JP3591270B2 - Fuel injection amount control device for multi-cylinder internal combustion engine - Google Patents

Fuel injection amount control device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP3591270B2
JP3591270B2 JP01573098A JP1573098A JP3591270B2 JP 3591270 B2 JP3591270 B2 JP 3591270B2 JP 01573098 A JP01573098 A JP 01573098A JP 1573098 A JP1573098 A JP 1573098A JP 3591270 B2 JP3591270 B2 JP 3591270B2
Authority
JP
Japan
Prior art keywords
fuel injection
cylinder
injection amount
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01573098A
Other languages
Japanese (ja)
Other versions
JPH11210523A (en
Inventor
善明 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP01573098A priority Critical patent/JP3591270B2/en
Publication of JPH11210523A publication Critical patent/JPH11210523A/en
Application granted granted Critical
Publication of JP3591270B2 publication Critical patent/JP3591270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は多気筒内燃機関の燃料噴射量制御装置に関し、特に、複数の気筒群毎に設けられた排気通路にそれぞれ空燃比センサが配設され、これら空燃比センサの各出力に応じて機関から排出される排気ガスの空燃比を目標空燃比に一致するように制御する空燃比F/B(フィードバック)制御系を複数有し、機関が加速状態のときに所望の気筒へ燃料噴射量を過不足なく供給する多気筒内燃機関の燃料噴射量制御装置に関する。
【0002】
【従来の技術】
多気筒内燃機関には、複数の気筒を複数の気筒群に分け、気筒群をなすバンク毎に空燃比F/B制御を行うものがある。例えばV6、V8等の多気筒内燃機関の場合、複数の気筒を2つのバンクに分け、バンク毎に排気通路を設け、各排気通路にそれぞれ空燃比センサを配設し、各空燃比センサの出力に基づき各バンクに対応した各系統の空燃比F/B制御を行っている。
【0003】
このような複数系統の空燃比F/B制御を行う、例えば特開昭59−162333号公報に開示された多気筒内燃機関の燃料噴射制御方法は、機関の運転状態に基づいて、例えば機関の回転数NEと吸入空気量GAとから基本燃料噴射量TPを算出し、各空燃比F/B制御系の各空燃比センサの出力に基づいて該各空燃比センサにより検出される各空燃比を目標空燃比に一致するように各空燃比F/B制御系に属する気筒への各空燃比F/B補正係数FAFをそれぞれ算出し、基本燃料噴射量TP、各空燃比F/B制御系の空燃比F/B補正係数FAF等に基づいて所定のクランク角に合わせて同期噴射する同期燃料噴射量TAUを下式から算出し、その同期燃料噴射量を当該気筒へ噴射するよう制御する。
【0004】
TAU=TP*FWL*FAE*α*(FAF+FG)+Ts
ここで、FWLは冷間暖機増量補正分、FAEは加速時に増量される燃料付着補正分、FGは空燃比学習補正係数、αはその他の補正係数、Tsは無効噴射時間である。したがって、同期燃料噴射量TAUは、空燃比F/B制御系に関わらず機関の要求に応じてTP、FWL、FAEおよびαから算出される機関の要求燃料噴射量TAUBと空燃比F/B制御系毎にFAFおよびFGから算出される空燃比補正燃料噴射量TAUCとの積と、無効噴射時間Tsとの和として算出される。
【0005】
また、上記燃料噴射制御方法は、今回同期燃料噴射量が前回同期燃料噴射量より所定量以上増加したとき機関は加速状態にあると判定し、これら同期燃料噴射量の差に応じて加速時に増量する加速補正燃料噴射量を算出し、その加速補正燃料噴射量を吸気行程にある気筒へ噴射するよう制御する。
【0006】
【発明が解決しようとする課題】
しかしながら、上記特開昭59−162333号公報に開示された燃料噴射制御方法は、前回と今回の同期燃料噴射量TAUを上式から算出し、これらの差から機関の加速状態を判定しているので、前回と今回で燃料噴射する気筒が互いに別系統の空燃比制御系に属するとき、上記空燃比補正燃料噴射量TAUCが、前回同期燃料噴射量算出時に減量補正され今回同期燃料噴射量算出時に増量補正されるような前回と今回の空燃比補正燃料噴射量の差が大きい場合、機関が加速状態でないにも関わらず機関は加速状態であると判定してしまい、その差に応じた加速燃料噴射量を今回吸気行程にある噴射終了した気筒に再噴射を実行するので、特に機関が軽負荷のときオーバーリッチとなりエミッションが悪化するという問題が生じる。一方、上記空燃比補正燃料噴射量TAUCが、前回同期燃料噴射量算出時に増量補正され今回同期燃料噴射量算出時に減量補正されるような前回と今回の空燃比補正燃料噴射量の差が小さい場合、機関が加速状態であるにも関わらず機関は加速状態でないと判定してしまい、上記再噴射を実行しないので、特に機関が高負荷のときオーバーリーンとなり加速応答性が悪化するという問題がある。
【0007】
それゆえ、本発明は上記問題を解決し、気筒群毎に設けられた排気通路にそれぞれ配設される空燃比センサの各出力に応じて機関から排出される排気ガスの空燃比を目標空燃比に一致するように制御する空燃比F/B制御系を複数有する多気筒内燃機関の燃料噴射量制御装置において、特に機関が加速状態のときに所望の気筒へ燃料噴射量を過不足なく供給する多気筒内燃機関の燃料噴射量制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記問題を解決する本発明による多気筒内燃機関の燃料噴射量制御装置は、多気筒内燃機関の気筒群毎に設けられた排気通路にそれぞれ配設される空燃比センサと、該機関の運転状態に基づいて要求燃料噴射量TAUBを算出し、該空燃比センサの各出力に基づいて該各空燃比センサにより検出される各空燃比を目標空燃比に一致するように当該気筒へ噴射する前記要求燃料噴射量TAUBを補正する各空燃比補正燃料噴射量TAUCをそれぞれ算出し、該要求燃料噴射量TAUBと該各空燃比補正燃料噴射量TAUCとに基づいて所定のクランク角に合わせて同期噴射する同期燃料噴射量TAUを算出し、当該気筒へ該同期燃料噴射量TAUを噴射するよう制御する同期燃料噴射手段と、を備えた多気筒内燃機関の燃料噴射量制御装置において、前記内燃機関の加速状態を検出する加速検出手段と、前記加速検出手段により前記内燃機関の加速状態を検出したとき、前回同期噴射を実行した気筒と今回同期噴射を実行する気筒の各要求燃料噴射量の差ΔTAUBi (=TAUBi −TAUB)に基づいて加速燃料噴射量ΔTAUBi *K(Kは補正係数)を算出する加速燃料算出手段と、前記算出された加速燃料噴射量を噴射する加速燃料噴射手段と、を備えたことを特徴とする。
【0009】
本発明による多気筒内燃機関の燃料噴射量制御装置において、前記加速検出手段による加速検出は、前回同期噴射を実行した気筒と今回同期噴射を実行する気筒の各要求燃料噴射量の差から検出される。
上記構成により、別系統の空燃比F/B制御系の影響を受けないように機関の加速状態を判定するので、機関の加速判定が正確となり、機関が実際に加速状態のときに適量の加速増量補正を行い、機関が実際には加速状態でないときに不必要な加速増量補正を行わないよう燃料が供給される。
【0010】
【発明の実施の形態】
図1は本発明による多気筒内燃機関の燃料噴射量制御装置の一実施形態を示す概略図である。図1において、21はそれぞれ4つのシリンダがV字型に2列に配置された構成のV型8気筒機関の本体を示す。機関本体21の吸気通路22にはエアフローメータ23が設けられている。エアフローメータ23は吸入空気量を直接計測するものであって、たとえばポテンショメータを内蔵した可動ベーン式エアフローメータ等が使用され、吸入空気量に比例したアナログ電圧の出力信号を発生する。この出力信号はECU(電子制御ユニット)30のマルチプレクサ内蔵A/D変換器101に入力されている。ディストリビュータ24には、機関21のクランクシャフト2回転(720°CA)毎の1番気筒の圧縮行程の上死点TDC付近と、この上死点から360°CAの位相差をもつ4番気筒の圧縮行程の上死点TDC付近とにおいて、各気筒の噴射時期と点火時期を決定するために基準となる2つの基準位置検出用パルス信号を発生するクランク角センサ25Aおよびクランク角に換算して30°毎にクランク角検出用パルス信号を発生するクランク角センサ25Bがそれぞれ設けられている。これらクランク角センサ25A、25Bのパルス信号はECU30の入出力インターフェイス102に供給され、このうちクランク角センサ25Bの出力はCPU103の割込み端子に供給されている。また、気筒判別は基準位置検出用パルス信号を2つ用いて機関21の始動が開始されてからクランクシャフトが2回転する間に行われる。
【0011】
また機関21の吸気管内には吸気管内の圧力を検出する吸気圧センサ26が設けられ、吸気圧センサ26はこの吸気圧に比例したアナログ電圧の電気信号を発生し、この出力もA/D変換器101に供給されている。
さらに、吸気通路22には各気筒毎に燃料供給系から加圧燃料を吸気ポートへ供給するための燃料噴射弁27A、27Bが設けられている。
【0012】
また、機関21のシリンダブロックのウォータジャケット(図示せず)には、冷却水の温度を検出するための水温センサ29が設けられている。水温センサ29は冷却水の温度に応じたアナログ電圧の電気信号を発生する。この出力もA/D変換器101に供給されている。
機関21の右バンク(以下、Aバンクという)及び左バンク(以下Bバンクという)の排気マニホールド31A、31Bより下流の排気系には、それぞれ排気ガス中の3つの有害成分HC、CO、NOを同時に浄化する三元触媒を収容する触媒コンバータ32A、32Bが設けられている。この触媒コンバータ(スタートキャタリスト)32A、32Bは機関始動時の触媒暖機を短時間で行えるように、比較的小容量とされ、エンジンルーム内に設けられている。
【0013】
Aバンクの排気マニホールド31Aには、すなわち触媒コンバータ32Aの上流側の排気管31AにはAバンク用の第1空燃比センサ33Aが設けられ、またBバンクの排気マニホールド31Bには、すなわち触媒コンバータ32Bの上流側の排気管31Bには同様にBバンク用の第1空燃比センサ33Bが設けられている。
【0014】
さらに、2つの排気管34A、34Bはその下流において集合部35aにおいて合流しており、この集合部35a下流側の排気管には三元触媒を収容する触媒コンバータ(メインキャタリスト)36が配置されている。この触媒コンバータ36は比較的容量が大きく、車体の床下に設置されている。触媒コンバータ36の下流側には集合排気管35が連結されている。また、2つの排気管34A、34Bには好ましくはそれぞれAバンク、Bバンク用の第2空燃比センサ37A、37Bが設けられている。
【0015】
本実施例では、第1空燃比センサ33A、33Bとしては、排気中の酸素成分濃度と広い空燃比範囲で一対一に対応する、つまり排気空燃比と一対一に対応する出力信号を発生するリニア型の全域空燃比センサ(A/Fセンサ)が使用されている。第1空燃比センサ33A、33Bは、機関21の排気ガスに含まれる酸素濃度と略比例する出力電圧を発生し、この出力電圧はECU30のA/D変換器101に供給されている。一方、第2空燃比センサ37A、37Bとしては、排気中の酸素成分濃度がリッチのときとリーンのときとで出力が反転するラムダ型の空燃比センサ(A/Fセンサ)が使用されている。
【0016】
本実施例では、ECU30は、たとえばマイクロコンピュータとして構成され、A/D変換器101、入出力(I/O)インターフェイス102、CPU103の他に、ROM104、RAM105、バックアップRAM106、クロック発生回路107等が設けられている。ECU30は、機関21の燃料噴射制御、点火時期制御、空燃比制御等の基本制御を行う他、後述する本発明による加速時の燃料噴射量の補正制御、すなわち前回同期噴射を実行した気筒と今回同期噴射を実行する気筒の各要求燃料噴射量の差から機関の加速状態を検出する加速検出手段、および前記差に基づいて、加速燃料噴射量を算出する加速燃料算出手段、今回同期噴射時に加速燃料噴射量を噴射する加速燃料噴射手段、として機能する。
【0017】
ここで、「今回同期噴射」や「前回同期噴射」で使用する「今回」および「前回」は、例えば機関の運転状態から算出された同期燃料噴射量を機関のクランク角に同期して噴射する気筒を「今回」に同期噴射する気筒、すなわち今回同期噴射気筒と位置づけて定義し、その今回同期噴射気筒を基準として、今回噴射する気筒の1つ前の「前回」に同期噴射した、既に同期燃料噴射が完了している気筒を前回同期噴射気筒と定義する。
【0018】
また、吸気通路22のスロットル弁38には、スロットル弁38が全閉状態か否かを示す信号、すなわちXIDL信号を発生するアイドルスイッチ39が設けられている。このアイドル状態出力信号XIDLはECU30の入出力インターフェイス102に供給される。
さらに40A、40Bは2次空気導入制御弁であって、減速時あるいはアイドル時に図示しないエアポンプ等の空気源から2次空気を排気マニホルド31A、31Bに供給して、HC、COエミッションを低減するためのものである。
【0019】
さらに、ECU30において、ダウンカウンタ108A、フリップフロップ109A、および駆動回路110AはAバンクの燃料噴射弁27Aを制御するためのものであり、ダウンカウンタ108B、フリップフロップ109B、駆動回路110BはBバンクの燃料噴射弁27Bを制御するためのものである。すなわち、後述のルーチンにおいて、同期燃料噴射量(噴射時間)TAU(A) (TAU(B) )が演算されると、噴射時間TAU(A) (TAU(B) )がダウンカウンタ108A(108B)にプリセットされると共にフリップフロップ109A(109B)もセットされる。この結果、駆動回路110A(110B)が燃料噴射弁27A(27B)の付勢を開始する。他方、ダウンカウンタ108A(108B)がクロック信号(図示せず)を計数して最後にその出力端子が“1”レベルとなったときに、フリップフロップ109A(109B)がセットされて駆動回路110A(110B)は燃料噴射弁27A(27B)の付勢を停止する。つまり、上述の噴射時間TAU(A) (TAU(B) )だけ燃料噴射弁27A(27B)は付勢され、時間TAU(A) (TAU(B) )に応じた量の燃料が機関21のAバンク(Bバンク)燃焼室に送り込まれることになる。なお、CPU103の割込みは、A/D変換器101のA/D変換終了後、入出力インターフェイス102がクランク角センサ25Bのパルス信号を受信した時、等に発生する。
【0020】
エアフローメータ23の吸入空気量データ、吸気圧センサ26の吸気圧データおよび水温センサ29の冷却水温データは所定時間もしくは所定クランク角毎に実行されるA/D変換ルーチンによって取込まれてRAM105の所定領域に格納される。つまり、RAM105における吸入空気量データ、吸気圧データおよび冷却水温データは所定時間毎に更新されている。また、回転速度データはクランク角センサ25Bの30°CA(クランク角)毎の割込みによって演算されてRAM105の所定領域に格納される。
【0021】
次に、本発明による燃料噴射量の制御についてタイムチャートとフローチャートとを用いて以下に説明する。
図2はV型8気筒機関における加速時の燃料噴射量制御の説明図である。図2において横軸は時間を示し、縦軸上段の#に続く数字は噴射および点火気筒の順番を示し、縦軸下段は時刻tに加速が開始され変化する同期燃料噴射量TAUを示す。図2に示すように、V型8気筒機関では、#1、#3、#5、#7からなるAバンクと#2、#4、#6、#8からなるBバンクの噴射および点火の順序が、#1、#8、#4、#3、#6、#5、#7、#2となっている。図2の上段において、黒帯で示す部分は同期噴射による各気筒の燃料噴射弁の開弁時期を示し、ハッチング(左上から右下への斜線)で示す部分は各気筒の吸気弁の開弁時期を示し、長円で囲まれた中にハッチング(右上から左下への斜線)で示す部分は加速燃料噴射時期を示す。
【0022】
図3は燃料噴射量算出ルーチンのフローチャートである。図3に示す燃料噴射量算出ルーチンは機関始動後の同期燃料噴射量(TAU)を算出するものである。機関始動時の同期燃料噴射量(TAUST)は別のルーチンで算出され、機関運転開始後所定の回転数、例えば400RPMに到達するまでTAUSTが噴射され、400RPM到達以降図3示すルーチンにより算出されたTAUが噴射される。本ルーチンはメインルーチンの中で実行される。
【0023】
先ずステップS31では機関の運転状態を示す各種信号入力データ、すなわち回転数NE、吸入空気量GA、冷却水温THW、スロットル開度TA、吸気温TH、等のデータを読み取る。ステップ32ではステップ31で読み取った機関の回転数NEと吸入空気量GAのデータに基づきROM104に格納されている二次元マップから基本燃料噴射量TPを算出する。ステップ33では冷却水温THW、スロットル開度TA、吸気温TH、等により定まる冷間暖機増量補正係数FWL、加速時に増量される燃料付着補正係数FAEおよびその他の補正係数αをそれぞれ算出する。次いで、ステップ34ではバッテリ電圧BAに基づきROM104に格納されているマップから無効噴射時間Ts を算出する。
【0024】
次にステップ35では空燃比F/B制御系毎に、公知の空燃比補正係数算出ルーチンで演算される空燃比補正係数FAF(A) (FAF(B) )および空燃比F/B制御の休止中に生じる空燃比のずれ量を補正する空燃比学習補正係数FG(A) (FG(B) )を読み取る。ここで、FAF,FGに続く添字はバンクAまたはバンクBを示す。空燃比補正係数FAF(A) (FAF(B) )は第1空燃比センサ33A(33B)の出力値に応じて機関の空燃比が目標空燃比になるように機関へ供給する燃料噴射量を算出するためのフィードバック補正係数であり、空燃比学習補正係数FG(A) (FG(B) )は空燃比F/B制御の休止中に生じる空燃比のずれ量を補正するための補正係数である。ステップ36ではステップ32で算出した基本燃料噴射量TP、ステップ33で算出した補正係数FWL、FAE、α、ステップ34で算出した無効噴射時間Tsおよびステップ35で読取った空燃比補正係数FAF(A) (FAF(B) )および空燃比学習補正係数FG(A) (FG(B) )を用いて次式から始動後の同期燃料噴射量TAU(A) (TAU(B) )を算出する。
【0025】
TAU(A) =TP*FWL*FAE*α*(FAF(A) +FG(A) )+Ts
TAU(B) =TP*FWL*FAE*α*(FAF(B) +FG(B) )+Ts
上式から、機関のクランク角に応じて同期噴射される同期燃料噴射量TAU(A) (TAU(B) )は、空燃比F/B制御系に関わらず機関の要求に応じてTP、FWL、FAEおよびαから算出される機関の要求燃料噴射量TAUBと空燃比F/B制御系毎にFAF(A) (FAF(B) )およびFG(A) (FG(B) )から算出される空燃比補正燃料噴射量TAUC(A) (TAUC(B) )との積と無効噴射時間Tsとの和に基づき算出されることが判る。
【0026】
図4は本発明の燃料噴射ルーチンのフローチャートである。本発明の燃料噴射ルーチンは、クランク角センサ25Bから入出力インターフェイス102に入力されるパルス信号を受信する毎に、すなわち30°CA毎に実行される。この30°CA割込ルーチンの実行はイグニッションスイッチがオンとなったとき開始され、オフとなったとき終了される。先ず、ステップ401では、気筒判別が終了したか否かを判定する。すなわち、スタータスイッチをオンにして機関を始動開始した後、クランク角基準センサ25Aから出力される2つのパルス信号を受け、クランク軸が2回転して気筒判別が終了したか否かを判定する。30°CA割込ルーチンの実行が開始された後、未だ気筒判別が未終了と判定されたときはこの30°CA割込ルーチン、すなわち本燃料噴射ルーチンを終了し、気筒判別が終了したと判定されたときからは、ステップ402へ進む。
【0027】
ステップ402では、気筒が噴射時期であるか否かをクランク角基準センサ25Aとクランク角センサ25Bとから検出して判定し、その判定結果がYESのときはステップ403へ、その判定結果がNOのときは本燃料噴射ルーチンを終了する。ステップ403では、機関の要求燃料噴射量TAUBを次式から算出する。
【0028】
TAUB=TP*FWL*FAE*α
ステップ404では、本ルーチンの前回処理周期の要求燃料噴射量TAUBi に対する今回処理周期の要求燃料噴射量TAUBの差分ΔTAUBi (=TAUBi −TAUB)を算出する。
ステップ405では、ステップ404で算出された差分ΔTAUBi が所定量Aより大か否かを判別することにより機関の運転状態が加速状態であるか否かを判定する。すなわち、ΔTAUBi >Aのときは機関は加速状態にあるものと判定してステップ406へ進み、ΔTAUBi ≦Aのときは機関は加速状態にないものと判定して本ルーチンを終了する。
【0029】
ステップ406では、ステップ404で算出された差分ΔTAUBi から燃料噴射弁の性能上最低必要な燃料噴射弁の開弁時間を確保できるか否かを判定し、ΔTAUBi *K≧B(Bは無効噴射時間Ts)のときは上記開弁時間を確保できるものと判定してステップ407へ進み、ΔTAUBi *K<Bのときは上記開弁時間を確保できないものと判定して本ルーチンを終了する。ここで、Kは再噴射する加速燃料噴射量ΔTAUBi−1 の補正係数であり、任意の値、例えば1/2に設定する。
【0030】
ステップ407では、前回処理周期で同期噴射を実行済の気筒で再噴射される加速燃料噴射量ΔTAUBi−1 を次式から算出する。
ΔTAUBi−1 =ΔTAUBi *K
ステップ408では、前回に同期噴射済の気筒で再噴射の実行を行う。具体的には、図2に示すように、時刻tにおいて、今回の同期噴射気筒が7番気筒(#7)のときは、前回の同期噴射気筒である5番気筒(#5)で加速燃料噴射量ΔTAUBi−1 を噴射し、時刻tにおいて、今回の同期噴射気筒が2番気筒(#2)のときは、前回の同期噴射気筒である7番気筒(#7)で加速燃料噴射量ΔTAUBi−1 を噴射する。
【0031】
ステップ410では、ステップ407で算出された前回の同期噴射気筒への加速燃料噴射量ΔTAUBi−1 から燃料噴射弁の性能上最低必要な燃料噴射弁の開弁時間を確保できるか否かを判定し、ΔTAUBi−1 *K≧B(Bは無効噴射時間Ts)のときは上記開弁時間を確保できるものと判定してステップ411へ進み、ΔTAUBi−1 *K<Bのときは上記開弁時間を確保できないものと判定して本ルーチンを終了する。ここで、Kは再噴射する加速燃料噴射量ΔTAUBi−2 の補正係数であり、任意の値、例えば1/2に設定する。
【0032】
ステップ411では、前々回処理周期で同期噴射を実行済の気筒で再噴射される加速燃料噴射量ΔTAUBi−2 を次式から算出する。
ΔTAUBi−2 =ΔTAUBi−1 *K(ΔTAUBi−2 <ΔTAUBi−1 )ステップ412では、前々回に同期噴射済みの気筒で再噴射の実行を行う。具体的には、図2に示すように、時刻tにおいて今回の同期噴射気筒が7番気筒(#7)のときは、前々回の同期噴射気筒である6番気筒(#6)で加速燃料噴射量ΔTAUBi−2 を噴射し、時刻tにおいて、今回の同期噴射気筒が2番気筒(#2)のときは、前々回の同期噴射気筒である5番気筒(#5)で加速燃料噴射量ΔTAUBi−2 を噴射する。
【0033】
ステップ413では、図2に示すように今回噴射気筒、例えば#7気筒や、#2気筒による同期噴射の実行を行う。この今回噴射気筒#7や#2による同期燃料噴射量TAUは、図3を用いて説明した燃料噴射量算出ルーチンの実行により求められたものを使用する。
次いで、ステップ414では、ステップ403で算出した機関の要求燃料噴射量TAUBを前回処理周期の要求燃料噴射量TAUBi に設定する。
【0034】
なお、上記実施形態以外の機関の加速状態を検出する方法として、機関における、吸入空気量、スロットル開度、回転数、アクセル踏込量等の値から検出する方法を用いてもよい。
また、上記実施形態では、加速燃料を今回の同期噴射と同期して、吸気行程にある気筒、かつ/または吸気行程直前の気筒に噴射する例を示したが、この他に、非同期的に吸気行程にある気筒、かつ/または吸気行程直前の気筒に加速燃料の噴射を実行してもよい。また、各気筒に噴射される加速燃料は各気筒の吸気行程が終了する時間(吸気弁が閉弁するまでの時間)に応じて算出された加速燃料量を減量補正してもよい。
【0035】
以上、V型機関を例にとって本発明による燃料噴射制御を説明したが、本発明は空燃比フィードバック制御系を複数設けた直列気筒機関に対しても上記と同様に適用できる。例えば、直列4気筒機関において、#1と#4からなる気筒群Aと#2と#3からなる気筒群Bがそれぞれ個別の排気管に接続され、各排気管に触媒コンバータが配設され、その触媒コンバータの上流側空燃比センサと好ましくは下流側空燃比センサとが設けられ、これら空燃比センサの出力に基づき各気筒群に対応した各系統の空燃比F/B制御を行うとき、噴射気筒の順番が#1、#4、#2、#3であるので、#4気筒の噴射後#2気筒が噴射されるときや、#3気筒の噴射後#1気筒が噴射されるときは、前回噴射気筒と今回噴射気筒とは空燃比制御系が異なる。このような直列4気筒機関においても、上述した本発明による燃料噴射量制御を適用すれば、加速増量補正を過不足なく行うことができる。
【0036】
【発明の効果】
以上説明したように、本発明の多気筒内燃機関の燃料噴射量制御装置によれば、気筒群毎に空燃比F/B制御系を複数有する多気筒内燃機関の燃料噴射量制御装置において、空燃比F/B制御系とは無関係に機関の加速状態を判定するので、前回噴射気筒と今回噴射気筒とが異なる空燃比制御系のときでも機関の加速状態の判定を正確に行うことができ、空燃比F/B制御系とは無関係に機関の加速燃料噴射量を算出するので、機関の加速時に過不足のない燃料噴射量を供給でき、特に、空燃比がリッチのときの加速時における排気エミッションの悪化が抑制でき、空燃比がリーンのときの加速時における加速応答性を向上できる。
【図面の簡単な説明】
【図1】本発明による多気筒内燃機関の燃料噴射量制御装置の一実施形態を示す概略図である。
【図2】V型8気筒機関における加速時の燃料噴射量制御の説明図である。
【図3】燃料噴射量算出ルーチンのフローチャートである。
【図4】本発明の燃料噴射ルーチンのフローチャートである。
【符号の説明】
21…機関
23…エアフローメータ
25A、25B…クランク角センサ
27A、27B…燃料噴射弁
29…水温センサ
30…電子制御ユニット(ECU)
31A、31B…排気管
32A、32B、36…触媒コンバータ
33A、33B…第1空燃比センサ
37A、37B…第2空燃比センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection amount control device for a multi-cylinder internal combustion engine, and in particular, an air-fuel ratio sensor is provided in each of exhaust passages provided for each of a plurality of cylinder groups, and the engine is controlled in accordance with each output of these air-fuel ratio sensors. It has a plurality of air-fuel ratio F / B (feedback) control systems for controlling the air-fuel ratio of the exhaust gas to be exhausted so as to match the target air-fuel ratio. The present invention relates to a fuel injection amount control device for a multi-cylinder internal combustion engine that supplies a sufficient amount.
[0002]
[Prior art]
Some multi-cylinder internal combustion engines divide a plurality of cylinders into a plurality of cylinder groups and perform air-fuel ratio F / B control for each bank forming the cylinder groups. For example, in the case of a multi-cylinder internal combustion engine such as V6 or V8, a plurality of cylinders are divided into two banks, an exhaust passage is provided for each bank, an air-fuel ratio sensor is provided in each exhaust passage, and an output of each air-fuel ratio sensor is provided. , The air-fuel ratio F / B control of each system corresponding to each bank is performed.
[0003]
A fuel injection control method for a multi-cylinder internal combustion engine that performs such air-fuel ratio F / B control of a plurality of systems, for example, disclosed in Japanese Patent Application Laid-Open No. 59-162333, is based on the operating state of the engine. A basic fuel injection amount TP is calculated from the rotational speed NE and the intake air amount GA, and each air-fuel ratio detected by each air-fuel ratio sensor based on the output of each air-fuel ratio sensor of each air-fuel ratio F / B control system is calculated. An air-fuel ratio F / B correction coefficient FAF for each cylinder belonging to each air-fuel ratio F / B control system is calculated to match the target air-fuel ratio, and the basic fuel injection amount TP and the air-fuel ratio F / B control system are calculated. Based on the air-fuel ratio F / B correction coefficient FAF or the like, a synchronous fuel injection amount TAU for synchronous injection in accordance with a predetermined crank angle is calculated from the following equation, and control is performed so that the synchronous fuel injection amount is injected into the cylinder.
[0004]
TAU = TP * FWL * FAE * α * (FAF + FG) + Ts
Here, FWL is a correction amount for increasing the amount of cold warm-up, FAE is a correction amount for increasing the amount of fuel attached during acceleration, FG is a correction coefficient for learning the air-fuel ratio, α is another correction coefficient, and Ts is an invalid injection time. Accordingly, the synchronous fuel injection amount TAU is calculated from the TP, FWL, FAE, and α according to the engine request, regardless of the air-fuel ratio F / B control system. It is calculated as the sum of the product of the air-fuel ratio corrected fuel injection amount TAUC calculated from FAF and FG for each system and the invalid injection time Ts.
[0005]
Further, the fuel injection control method determines that the engine is in an accelerating state when the current synchronous fuel injection amount has increased by a predetermined amount or more from the previous synchronous fuel injection amount, and increases the amount during acceleration according to the difference between these synchronous fuel injection amounts. Then, the acceleration correction fuel injection amount to be calculated is calculated, and the acceleration correction fuel injection amount is controlled so as to be injected into the cylinder in the intake stroke.
[0006]
[Problems to be solved by the invention]
However, in the fuel injection control method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-162333, the previous and current synchronous fuel injection amounts TAU are calculated from the above equation, and the acceleration state of the engine is determined from the difference between the two. Therefore, when the cylinders that inject fuel in the previous time and the current time belong to different air-fuel ratio control systems, the air-fuel ratio corrected fuel injection amount TAUC is reduced and corrected at the time of the previous synchronous fuel injection amount calculation, and at the time of the current synchronous fuel injection amount calculation. If the difference between the previous and current air-fuel ratio corrected fuel injection amounts at which the increase is corrected is large, the engine is determined to be in an accelerated state even though the engine is not in an accelerated state. Since the re-injection is performed for the cylinder whose injection amount has been completed during the current intake stroke, there is a problem that the engine becomes over-rich and the emission deteriorates, especially when the engine is lightly loaded. On the other hand, when the difference between the previous and current air-fuel ratio corrected fuel injection amounts is small such that the air-fuel ratio corrected fuel injection amount TAUC is increased when the previous synchronous fuel injection amount is calculated and reduced when the current synchronous fuel injection amount is calculated. In spite of the fact that the engine is in an accelerating state, it is determined that the engine is not in an accelerating state, and the re-injection is not executed. Therefore, there is a problem that the engine becomes over-lean and the acceleration responsiveness is deteriorated particularly when the engine is under a high load. .
[0007]
Therefore, the present invention solves the above-described problem, and changes the air-fuel ratio of the exhaust gas discharged from the engine in accordance with each output of the air-fuel ratio sensors provided in the exhaust passages provided for each cylinder group to the target air-fuel ratio. In a fuel injection amount control device for a multi-cylinder internal combustion engine having a plurality of air-fuel ratio F / B control systems for controlling the fuel injection amount to be equal to, the fuel injection amount is supplied to a desired cylinder without excess or deficiency, particularly when the engine is in an accelerating state. An object of the present invention is to provide a fuel injection amount control device for a multi-cylinder internal combustion engine.
[0008]
[Means for Solving the Problems]
A fuel injection amount control apparatus for a multi-cylinder internal combustion engine according to the present invention that solves the above-described problems includes an air-fuel ratio sensor disposed in an exhaust passage provided for each cylinder group of the multi-cylinder internal combustion engine, and an operating state of the engine. The required fuel injection amount TAUB is calculated on the basis of the air-fuel ratio sensor, and each air-fuel ratio detected by each air-fuel ratio sensor is injected to the corresponding cylinder so as to match the target air-fuel ratio based on each output of the air-fuel ratio sensor. Each air-fuel ratio corrected fuel injection amount TAUC for correcting the fuel injection amount TAUB is calculated, and synchronous injection is performed at a predetermined crank angle based on the required fuel injection amount TAUB and the air-fuel ratio corrected fuel injection amount TAUC. A synchronous fuel injection means for calculating the synchronous fuel injection amount TAU and controlling the injection of the synchronous fuel injection amount TAU to the cylinder; Acceleration detection means for detecting the acceleration state of the internal combustion engine; and, when the acceleration detection means detects the acceleration state of the internal combustion engine, a request for a cylinder that has previously executed synchronous injection and a request for a cylinder that has executed synchronous injection this time. Acceleration fuel calculating means for calculating an acceleration fuel injection amount ΔTAUBi * K 1 (K 1 is a correction coefficient) based on a difference ΔTAUBi (= TAUBi−TAUB) of the fuel injection amount, and injecting the calculated acceleration fuel injection amount And accelerating fuel injection means.
[0009]
In the fuel injection amount control device for a multi-cylinder internal combustion engine according to the present invention, the acceleration detection by the acceleration detection means is detected from a difference between each required fuel injection amount of a cylinder that has performed the previous synchronous injection and a cylinder that has performed the current synchronous injection. You.
According to the above configuration, the acceleration state of the engine is determined so as not to be affected by the air-fuel ratio F / B control system of another system. Therefore, the acceleration determination of the engine becomes accurate, and an appropriate amount of acceleration is performed when the engine is actually in the acceleration state. Fuel is supplied so as to perform an increase correction and prevent unnecessary increase correction when the engine is not actually accelerating.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram showing an embodiment of a fuel injection amount control device for a multi-cylinder internal combustion engine according to the present invention. In FIG. 1, reference numeral 21 denotes a main body of a V-type eight-cylinder engine in which four cylinders are arranged in two rows in a V-shape. An air flow meter 23 is provided in an intake passage 22 of the engine body 21. The air flow meter 23 is for directly measuring the amount of intake air. For example, a movable vane type air flow meter having a built-in potentiometer or the like is used, and generates an output signal of an analog voltage proportional to the amount of intake air. This output signal is input to an A / D converter 101 with a built-in multiplexer of an ECU (electronic control unit) 30. The distributor 24 has a compression stroke near the top dead center TDC of the first cylinder every two rotations (720 ° CA) of the crankshaft of the engine 21 and a fourth cylinder having a phase difference of 360 ° CA from the top dead center. Around the top dead center TDC of the compression stroke, a crank angle sensor 25A that generates two reference position detection pulse signals serving as references for determining the injection timing and the ignition timing of each cylinder and a crank angle of 30 A crank angle sensor 25B that generates a pulse signal for detecting a crank angle for each degree is provided. The pulse signals of the crank angle sensors 25A and 25B are supplied to an input / output interface 102 of the ECU 30, and the output of the crank angle sensor 25B is supplied to an interrupt terminal of the CPU 103. The cylinder discrimination is performed during two revolutions of the crankshaft after the start of the engine 21 using two reference position detection pulse signals.
[0011]
An intake pressure sensor 26 for detecting a pressure in the intake pipe is provided in an intake pipe of the engine 21. The intake pressure sensor 26 generates an electric signal of an analog voltage proportional to the intake pressure. Is supplied to the vessel 101.
Further, the intake passage 22 is provided with fuel injection valves 27A and 27B for supplying pressurized fuel from a fuel supply system to an intake port for each cylinder.
[0012]
A water temperature sensor 29 for detecting the temperature of the cooling water is provided on a water jacket (not shown) of the cylinder block of the engine 21. The water temperature sensor 29 generates an analog voltage electric signal corresponding to the temperature of the cooling water. This output is also supplied to the A / D converter 101.
The exhaust systems downstream of the exhaust manifolds 31A and 31B of the right bank (hereinafter referred to as A bank) and the left bank (hereinafter referred to as B bank) of the engine 21 respectively have three harmful components HC, CO, and NO X in the exhaust gas. Catalytic converters 32A and 32B accommodating a three-way catalyst for purifying the catalyst at the same time. The catalytic converters (start catalysts) 32A and 32B have a relatively small capacity and are provided in the engine room so that the catalyst can be warmed up at the time of starting the engine in a short time.
[0013]
A first air-fuel ratio sensor 33A for the A bank is provided in the exhaust manifold 31A of the A bank, that is, the exhaust pipe 31A on the upstream side of the catalytic converter 32A, and the exhaust manifold 31B of the B bank is provided with the catalytic converter 32B. Similarly, a first air-fuel ratio sensor 33B for the B bank is provided in the exhaust pipe 31B on the upstream side of the fuel cell.
[0014]
Further, the two exhaust pipes 34A and 34B join at a gathering portion 35a downstream thereof, and a catalytic converter (main catalyst) 36 containing a three-way catalyst is arranged in the exhaust pipe downstream of the gathering portion 35a. ing. The catalytic converter 36 has a relatively large capacity and is installed under the floor of the vehicle body. A collective exhaust pipe 35 is connected downstream of the catalytic converter 36. The two exhaust pipes 34A and 34B are preferably provided with second air-fuel ratio sensors 37A and 37B for Bank A and Bank B, respectively.
[0015]
In the present embodiment, the first air-fuel ratio sensors 33A and 33B correspond to one-to-one correspondences between the oxygen component concentration in the exhaust gas and the air-fuel ratio in a wide air-fuel ratio range. A full-range air-fuel ratio sensor (A / F sensor) is used. The first air-fuel ratio sensors 33A and 33B generate an output voltage that is substantially proportional to the concentration of oxygen contained in the exhaust gas of the engine 21, and the output voltage is supplied to the A / D converter 101 of the ECU 30. On the other hand, as the second air-fuel ratio sensors 37A and 37B, lambda-type air-fuel ratio sensors (A / F sensors) whose outputs are inverted between when the oxygen component concentration in the exhaust gas is rich and when it is lean are used. .
[0016]
In the present embodiment, the ECU 30 is configured as a microcomputer, for example, and includes an A / D converter 101, an input / output (I / O) interface 102, a CPU 103, a ROM 104, a RAM 105, a backup RAM 106, a clock generation circuit 107, and the like. Is provided. The ECU 30 performs basic control such as fuel injection control, ignition timing control, air-fuel ratio control, and the like of the engine 21, and also performs correction control of a fuel injection amount during acceleration according to the present invention, which will be described later. Acceleration detecting means for detecting the acceleration state of the engine from the difference between the required fuel injection amounts of the cylinders executing the synchronous injection, and accelerating fuel calculating means for calculating the accelerated fuel injection amount based on the difference; It functions as acceleration fuel injection means for injecting the fuel injection amount.
[0017]
Here, “this time” and “last time” used in “current time synchronous injection” and “last time synchronous injection”, for example, inject the synchronous fuel injection amount calculated from the operating state of the engine in synchronization with the crank angle of the engine. A cylinder that is synchronously injected with “this time” is defined as a cylinder that is synchronously injected with the current injection, that is, a cylinder that is synchronously injected with the current injection. A cylinder for which fuel injection has been completed is defined as a previous synchronous injection cylinder.
[0018]
The throttle valve 38 of the intake passage 22 is provided with an idle switch 39 for generating a signal indicating whether the throttle valve 38 is in a fully closed state, that is, an XIDL signal. This idle state output signal XIDL is supplied to the input / output interface 102 of the ECU 30.
Reference numerals 40A and 40B denote secondary air introduction control valves for supplying secondary air from an air source such as an air pump (not shown) to the exhaust manifolds 31A and 31B at the time of deceleration or idling to reduce HC and CO emissions. belongs to.
[0019]
Further, in the ECU 30, the down counter 108A, the flip-flop 109A, and the drive circuit 110A are for controlling the fuel injection valve 27A of the A bank, and the down counter 108B, the flip flop 109B, and the drive circuit 110B are provided for the fuel cell of the B bank. This is for controlling the injection valve 27B. That is, in the routine described later, synchronous fuel injection amount (injection time) TAU (A) (TAU ( B)) when is calculated, the injection time TAU (A) (TAU (B )) is down counter 108A (108B) And the flip-flop 109A (109B) is also set. As a result, the drive circuit 110A (110B) starts energizing the fuel injection valve 27A (27B). On the other hand, when the down counter 108A (108B) counts a clock signal (not shown) and its output terminal finally becomes "1" level, the flip-flop 109A (109B) is set and the drive circuit 110A ( 110B) stops the energization of the fuel injection valve 27A (27B). That is, the above-described injection time TAU (A) (TAU (B )) only the fuel injection valve 27A (27B) is energized, the time TAU (A) (TAU (B )) in an amount corresponding to the fuel of the engine 21 It will be sent to the A bank (B bank) combustion chamber. Note that the interrupt of the CPU 103 occurs when the input / output interface 102 receives a pulse signal of the crank angle sensor 25B after the A / D conversion of the A / D converter 101 ends.
[0020]
The intake air amount data of the air flow meter 23, the intake pressure data of the intake pressure sensor 26, and the cooling water temperature data of the water temperature sensor 29 are taken in by an A / D conversion routine executed for a predetermined time or every predetermined crank angle, and stored in the RAM 105 Stored in the area. That is, the intake air amount data, intake pressure data, and cooling water temperature data in the RAM 105 are updated every predetermined time. The rotation speed data is calculated by an interruption of the crank angle sensor 25B at every 30 ° CA (crank angle) and stored in a predetermined area of the RAM 105.
[0021]
Next, control of the fuel injection amount according to the present invention will be described below using a time chart and a flowchart.
FIG. 2 is an explanatory diagram of fuel injection amount control during acceleration in a V-type eight-cylinder engine. In FIG. 2, the horizontal axis represents time, the number following the longitudinal axis upper # indicates the order of injection and ignition cylinder, the vertical axis lower part shows the synchronous fuel injection quantity TAU acceleration at time t 1 is started changes. As shown in FIG. 2, in the V-type 8-cylinder engine, the injection and ignition of the A bank consisting of # 1, # 3, # 5, and # 7 and the B bank consisting of # 2, # 4, # 6, and # 8 are performed. The order is # 1, # 8, # 4, # 3, # 6, # 5, # 7, # 2. In the upper part of FIG. 2, the portion indicated by a black band indicates the opening timing of the fuel injection valve of each cylinder by synchronous injection, and the portion indicated by hatching (oblique line from upper left to lower right) opens the intake valve of each cylinder. The timing is shown, and the portion indicated by hatching (oblique lines from upper right to lower left) inside the oval indicates the acceleration fuel injection timing.
[0022]
FIG. 3 is a flowchart of a fuel injection amount calculation routine. The fuel injection amount calculation routine shown in FIG. 3 is for calculating a synchronous fuel injection amount (TAU) after the engine is started. The synchronous fuel injection amount (TAUST) at the time of starting the engine is calculated by another routine, TAUST is injected until a predetermined rotational speed is reached, for example, 400 RPM after the engine operation is started, and after the RPM reaches 400 RPM, the routine is calculated by the routine shown in FIG. TAU is injected. This routine is executed in the main routine.
[0023]
First, in step S31, various signal input data indicating the operating state of the engine, that is, data such as the rotational speed NE, the intake air amount GA, the cooling water temperature THW, the throttle opening TA, the intake temperature TH, and the like are read. In step 32, the basic fuel injection amount TP is calculated from the two-dimensional map stored in the ROM 104 based on the data of the engine speed NE and the intake air amount GA read in step 31. In step 33, a cold warm-up increase correction coefficient FWL determined by the coolant temperature THW, the throttle opening TA, the intake air temperature TH, etc., a fuel adhesion correction coefficient FAE increased during acceleration, and another correction coefficient α are calculated. Next, at step 34, the invalid injection time Ts is calculated from the map stored in the ROM 104 based on the battery voltage BA.
[0024]
Next, at step 35, for each air-fuel ratio F / B control system, the air-fuel ratio correction coefficient FAF (A) (FAF (B) ) calculated by a known air-fuel ratio correction coefficient calculation routine and the suspension of the air-fuel ratio F / B control An air-fuel ratio learning correction coefficient FG (A) (FG (B) ) for correcting the air-fuel ratio deviation amount occurring therein is read. Here, the subscripts following FAF and FG indicate bank A or bank B. The air-fuel ratio correction coefficient FAF (A) (FAF (B) ) determines the fuel injection amount supplied to the engine such that the air-fuel ratio of the engine becomes the target air-fuel ratio in accordance with the output value of the first air-fuel ratio sensor 33A (33B). The air-fuel ratio learning correction coefficient FG (A) (FG (B) ) is a correction coefficient for correcting a deviation amount of the air-fuel ratio that occurs during suspension of the air-fuel ratio F / B control. is there. In step 36, the basic fuel injection amount TP calculated in step 32, the correction coefficient FWL, FAE, α calculated in step 33, the invalid injection time Ts calculated in step 34, and the air-fuel ratio correction coefficient FAF (A) read in step 35 Using (FAF (B) ) and the air-fuel ratio learning correction coefficient FG (A) (FG (B) ), the post-start synchronous fuel injection amount TAU (A) (TAU (B) ) is calculated from the following equation.
[0025]
TAU (A) = TP * FWL * FAE * α * (FAF (A) + FG (A) ) + Ts
TAU (B) = TP * FWL * FAE * α * (FAF (B) + FG (B) ) + Ts
From the above equation, the synchronous fuel injection amount TAU (A) (TAU (B) ) synchronously injected according to the crank angle of the engine is TP, FWL in accordance with the request of the engine regardless of the air-fuel ratio F / B control system. , Calculated from FAF (A) (FAF (B) ) and FG (A) (FG (B) ) for each required fuel injection amount TAUB of the engine calculated from FAE and α and the air-fuel ratio F / B control system. It can be seen that the calculation is based on the sum of the product of the air-fuel ratio corrected fuel injection amount TAUC (A) (TAUC (B) ) and the invalid injection time Ts.
[0026]
FIG. 4 is a flowchart of the fuel injection routine of the present invention. The fuel injection routine of the present invention is executed every time a pulse signal input to the input / output interface 102 from the crank angle sensor 25B is received, that is, every 30 ° CA. The execution of the 30 ° CA interrupt routine is started when the ignition switch is turned on, and is ended when the ignition switch is turned off. First, in step 401, it is determined whether or not the cylinder determination has been completed. That is, after the starter switch is turned on to start the engine, two pulse signals output from the crank angle reference sensor 25A are received, and it is determined whether the crankshaft has rotated twice and the cylinder determination has been completed. After the execution of the 30 ° CA interrupt routine is started, if it is determined that the cylinder discrimination has not been completed yet, the 30 ° CA interrupt routine, that is, the present fuel injection routine is completed, and it is determined that the cylinder discrimination has been completed. After that, the process proceeds to step 402.
[0027]
In step 402, whether or not the cylinder is at the injection timing is detected and determined from the crank angle reference sensor 25A and the crank angle sensor 25B, and if the determination result is YES, the process proceeds to step 403, and the determination result is NO. At this time, the present fuel injection routine ends. In step 403, the required fuel injection amount TAUB of the engine is calculated from the following equation.
[0028]
TAUB = TP * FWL * FAE * α
In step 404, a difference ΔTAUBi (= TAUBi-TAUB) between the required fuel injection amount TAUB in the current processing cycle and the required fuel injection amount TAUBi in the previous processing cycle of this routine is calculated.
In step 405, it is determined whether or not the operation state of the engine is an acceleration state by determining whether or not the difference ΔTAUBi calculated in step 404 is larger than a predetermined amount A. That is, when ΔTAUBi> A, it is determined that the engine is in an accelerating state, and the routine proceeds to step 406. When ΔTAUBi ≦ A, the engine is not in an accelerating state, and this routine is terminated.
[0029]
In step 406, it is determined from the difference ΔTAUBi calculated in step 404 whether it is possible to secure the minimum required opening time of the fuel injection valve in terms of the performance of the fuel injection valve, and ΔTAUBi * K 1 ≧ B (B is invalid injection) If it is time Ts), it is determined that the valve opening time can be secured, and the routine proceeds to step 407. If ΔTAUBi * K 1 <B, it is determined that the valve opening time cannot be secured, and this routine ends. Here, K 1 is a correction coefficient for the acceleration fuel injection quantity ΔTAUBi-1 to re-injection set arbitrary value, for example, to 1/2.
[0030]
In step 407, the accelerated fuel injection amount ΔTAUBi-1 to be re-injected in the cylinder for which the synchronous injection has been executed in the previous processing cycle is calculated from the following equation.
ΔTAUBi-1 = ΔTAUBi * K 1
In step 408, re-injection is performed for the cylinder that has been subjected to synchronous injection last time. Specifically, as shown in FIG. 2, at time t 2, the when the current synchronous injection cylinder 7 cylinder (# 7), the acceleration in the fifth cylinder is the last sync injection cylinder (# 5) injecting fuel injection amount ΔTAUBi-1, at time t 3, when the current synchronous injection cylinder of the second cylinder (# 2), the acceleration fuel injection is 7 cylinder is the last sync injection cylinder (# 7) Inject the amount ΔTAUBi-1.
[0031]
In step 410, it is determined whether or not the minimum required opening time of the fuel injection valve in terms of the performance of the fuel injection valve can be secured from the previous acceleration fuel injection amount ΔTAUBi-1 to the synchronous injection cylinder calculated in step 407. , when the ΔTAUBi-1 * K 2 ≧ B (B is invalid injection time Ts) proceeds to step 411 it is determined that it can secure the valve opening time, the opening when the ΔTAUBi-1 * K 2 <B It is determined that the valve time cannot be secured, and this routine ends. Here, K 2 is a correction coefficient for the acceleration fuel injection quantity ΔTAUBi-2 to be re-injected, to set an arbitrary value, for example, to 1/2.
[0032]
In step 411, the accelerated fuel injection amount ΔTAUBi-2 to be re-injected in the cylinder for which the synchronous injection has been executed in the processing cycle two times before is calculated from the following equation.
In ΔTAUBi-2 = ΔTAUBi-1 * K 2 (ΔTAUBi-2 <ΔTAUBi-1) step 412, the execution of the re-injection at synchronous injection already cylinder before last. Specifically, as shown in FIG. 2, when the current synchronous injection cylinder is the seventh cylinder (# 7) at time t2, the accelerated fuel is injected into the sixth cylinder (# 6), which is the synchronous injection cylinder two times before. the injection quantity DerutaTAUBi-2 was injected at time t 3, when the current synchronous injection cylinder of the second cylinder (# 2), the acceleration fuel injection quantity in the fifth cylinder is a synchronous injection cylinder before the previous (# 5) Inject ΔTAUBi-2.
[0033]
In step 413, as shown in FIG. 2, synchronous injection is performed by the current injection cylinder, for example, the # 7 cylinder or the # 2 cylinder. As the synchronous fuel injection amount TAU for the current injection cylinders # 7 and # 2, the value obtained by executing the fuel injection amount calculation routine described with reference to FIG. 3 is used.
Next, at step 414, the required fuel injection amount TAUB of the engine calculated at step 403 is set to the required fuel injection amount TAUBi of the previous processing cycle.
[0034]
As a method of detecting the acceleration state of the engine other than the above embodiment, a method of detecting from the values of the intake air amount, the throttle opening, the rotation speed, the accelerator pedal depression amount, and the like in the engine may be used.
In the above-described embodiment, the example in which the accelerated fuel is injected into the cylinder in the intake stroke and / or the cylinder immediately before the intake stroke in synchronization with the current synchronous injection has been described. Accelerated fuel may be injected into a cylinder in a stroke and / or a cylinder immediately before an intake stroke. Further, for the accelerated fuel injected into each cylinder, the amount of the accelerated fuel calculated according to the time when the intake stroke of each cylinder ends (the time until the intake valve closes) may be reduced.
[0035]
As described above, the fuel injection control according to the present invention has been described by taking the V-type engine as an example. However, the present invention can be similarly applied to an in-line cylinder engine provided with a plurality of air-fuel ratio feedback control systems. For example, in an in-line four-cylinder engine, a cylinder group A including # 1 and # 4 and a cylinder group B including # 2 and # 3 are respectively connected to individual exhaust pipes, and a catalytic converter is disposed in each exhaust pipe. An upstream air-fuel ratio sensor and preferably a downstream air-fuel ratio sensor of the catalytic converter are provided. When performing air-fuel ratio F / B control of each system corresponding to each cylinder group based on the output of these air-fuel ratio sensors, injection is performed. Since the order of the cylinders is # 1, # 4, # 2, and # 3, when the # 2 cylinder is injected after the injection of the # 4 cylinder, or when the # 1 cylinder is injected after the injection of the # 3 cylinder. The air-fuel ratio control system differs between the previous injection cylinder and the current injection cylinder. Even in such an in-line four-cylinder engine, if the above-described fuel injection amount control according to the present invention is applied, the acceleration increase correction can be performed without excess or deficiency.
[0036]
【The invention's effect】
As described above, according to the fuel injection amount control device for a multi-cylinder internal combustion engine of the present invention, in the fuel injection amount control device for a multi-cylinder internal combustion engine having a plurality of air-fuel ratio F / B control systems for each cylinder group, Since the acceleration state of the engine is determined independently of the fuel ratio F / B control system, it is possible to accurately determine the acceleration state of the engine even when the previous injection cylinder and the current injection cylinder are different air-fuel ratio control systems, Since the acceleration fuel injection amount of the engine is calculated irrespective of the air-fuel ratio F / B control system, a sufficient fuel injection amount can be supplied when the engine is accelerated. In particular, the exhaust gas during acceleration when the air-fuel ratio is rich is increased. Emission deterioration can be suppressed, and acceleration responsiveness during acceleration when the air-fuel ratio is lean can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a fuel injection amount control device for a multi-cylinder internal combustion engine according to the present invention.
FIG. 2 is an explanatory diagram of fuel injection amount control during acceleration in a V-type eight-cylinder engine.
FIG. 3 is a flowchart of a fuel injection amount calculation routine.
FIG. 4 is a flowchart of a fuel injection routine of the present invention.
[Explanation of symbols]
21 ... Engine 23 ... Air flow meters 25A and 25B ... Crank angle sensors 27A and 27B ... Fuel injection valve 29 ... Water temperature sensor 30 ... Electronic control unit (ECU)
31A, 31B ... exhaust pipes 32A, 32B, 36 ... catalytic converters 33A, 33B ... first air-fuel ratio sensors 37A, 37B ... second air-fuel ratio sensors

Claims (2)

多気筒内燃機関の気筒群毎に設けられた排気通路にそれぞれ配設される空燃比センサと、該機関の運転状態に基づいて要求燃料噴射量を算出し、該空燃比センサの各出力に基づいて該各空燃比センサにより検出される各空燃比を目標空燃比に一致するように当該気筒へ噴射する前記要求燃料噴射量を補正する各空燃比補正燃料噴射量をそれぞれ算出し、該要求燃料噴射量と該各空燃比補正燃料噴射量とに基づいて所定のクランク角に合わせて同期噴射する同期燃料噴射量を算出し、当該気筒へ該同期燃料噴射量を噴射するよう制御する同期燃料噴射手段と、を備えた多気筒内燃機関の燃料噴射量制御装置において、
前記内燃機関の加速状態を検出する加速検出手段と、
前記加速検出手段により前記内燃機関の加速状態を検出したとき、前回同期噴射を実行した気筒と今回同期噴射を実行する気筒の各要求燃料噴射量の差に基づいて加速燃料噴射量を算出する加速燃料算出手段と、
前記算出された加速燃料噴射量を噴射する加速燃料噴射手段と、
を備えたことを特徴とする多気筒内燃機関の燃料噴射量制御装置。
An air-fuel ratio sensor disposed in an exhaust passage provided for each cylinder group of a multi-cylinder internal combustion engine, and a required fuel injection amount is calculated based on an operation state of the engine. Based on each output of the air-fuel ratio sensor, The air-fuel ratio correction fuel injection amount for correcting the required fuel injection amount to be injected into the cylinder so that each air-fuel ratio detected by each air-fuel ratio sensor matches the target air-fuel ratio is calculated. Synchronous fuel injection for calculating a synchronous fuel injection amount for synchronous injection in accordance with a predetermined crank angle based on the injection amount and each of the air-fuel ratio corrected fuel injection amounts, and controlling to inject the synchronous fuel injection amount to the cylinder. Means, a fuel injection amount control device for a multi-cylinder internal combustion engine comprising:
Acceleration detection means for detecting the acceleration state of the internal combustion engine,
When the acceleration detecting means detects the acceleration state of the internal combustion engine, an acceleration for calculating an accelerated fuel injection amount based on a difference between each required fuel injection amount of a cylinder that has performed the previous synchronous injection and a cylinder that has performed the current synchronous injection. Fuel calculation means;
Acceleration fuel injection means for injecting the calculated acceleration fuel injection amount,
A fuel injection amount control device for a multi-cylinder internal combustion engine, comprising:
前記加速検出手段による加速検出が、前回同期噴射を実行した気筒と今回同期噴射を実行する気筒の各要求燃料噴射量の差から検出される請求項1に記載の多気筒内燃機関の燃料噴射量制御装置。2. The fuel injection amount of the multi-cylinder internal combustion engine according to claim 1, wherein the detection of the acceleration by the acceleration detection means is detected from a difference between each required fuel injection amount of a cylinder that has executed the previous synchronous injection and a cylinder that has executed the current synchronous injection. 3. Control device.
JP01573098A 1998-01-28 1998-01-28 Fuel injection amount control device for multi-cylinder internal combustion engine Expired - Fee Related JP3591270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01573098A JP3591270B2 (en) 1998-01-28 1998-01-28 Fuel injection amount control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01573098A JP3591270B2 (en) 1998-01-28 1998-01-28 Fuel injection amount control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11210523A JPH11210523A (en) 1999-08-03
JP3591270B2 true JP3591270B2 (en) 2004-11-17

Family

ID=11896894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01573098A Expired - Fee Related JP3591270B2 (en) 1998-01-28 1998-01-28 Fuel injection amount control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3591270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581154B2 (en) * 2010-09-08 2014-08-27 本田技研工業株式会社 General-purpose engine control device

Also Published As

Publication number Publication date
JPH11210523A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3581762B2 (en) Air-fuel ratio control device for internal combustion engine
EP0879949B1 (en) Fuel injection controlling apparatus in starting an internal combustion engine
US9279377B2 (en) Air-fuel ratio imbalance determination apparatus and air-fuel ratio imbalance determination method
US4644921A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US5730111A (en) Air-fuel ratio control system for internal combustion engine
JPH0972234A (en) Fuel injection controller for internal combustion engine
US5319558A (en) Engine control method and apparatus
JPH09250387A (en) Fuel injection control method for internal combustion engine
JPS60166734A (en) Fuel feed controlling method of multicylinder internal- combustion engine
US4699111A (en) Air-fuel ratio control method for internal combustion engines
JP3591270B2 (en) Fuel injection amount control device for multi-cylinder internal combustion engine
JPH0988663A (en) Control device for internal combustion engine
US8949000B2 (en) Control device and control method for internal combustion engine
JP2009097453A (en) Control device of internal combustion engine
JP3052751B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JP2503548Y2 (en) Fuel injection amount control device for internal combustion engine
JPH10306741A (en) Start time fuel injection control device for internal combustion engine
JPH08254146A (en) Fuel-air ratio control device for internal combustion engine
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine
JPH0828317A (en) Air-fuel ratio control device for internal combustion engine
JPH0447129B2 (en)
JPS6123846A (en) Fuel injection method in multicylinder engine
JPH06117304A (en) Engine control device
JPH0942019A (en) Fuel controller

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees