003593523
Wherein an N, N-disubstituted thioamide having a structure represented by the following formula as a basic skeleton is reacted with hydrogen peroxide:
Figure 0003593523
A method for producing an N, N-disubstituted amide having a structure represented by the following formula as a basic skeleton.
式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類が、下記一般式[3]
Figure 0003593523
(式中、R及びRは、それぞれ独立して置換基を有していても良い炭化水素基を表し、Rは水素原子又は置換基を有していても良い炭化水素基を表す。また、R,R及びRの何れか二つが互いに結合してそれらが結合しているN原子、或いはN原子及びC原子と一緒になって、環状構造を形成していてもよい。)で示されるN,N−ジ置換チオアミド類であり、反応により得られるN,N−ジ置換アミド類が下記一般式[4]
Figure 0003593523
(式中、R,R及びRは前記と同じ。)
で示されるN,N−ジ置換アミド類である、請求項1に記載の製造法。
N, N-disubstituted thioamides having the structure represented by the formula [1] as a basic skeleton are represented by the following general formula [3]
Figure 0003593523
(Wherein, R 1 and R 2 each independently represent a hydrocarbon group which may have a substituent, and R 3 represents a hydrogen atom or a hydrocarbon group which may have a substituent. Further, any two of R 1 , R 2 and R 3 may be bonded to each other to form a cyclic structure together with the N atom or the N atom and the C atom to which they are bonded. ), The N, N-disubstituted amides obtained by the reaction are represented by the following general formula [4]:
Figure 0003593523
(In the formula, R 1 , R 2 and R 3 are the same as described above.)
The production method according to claim 1, which is an N, N-disubstituted amide represented by the formula:
式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類が、下記一般式[5]
Figure 0003593523
(式中、R,R及びRは、それぞれ独立して置換基を有していても良い炭化水素基を表す。また、R,R及びRの何れか二つが互いに結合してそれらが結合しているN原子、或いはN原子及びC原子と一緒になって、環状構造を形成していてもよい。)で示されるN,N−ジ置換−β−オキソチオアミド誘導体であり、反応により得られるN,N−ジ置換アミド類が下記一般式[6]
Figure 0003593523
(式中、R,R及びRは前記と同じ。)で示されるN,N−ジ置換−β−オキソアミド誘導体である、請求項1に記載の製造法。
N, N-disubstituted thioamides having a structure represented by the formula [1] as a basic skeleton are represented by the following general formula [5]
Figure 0003593523
(Wherein, R 1 , R 2 and R 4 each independently represent a hydrocarbon group which may have a substituent. In addition, any two of R 1 , R 2 and R 4 are bonded to each other. May form a cyclic structure together with the N atom to which they are bonded, or the N atom and the C atom together with an N, N-disubstituted-β-oxothioamide derivative. The N, N-disubstituted amides obtained by the reaction are represented by the following general formula [6]
Figure 0003593523
(Wherein R 1 , R 2 and R 4 are the same as described above), which is an N, N-disubstituted-β-oxoamide derivative represented by the formula:
式[1]で示される構造を基本骨格として有するN,N−ジ置換チオアミド類が、下記一般式[7]
Figure 0003593523
(式中、Rは置換基を有していても良い炭化水素基を表し、Rは置換基を有していても良い炭化水素基又は鎖中に酸素、硫黄、窒素等が介在する置換基を有していても良い炭化水素基を表す。また、RとRとが互いに結合してそれらが結合しているN原子と一緒になって、環状構造を形成していてもよい。)で示されるN−置換−β−オキソチオラクタム誘導体であり、反応より得られるN,N−ジ置換アミド類が下記一般式[8]
Figure 0003593523
(式中、R及びRは前記と同じ。)で示されるN−置換−β−オキソラクタム誘導体である、請求項1に記載の製造法。
N, N-disubstituted thioamides having the structure represented by the formula [1] as a basic skeleton are represented by the following general formula [7]
Figure 0003593523
(Wherein, R 1 represents a hydrocarbon group which may have a substituent, and R 5 represents a hydrocarbon group which may have a substituent or oxygen, sulfur, nitrogen or the like is interposed in the chain. And represents a hydrocarbon group which may have a substituent, or a group in which R 1 and R 5 are bonded to each other to form a cyclic structure together with the N atom to which they are bonded. N-substituted-β-oxothiolactam derivatives represented by the following general formula [8]:
Figure 0003593523
(Wherein R 1 and R 5 are the same as described above), and the N-substituted-β-oxolactam derivative is represented by the formula:
N,N−ジ置換チオアミド類を溶媒に溶解して反応を行う請求項1〜4の何れかに記載の製造法。The method according to any one of claims 1 to 4, wherein the reaction is carried out by dissolving the N, N-disubstituted thioamides in a solvent. 溶媒がハロゲン化炭化水素である請求項5に記載の製造法。The method according to claim 5, wherein the solvent is a halogenated hydrocarbon.
JP2002016360A 2002-01-25 2002-01-25 New process for producing N, N-disubstituted amides Expired - Lifetime JP3593523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016360A JP3593523B2 (en) 2002-01-25 2002-01-25 New process for producing N, N-disubstituted amides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016360A JP3593523B2 (en) 2002-01-25 2002-01-25 New process for producing N, N-disubstituted amides

Publications (2)

Publication Number Publication Date
JP2003221372A JP2003221372A (en) 2003-08-05
JP3593523B2 true JP3593523B2 (en) 2004-11-24

Family

ID=27742736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016360A Expired - Lifetime JP3593523B2 (en) 2002-01-25 2002-01-25 New process for producing N, N-disubstituted amides

Country Status (1)

Country Link
JP (1) JP3593523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383747B (en) * 2018-03-09 2021-03-09 华北水利水电大学 Heavy oxygen labeled amide compound synthesized by thioamide, preparation method and application

Also Published As

Publication number Publication date
JP2003221372A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP6732008B2 (en) Oxalamide Amides and Their Use in Copper-Catalyzed Coupling Reactions of Aryl Halides
CN111205279A (en) Polysubstituted benzodihydrofuran heterocyclic compound and preparation method and application thereof
Fiego et al. Indium-mediated regioselective synthesis of ketones from arylstannanes under solvent-free ultrasound irradiation
EP0019165B1 (en) Process for preparing 1,3,7-trialkylxanthines
JP3593523B2 (en) New process for producing N, N-disubstituted amides
CN117105845A (en) Electrophilic trifluoro methyl selenizing reagent and preparation method and application thereof
CN110903264A (en) Method for preparing diazoxide
CN113387886B (en) 2-aminodibenzo [ c, e ] azepine compound and synthetic method thereof
TW201831441A (en) Process for the one-pot preparation of organo-iodized compounds
CN110938044B (en) Selenium cyanation reagent, preparation and application thereof
CN111875523A (en) Synthetic method of alpha-fluorovinyl thioether derivative
JP4307106B2 (en) Process for producing 5-alkylidene-2-oxazolidinones
CN113402445B (en) Method for preparing carbazole compound and dibenzothiophene compound
CN112724055B (en) Method for synthesizing aromatic monofluoromethylthio compounds by one-pot method
CN114933570B (en) Synthesis method of copper-catalyzed 1,2, 4-triazole derivative
JP6372880B2 (en) Oxygen isotope labeled compound
CN111995543B (en) Synthetic method of alpha-ketoamide compound
CN110015973B (en) Alpha-gem-difluoro azide and preparation method and application thereof
CN109651289B (en) 3-thiazoline compound and synthetic method and application thereof
JP3691235B2 (en) Process for producing optically active piperidines
JPS58159483A (en) Manufacture of 2-chlorobenzoxazole
CN116903505A (en) Method for synthesizing S-biaryl dithio carbamate compound
JP5485142B2 (en) Process for the preparation of enantiomerically enriched N-carboxylic anhydrides
CN116162040A (en) Synthesis method of nitrosation compound of secondary amine
CN116396218A (en) Synthesis method of benzazepine compound

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Ref document number: 3593523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term