JP3591970B2 - Multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger Download PDF

Info

Publication number
JP3591970B2
JP3591970B2 JP06177196A JP6177196A JP3591970B2 JP 3591970 B2 JP3591970 B2 JP 3591970B2 JP 06177196 A JP06177196 A JP 06177196A JP 6177196 A JP6177196 A JP 6177196A JP 3591970 B2 JP3591970 B2 JP 3591970B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
tube
transfer tube
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06177196A
Other languages
Japanese (ja)
Other versions
JPH09229579A (en
Inventor
一儀 滝川
孝敏 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP06177196A priority Critical patent/JP3591970B2/en
Publication of JPH09229579A publication Critical patent/JPH09229579A/en
Application granted granted Critical
Publication of JP3591970B2 publication Critical patent/JP3591970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、効果的に熱交換するために用いられる伝熱管、および例えば化学プラント、食品プラント等の加熱、冷却、排熱回収、或いはスチーム、ボイラー等の高温水による空調、給湯、またはプール、温泉等での加熱、昇温、さらにエアー、排気ガス、フロンガス体もしくは油圧機器等の加熱、冷却用等として広い分野に亘って使用される前記伝熱管を使用した多管式熱交換器に関するものである。
【0002】
【従来の技術】
従来、この種の伝熱管(P′)としては一般に図4に示すように、個々の横断面円形となす平滑な内外周面を有するものを使用しており、これら伝熱管を使用して多管式熱交換器を組立てる場合、図5および図6のように該伝熱管(P′)を束状に配列して熱交換器として胴体(11)内部に内装して構成していた。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の技術においては、単に円形のなす平滑な内周面と、一定からなる流体通路の断面積とにより伝熱管(P′)内部での流体の流れを略直滑状となすため、内周面附近に生ずる流れの境界層を厚くなし、また長期に亘って該内周面に付着する水垢、油滓、汚れ等の不純物或いはゴミ、煤等とに起因して熱交換効率の低下を招くこととなり、且つ該効率の低下に関連して概して製品全体の大型化及び重量体を余儀なくされる問題を有するものであった。
【0004】
さらに、伝熱管の外周面が平滑な場合、バッフル・プレート(13)が胴体(11)内部にあっても流入孔(11′)より流入した伝熱管(P′)の外側を流れる流体は、図5および図6に点線で示すようにサインカーブ状にほぼ最短距離をとるよう流れて流出孔(11″)より流出するため、伝熱管(P′)の外周面との接触時間が短く、したがって熱交換効率が十分でなくその改善が求められていた。
【0005】
本発明は従来技術の有する前記問題に鑑みてなされたものであり、内外周面、特に該内周面での単位長さ当りの表面積の拡大により流体の伝熱管とのなす接触時間を増すとともに、流体通路面積の拡狹変化によって内周面や内外周面附近に乱流機能を生ぜしめて流れの境界層を極力薄くなし、同時に乱流の促進による該内周面での水垢、油滓、汚れ等の不純物或いはゴミ、煤等の付着の減少及びその除去効果とによって、長期に亘って熱交換効率を高め、さらに製品全体を比較的小型、軽量体となすことのできる多管式熱交換器を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明に係る多管式熱交換器は、両側端部を仕切壁により区劃した該端部附近の外周側に、内部に通ずる流入孔壁と流出孔壁とを有する胴体内部の長手方向に亘って、バッフル・プレートを貫通して相互に流通間隙を保持した多数の伝熱管を束状に配列してその両端部を前記仕切壁の少なくとも一方に貫設、固着せしめ、さらに該仕切壁の外側を少なくとも1つのボンネットで密閉すると共に、該ボンネットに内部の伝熱管に通ずる流入口と流出口とを設けて構成した熱交換器において、前記伝熱管の内周面と同一位相を持って外周面に巻き方向を異にする螺旋状の波形面を、長さ方向に亘って交互に設けかつバッフル・プレート間で前記伝熱管の螺旋状の波形面が同一の巻き方向となして構成したことを特徴とするものである。
【0007】
本発明はこのように構成されているため、伝熱管の内周面と同一位相を持って外周面に巻き方向を異にする螺旋状の波形面によって、内外周面、特に該内周面での単位長さ当りの表面積の拡大によって流体の伝熱管とのなす接触時間を増し、同時に流体の通路面積を拡狹変化せしめることとなるため、伝熱管の内周面附近の流れに乱流機能を生ぜしめて該附近での流れの境界層を極力薄くなすことができ、また乱流の促進による該内周面での水垢、油滓、汚れ等の不純物或いはゴミ等の付着を減少、除去せしめることとにより、長期に亘って熱交換効率を高める結果となり、また該効率の向上によって製品全体を比較的小型、軽量体となすこととなる。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明すれば、図1は本発明に係る多管式熱交換器の伝熱管単体の一実施例を一部切欠いて示す拡大平面図、図2は本発明に係る多管式熱交換器の一実施例を一部省略して縦断面図、図3は本発明に係る多管式熱交換器の他の実施例を示す図2相当図である。
【0009】
本発明に係る伝熱管(P)は、Ti、SUS或いはCu材等種々の金属材料からなるものであって、その構造は図1に示すように、波形面(6)(6′)の巻き方向が変化する非螺旋状部に所定幅からなる平滑面(7)を設けた管とするものである。
【0010】
かかる伝熱管(P)を用いた多管式熱交換器は、図2、図3に示すように、
SUS、銅合金或いは鉄鋼材等からなる円筒状の胴体(1)の両側端部をハブによる仕切壁(2,2′)により区劃した該端部附近の外周側に内部に通ずる一方の流体の流入孔壁(1′)と流出孔壁(1″)とを有してなるものである。そして、該胴体内部の長手方向に亘って欠円状からなる複数のバッフル・プレート(3)を貫通して相互に前記一方の流体の流通間隙を保持して、前記伝熱管(P)の多数を束状に配列して、その両端部を前記仕切壁(2,2′)の組付け孔部に貫設した状態で固着される。(4,4′)は左右のボンネットであり、前記仕切壁(2,2′)の外側にパッキングを敷設した状態で位置して図2のようにその一方に前記伝熱管(P)に通ずる他方の流体の流入口(5)と流出口(5′)を設けてそれぞれ封塞してなるものである。(9)は一方のボンネット(4′)に設けた内部での防食亜鉛棒部材である。この防食亜鉛棒部材は双方のボンネットに設けてもよい。
【0011】
さらに、他の実施例として、図3に示す多管式熱交換器にも用いることができる。図3に示す熱交換器ではその底部が球面となる有底円筒体に形成された胴体(1)の一側端部を仕切壁(2)により区劃した該端部附近の外周側に内部に通ずる一方の流体の流入孔壁(1′)と流出孔壁(1″)とを有してなり、胴体内部の長手方向に亘って欠円状からなる複数のバッフル・プレート(3)を貫通して相互に前記一方の流体の流通間隙を保持して、ほぼU字状に曲げられた伝熱管(P)の多数を束状に配列して、その両端部を前記仕切壁(2)の組付け孔部に貫設した状態で固着される。一方仕切壁(2)の外側にパッキングを敷設した状態でボンネット(4)を位置して該ボンネットに前記伝熱管(P)に通ずる他方の流体の流入口(5)と流出口(5′)を設けて封塞してなるものである。
【0012】
なお実線による矢印はそれぞれの流体の流れの方向を示し、また図3において実線による矢印は隣接する伝熱管(P)相互の外周面の波形面(6′)の巻き方向を異にして配列した該伝熱管での外側流体の蛇行状からなる流れを示すものであって、伝熱管(P)での熱交換機能を内周面のみならず外周面で一層効果的に発揮するものであり、また図2および図3のように伝熱管(P)の外周面の波形面(6′)をバッフル・プレート(3)に対して対称で、かつ該バッフル・プレートの自由端に向かって開放するよう設けることにより、外側流体は軸方向にほぼZ字状に流れるため単位長さ当りの表面積の拡大により流体の伝熱管とのなす接触時間を増すことになり、外周面における熱交換機能が一層効果的になる。
【0013】
【発明の効果】
以上説明したように本発明による多管式熱交換器は、伝熱管(P)の内周面と同一位相を持って外周面に巻き方向を異にする螺旋状の波形面(6)を、長さ方向に亘って交互に設け、かつバッフル・プレート(3)間で前記伝熱管(P)の螺旋状の波形面(6)が同一の巻き方向となして構成するため、螺旋状のなす該波形面によって内外周面、特に内周面での単位長さ当りの表面積を拡大して該伝熱管(P)の管壁付近を流れる流体の管壁との接触時間が長くなりかつ該管壁との相対速度が早くなるとともに、流体の通路面積を拡狹変化せしめることとなり、従って伝熱管(P)の内外周面、特に内周面附近の流れに乱流機能を生ぜしめて該附近での流れの境界層を極力薄くなすことができ、また乱流の促進により該内周面での水垢、油滓、汚れ等の不純物或いはゴミ、煤等の付着を減少、除去することとなり、長期に亘って熱交換効率を高める結果となり、また該効率の向上によって製品全体を比較的小型、軽量体となすことができる等、極めて有用な多管式熱交換器である。
【図面の簡単な説明】
【図1】本発明に係る多管式熱交換器の伝熱管単体の一実施例を一部切欠いて示す拡大平面図である。
【図2】本発明に係る多管式熱交換器の一実施例を一部省略して縦断面図である。
【図3】本発明に係る多管式熱交換器の他の実施例を示す図2相当図である。
【図4】従来の多管式熱交換器の伝熱管単体を一部切欠いて示す拡大平面図である。
【図5】従来の多管式熱交換器の一例を一部省略して示す縦断面図である。
【図6】従来の多管式熱交換器の他の例を示す図5相当図である。
【符号の説明】
1 胴体
1′流入孔壁
1″流出孔壁
2 仕切壁
3 バッフル・プレート
4、4′ボンネット
5 流入口
5′流出口
6、6′ 波形面
7 平滑面
P 伝熱管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to heat transfer tubes used for effective heat exchange, and heating, cooling, exhaust heat recovery, or steam, boilers or other high-temperature water-based air conditioning, hot water supply, or pools, for example, for chemical plants and food plants. Multi-tube heat exchangers using the heat transfer tubes used in a wide range of fields, such as for heating and heating in hot springs, and for heating and cooling air, exhaust gas, CFCs or hydraulic equipment, etc. It is.
[0002]
[Prior art]
Conventionally, as this type of heat transfer tube (P '), as shown in FIG. 4, a tube having smooth inner and outer peripheral surfaces each having a circular cross section is generally used. When assembling a tubular heat exchanger, as shown in FIGS. 5 and 6, the heat transfer tubes (P ') are arranged in a bundle and are housed inside the body (11) as a heat exchanger.
[0003]
[Problems to be solved by the invention]
However, in such a conventional technique, the flow of the fluid inside the heat transfer tube (P ') is made to be substantially straight due to the simple circular inner peripheral surface and the constant sectional area of the fluid passage. Therefore, the boundary layer of the flow generated near the inner peripheral surface is made thicker, and heat exchange is caused by impurities such as water scale, oil scum, dirt, dust, soot, etc. adhered to the inner peripheral surface for a long period of time. This has led to a reduction in efficiency, and in connection with the reduction in efficiency, there has generally been a problem that the entire product must be increased in size and weight.
[0004]
Further, when the outer peripheral surface of the heat transfer tube is smooth, even if the baffle plate (13) is inside the body (11), the fluid flowing outside the heat transfer tube (P ') flowing from the inflow hole (11') is: As shown by the dotted lines in FIGS. 5 and 6, since the gas flows in a sine curve and takes the shortest distance and flows out of the outlet hole (11 ″), the contact time with the outer peripheral surface of the heat transfer tube (P ′) is short. Therefore, the heat exchange efficiency is not sufficient, and an improvement has been required.
[0005]
The present invention has been made in view of the above-mentioned problems of the prior art, and increases the contact time between a fluid and a heat transfer tube by increasing the surface area per unit length on the inner and outer peripheral surfaces, particularly on the inner peripheral surface. The turbulent flow function is produced near the inner peripheral surface and the inner and outer peripheral surfaces by changing the fluid passage area to make the boundary layer of the flow as thin as possible, and at the same time, the scale of the inner peripheral surface due to the promotion of the turbulence, the soapstock, Multi-tubular heat exchange that can increase the heat exchange efficiency over a long period of time by reducing the adhesion of impurities such as dirt or dust, soot, etc., and make the whole product relatively small and lightweight. It is intended to provide a vessel.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the multi-tubular heat exchanger according to the present invention has an inflow hole wall and an outflow hole wall communicating with the inside, on the outer peripheral side near the end portion where both end portions are separated by partition walls. A large number of heat transfer tubes penetrating a baffle plate and maintaining a mutual flow gap are arranged in a bundle in a longitudinal direction inside the body, and both ends are penetrated and fixed to at least one of the partition walls. A heat exchanger configured to further seal the outside of the partition wall with at least one bonnet and to provide the bonnet with an inlet and an outlet that communicate with an internal heat transfer tube; Spiral corrugated surfaces having different winding directions on the outer peripheral surface having the same phase as that of the heat transfer tube are alternately provided along the length direction, and the spiral corrugated surfaces of the heat transfer tubes are the same between the baffle plates. It is characterized by being configured in a direction. It is intended.
[0007]
Since the present invention is configured in this manner, the inner peripheral surface, particularly the inner peripheral surface, is formed by a spiral corrugated surface having the same phase as the inner peripheral surface of the heat transfer tube and having a different winding direction on the outer peripheral surface. As the surface area per unit length of the heat transfer tube increases, the contact time of the fluid with the heat transfer tube increases, and at the same time, the area of the fluid passage changes. To reduce the boundary layer of the flow in the vicinity, as much as possible, and to reduce or eliminate the adhesion of impurities such as scale, grease, dirt, etc., or dust on the inner peripheral surface due to the promotion of turbulence. As a result, the heat exchange efficiency is increased over a long period of time, and the improvement in the efficiency results in a relatively small and light-weight product as a whole.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an enlarged plan view showing one embodiment of a single heat transfer tube of a multi-tube heat exchanger according to the present invention, with a part cut away. FIG. FIG. 3 is a longitudinal sectional view of a multi-tube heat exchanger according to another embodiment of the present invention, with a part of the embodiment being omitted; FIG. 3 is a diagram corresponding to FIG. 2 showing another embodiment of the multi-tube heat exchanger according to the present invention. .
[0009]
The heat transfer tube (P) according to the present invention is made of various metal materials such as Ti, SUS or Cu material, and has a structure of winding corrugated surfaces (6) and (6 ') as shown in FIG. The tube is provided with a smooth surface (7) having a predetermined width on a non-spiral portion whose direction changes.
[0010]
A multi-tube heat exchanger using such a heat transfer tube (P), as shown in FIGS.
One of the fluids passing through the inside of the cylindrical body (1) made of SUS, copper alloy, steel or the like into the outer peripheral side near the ends defined by the hub at both end portions separated by the partition walls (2, 2 '). And a plurality of baffle plates (3) formed in a partially circular shape in the longitudinal direction of the inside of the fuselage. And a plurality of the heat transfer tubes (P) are arranged in a bundle while mutually maintaining the flow gap of the one fluid, and both ends of the heat transfer tubes (P) are assembled with the partition walls (2, 2 '). (4, 4 ') are left and right bonnets which are fixed in a state where packing is laid outside the partition walls (2, 2') as shown in FIG. One of them is provided with an inlet (5) and an outlet (5 ') for the other fluid which communicates with the heat transfer tube (P), and each is sealed. Is made of Te. (9) is anticorrosive zinc rod member inside which is provided on one of the bonnet (4 '). The anticorrosive zinc rod member may be provided on both of the bonnet.
[0011]
Further, as another embodiment, the present invention can be applied to the multi-tube heat exchanger shown in FIG. In the heat exchanger shown in FIG. 3, one end of a body (1) formed in a bottomed cylindrical body having a spherical bottom surface is formed on the outer peripheral side near the end portion, which is defined by a partition wall (2). A plurality of baffle plates (3) each having an inflow hole wall (1 ') and an outflow hole wall (1 ") for passing fluid through the inside of the fuselage and having a shape of a broken circle extending in the longitudinal direction inside the body. A large number of substantially U-shaped heat transfer tubes (P) are arranged in a bundle while penetrating each other and maintaining the flow gap of the one fluid, and both ends of the heat transfer tubes (P) are divided into the partition walls (2). On the other hand, the bonnet (4) is positioned with the packing laid outside the partition wall (2), and the bonnet passes through the heat transfer pipe (P). The fluid inlet (5) and the outlet (5 ') are provided and sealed.
[0012]
The solid arrows indicate the flow directions of the respective fluids, and the solid arrows in FIG. 3 are arranged so that the winding directions of the corrugated surfaces (6 ') of the outer peripheral surfaces of the adjacent heat transfer tubes (P) are different. It shows a meandering flow of the outer fluid in the heat transfer tube, and more effectively exerts the heat exchange function in the heat transfer tube (P) not only on the inner peripheral surface but also on the outer peripheral surface, Further, as shown in FIGS. 2 and 3, the corrugated surface (6 ') of the outer peripheral surface of the heat transfer tube (P) is symmetrical with respect to the baffle plate (3) and is opened toward the free end of the baffle plate. With this arrangement, the outer fluid flows in an approximately Z-shape in the axial direction, so that the contact time between the fluid and the heat transfer tube is increased by increasing the surface area per unit length, and the heat exchange function on the outer peripheral surface is further improved. Be effective.
[0013]
【The invention's effect】
As described above, the shell-and-tube heat exchanger according to the present invention has the spiral corrugated surface (6) having the same phase as the inner peripheral surface of the heat transfer tube (P) and having different winding directions on the outer peripheral surface. The heat transfer tubes (P) are provided alternately in the longitudinal direction and the spiral corrugated surfaces (6) of the heat transfer tubes (P) have the same winding direction between the baffle plates (3). Due to the corrugated surface, the surface area per unit length on the inner and outer peripheral surfaces, particularly on the inner peripheral surface, is increased to increase the contact time of the fluid flowing near the tube wall of the heat transfer tube (P) with the tube wall, and As the relative velocity with respect to the wall increases, the area of the passage of the fluid increases and decreases. Therefore, a turbulent flow function is generated in the flow near the inner and outer peripheral surfaces of the heat transfer tube (P), particularly near the inner peripheral surface. The boundary layer of the flow of water can be made as thin as possible. It reduces and removes impurities such as dirt or dust, soot, etc., resulting in an increase in heat exchange efficiency over a long period of time, and the improvement in efficiency makes it possible to make the entire product relatively small and lightweight. It is a very useful multi-tube heat exchanger.
[Brief description of the drawings]
FIG. 1 is an enlarged plan view showing one embodiment of a single heat transfer tube of a multi-tube heat exchanger according to the present invention, partially cut away.
FIG. 2 is a vertical cross-sectional view of a multi-tube heat exchanger according to the present invention, with a part of the embodiment omitted;
FIG. 3 is a diagram corresponding to FIG. 2, showing another embodiment of the multitubular heat exchanger according to the present invention.
FIG. 4 is an enlarged plan view showing a part of a single heat transfer tube of a conventional multi-tube heat exchanger.
FIG. 5 is a longitudinal cross-sectional view partially showing an example of a conventional multi-tube heat exchanger.
FIG. 6 is a diagram corresponding to FIG. 5, showing another example of the conventional multi-tube heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Body 1 'Inlet hole wall 1 "Outlet hole wall 2 Partition wall 3 Baffle plate 4, 4' Bonnet 5 Inlet 5 'Outlet 6, 6' Corrugated surface 7 Smooth surface P Heat transfer tube

Claims (1)

両側端部を仕切壁により区劃した該端部附近の外周側に、内部に通ずる流入孔壁と流出孔壁とを有する胴体内部の長手方向に亘って、バッフル・プレートを貫通して相互に流通間隙を保持した多数の伝熱管を束状に配列してその両端部を前記仕切壁の少なくとも一方に貫設、固着せしめ、さらに該仕切壁の外側を少なくとも1つのボンネットで密閉すると共に、該ボンネットに内部の伝熱管に通ずる流入口と流出口とを設けて構成した熱交換器において、前記伝熱管(P)の内周面と同一位相を持って外周面に巻き方向を異にする螺旋状の波形面(6)を、長さ方向に亘って交互に設けかつバッフル・プレート(3)間で前記伝熱管(P)の螺旋状の波形面(6)が同一の巻き方向となして構成したことを特徴とする多管式熱交換器。On both sides of the fuselage having an inflow hole wall and an outflow hole wall communicating with the inside on the outer peripheral side near the end, which is divided by a partition wall on both sides, the baffle plate is penetrated through each other. A large number of heat transfer tubes holding the flow gap are arranged in a bundle, and both ends are penetrated and fixed to at least one of the partition walls, and the outside of the partition wall is sealed with at least one bonnet. In a heat exchanger in which a bonnet is provided with an inflow port and an outflow port communicating with an internal heat transfer tube, a spiral having the same phase as the inner circumferential surface of the heat transfer tube (P) and having a different winding direction on the outer circumferential surface. The corrugated surfaces (6) are alternately provided in the longitudinal direction, and the spiral corrugated surfaces (6) of the heat transfer tubes (P) have the same winding direction between the baffle plates (3). A multi-tube heat exchanger characterized by comprising.
JP06177196A 1996-02-23 1996-02-23 Multi-tube heat exchanger Expired - Fee Related JP3591970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06177196A JP3591970B2 (en) 1996-02-23 1996-02-23 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06177196A JP3591970B2 (en) 1996-02-23 1996-02-23 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JPH09229579A JPH09229579A (en) 1997-09-05
JP3591970B2 true JP3591970B2 (en) 2004-11-24

Family

ID=13180711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06177196A Expired - Fee Related JP3591970B2 (en) 1996-02-23 1996-02-23 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP3591970B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100241A1 (en) * 2001-01-05 2002-07-18 Hde Metallwerk Gmbh Heat exchanger tube for liquid or gaseous media
KR100649597B1 (en) * 2004-12-10 2006-11-28 엘지전자 주식회사 Exhaust gas heat exchanger for cogeneration system
SE533323C2 (en) * 2007-10-05 2010-08-24 Muovitech Ab Collector and geothermal heating system including collector
JP2011226763A (en) * 2010-03-31 2011-11-10 Noritz Corp Heat exchanger
CN104154794B (en) * 2013-12-06 2017-07-21 北京大学工学院包头研究院 A kind of method of heat exchange efficiency of the raising gas-liquid two-phase state CO2 working medium in heat exchanger tube
CN104154795B (en) * 2013-12-06 2017-01-18 北京大学包头创新研究院 Heat exchange tube and heat exchanger comprising same

Also Published As

Publication number Publication date
JPH09229579A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP6367869B2 (en) Counterflow heat exchanger with spiral passage
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US2804284A (en) Heat exchanger
US4276927A (en) Plate type heat exchanger
CN103629952A (en) Tubular heat exchanger, method for manufacturing tubular heat exchanger and heat exchange equipment
US5582245A (en) Heat exchanger
CA2899275A1 (en) Heat exchanger having a compact design
JP3591970B2 (en) Multi-tube heat exchanger
EP1724543A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
JPH0961071A (en) Heat exchanger
JPH06180194A (en) Shell and tube heat-exchanger
US20060260789A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
JP2011506897A (en) Spiral heat exchanger
RU182250U1 (en) Heat exchanger
JPS59164895A (en) High-performance multitubular type heat exchanger with arched baffle plate
CN106288928B (en) A kind of heat exchanger helical baffles
JP2000111278A (en) Multitubular heat exchanger
JPH0412373Y2 (en)
JPS61291894A (en) Finned pipe for heat exchanger and heat exchanger using it
CN221325194U (en) Novel heat exchanger with convex wave node tube
CN213543293U (en) High-efficiency energy-saving titanium steel composite heat exchanger
JP4484394B2 (en) Catalyst-integrated heat exchanger for exhaust gas heat recovery
RU182251U1 (en) Heat exchanger
JPH064222Y2 (en) Heat exchanger
JP2005147421A (en) Latent heat recovering heat exchanging unit and latent heat recovering heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees