JP3591233B2 - Plasma cutting torch - Google Patents

Plasma cutting torch Download PDF

Info

Publication number
JP3591233B2
JP3591233B2 JP22782897A JP22782897A JP3591233B2 JP 3591233 B2 JP3591233 B2 JP 3591233B2 JP 22782897 A JP22782897 A JP 22782897A JP 22782897 A JP22782897 A JP 22782897A JP 3591233 B2 JP3591233 B2 JP 3591233B2
Authority
JP
Japan
Prior art keywords
torch
electrode
cooling
cooling pipe
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22782897A
Other languages
Japanese (ja)
Other versions
JPH1158021A (en
Inventor
哲 齊藤
三徳 赤石
克巳 半田
博之 木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22782897A priority Critical patent/JP3591233B2/en
Publication of JPH1158021A publication Critical patent/JPH1158021A/en
Application granted granted Critical
Publication of JP3591233B2 publication Critical patent/JP3591233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トーチ本体や電極の冷却の為に冷却液を用いるプラズマ切断トーチに関するものである。
【0002】
【従来の技術】
従来の冷却液を用いるプラズマ切断装置を図3、図4、図5に沿って説明する。図3に於いて、20はプラズマ切断トーチ、21は作動ガスを圧縮してプラズマ切断トーチに送るコンプレッサ、22は動作ガスの二次圧を一定に調整するレギュレータ、23はプラズマ切断トーチ20に電流を供給する為の切断用電源、24は母材25と前記切断用電源23を接続する設置ケーブルで、26は吸水ポンプである。
【0003】
そして、切断用電源23からは、導電線を内蔵しかつ冷却水の排水を行う排水ホース31と、冷却水をトーチに送る給水ホース32と、動作ガスを送るガスホース33と、アークスタートを良好にする為の高周波を乗せる為の導電線を合成樹脂等で絶縁したパイロットケーブル34と、合成樹脂等で被覆した導電線を接続して出力のON、OFFを行うトーチスイッチ35のケーブルを延出し、その先端部に、プラズマ切断トーチ20が取り付けられていた。
【0004】
次に図4は電極が無垢の場合の従来のプラズマ切断トーチの先端部を示す断面図である。この場合トーチ外部より導かれた冷却液は、トーチ本体の冷却パイプを通り、次に電極後端部表面を冷却し、さらにトーチ本体内の冷却液復路を通りトーチ本体を冷却した後トーチ外部へと帰っていく。
【0005】
次に図5は電極内に冷却液通路がある場合の従来のプラズマ切断トーチの先端部を示す断面図である。この場合トーチ外部より導かれた冷却液は、トーチ本体の冷却パイプを通り、次に電極内の冷却液通路を通り電極を冷却し、さらにトーチ本体内の冷却液復路を通りトーチ本体を冷却した後、トーチ外部へと帰っていく。
【0006】
そして従来例では、公開特昭63−68273号公報に示されるように、電極支持筒内側の水冷底面を平坦または円錐台の頂面に形成することにより、棒電極の冷却を強化したものがあった。
【0007】
【発明が解決しようとする課題】
上記の様に構成された従来のトーチには以下の欠点がある。
【0008】
第1に電極が無垢の場合、電極は後端部表面しか冷却されない。よって電極の冷却能力が低く、切断電流を大きくすると電極の発熱による寿命の低下の原因になっていた。
【0009】
第2に電極内に冷却液通路がある場合、電極は使用率や寿命を越えて使用し続けると電極内で冷却液が沸騰したり電極が焼損し、冷却液の流れが遮断されることがある。この時もしくはこの後使用を続けることによりトーチ本体までが焼損してしまう原因となっていた。
【0010】
【課題を解決するための手段】
この課題を解決する為に本発明の第1手段は、トーチ外部より導かれた冷却液がトーチ本体の冷却パイプを通り、次に電極の内側に形成された冷却液通路を通り電極を冷却し、さらにトーチ本体内の冷却液復路を通りトーチ本体を冷却した後トーチ外部へと帰っていく経路を有し、トーチ本体の冷却パイプに設けられたバイパス孔によって冷却パイプから冷却液復路へ冷却液を分流する経路を形成する構造を有する物である。
【0011】
更に本発明の第2手段は、第1手段に加え電極内での冷却液沸騰時や電極焼損時のトーチ本体焼損を防ぐ為、冷却パイプをトーチ本体内と電極内部に分割できるようにし、バイパス孔を冷却パイプの電極取付部近傍設けた特徴を有するものである。
【0012】
更に本発明の第3手段は、第1手段に加え電極が焼損して電極内の冷却液通路が遮断された後に使用し続けた場合のトーチ本体の焼損を防ぐ為、バイパス孔の総断面積を冷却パイプの断面積に対して1/3以上としたバイパス孔を有するものである。
【0013】
【発明の実施の形態】
上記第1手段の構成により、電極内での冷却液沸騰や電極焼損により電極内の冷却液通路で冷却液が遮断されたとしても、バイパス孔を通過する冷却液により冷却パイプ以外のトーチ本体の焼損は回避する事ができる作用を有す。
【0014】
また第2手段の構成により、電極内での冷却液沸騰や電極焼損時のトーチ本体内の冷却パイプを含むトーチ本体の焼損を防ぐ事ができる。
【0015】
また第3手段の構成により、電極が焼損して電極内の冷却液通路が遮断された後に使用し続けた場合のトーチ本体の焼損を防ぐ事ができる。
【0016】
以下、本発明の実施の形態につき、図1および図2に沿って説明する。
図1において、1はトーチ本体、2は電極、3は冷却パイプ、4は冷却液復路、5は冷却液通路、6はバイパス孔、7は冷却パイプII、8はチップである。
また図2において、11は電極2内の冷却液通路5を流れる冷却液流量、12はバイパス孔6を流れる冷却液流量、13はトーチ本体1を冷却する為に最低必要な冷却液流量である。
【0017】
本実施の形態のトーチは電極2内まで冷却液が循環する冷却液通路5と共に、トーチ本体1内の冷却パイプ3に設けられたバイパス孔6によって冷却パイプ3から冷却液復路4へ冷却液を分流する経路を設けた事により、冷却液の沸騰または電極2の焼損により電極2内の冷却液通路5が遮断されたとしても、バイパス孔6を通過する冷却液により冷却パイプ3以外のトーチ本体1の焼損は回避する事ができる。
【0018】
また電極2内に冷却パイプII7を設けたことで冷却液沸騰時または電極2焼損時のトーチ本体1内の冷却パイプ3焼損を防ぐ事ができる。
【0019】
また図2はバイパス孔6の総断面積を冷却パイプ3の断面積に対して変化させた場合のバイパス孔6を流れる冷却液流量12と電極2内の冷却液通路5を流れる冷却液流量11を表したグラフである。このグラフにより冷却液の沸騰または電極2の焼損により電極2内の冷却液通路5が遮断された後に使用し続けた場合、バイパス孔6の総断面積を冷却パイプ3の断面積に対して1/3未満に設定するとトーチ本体1を冷却する為に最低必要な冷却液流量13を下回りトーチ本体1までも焼損してしまう。よって電極2内の冷却液通路5が遮断された後に使用し続けた場合にトーチ本体1を冷却する為に最低必要な冷却液流量13を確保するにはバイパス孔6の総断面積を冷却パイプ3の断面積に対して1/3以上とする必要があることが判る。
【0020】
【発明の効果】
本発明の第1手段によれば、トーチ外部より導かれた冷却液がトーチ本体内の冷却パイプを通り、次に電極の内側に形成された冷却液通路を通り電極を冷却し、さらにトーチ本体内の冷却液復路を通りトーチ本体を冷却した後トーチ外部へと帰っていく経路を有し、トーチ本体内の冷却パイプに設けられたバイパス孔によって冷却パイプから冷却液復路へ冷却液を分流する経路を形成する構造を有する物で、冷却液の沸騰や電極の焼損により冷却液が遮断されなく、また本発明の第2手段によれば、電極内に冷却パイプIIを設けたことで電極焼損時にトーチボディ内の冷却パイプ焼損を防ぐ事ができ、また本発明の第3手段によれば、バイパス孔の総断面積を冷却パイプの断面積に対して1/3以上とした事で電極が焼損して電極内の冷却液通路が遮断された後に使用し続けた場合のトーチ本体の焼損を防ぐ事ができる優れた効果を奏する物である。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるプラズマ切断トーチの断面図
【図2】バイパス孔の総断面積を冷却パイプの断面積に対して変化させた場合のバイパス孔を流れる冷却液流量と電極内の冷却液通路を流れる冷却液流量を表したグラフ
【図3】従来のプラズマ切断装置全体の構成を示す概念図
【図4】従来のプラズマ切断トーチの先端部を示す断面図(電極が無垢の場合)
【図5】従来のプラズマ切断トーチの先端部を示す断面図(電極内に冷却液通路がある場合)
【符号の説明】
1 トーチ本体
2 電極
3 冷却パイプ
4 冷却液復路
5 冷却液通路
6 バイパス孔
7 冷却パイプII
8 チップ
11 電極内の冷却液通路を流れる冷却液流量
12 バイパス孔を流れる冷却液流量
13 トーチ本体を冷却する為に最低必要な冷却液流量
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma cutting torch using a cooling liquid for cooling a torch body and electrodes.
[0002]
[Prior art]
A conventional plasma cutting apparatus using a cooling liquid will be described with reference to FIGS. 3, 4, and 5. FIG. In FIG. 3, 20 is a plasma cutting torch, 21 is a compressor for compressing a working gas and sending it to the plasma cutting torch, 22 is a regulator for adjusting the secondary pressure of the working gas to a constant value, and 23 is a current for the plasma cutting torch 20. , 24 is an installation cable for connecting the base material 25 and the cutting power source 23, and 26 is a water absorption pump.
[0003]
From the cutting power source 23, a drain hose 31 having a built-in conductive wire and draining the cooling water, a water supply hose 32 for sending the cooling water to the torch, a gas hose 33 for sending the working gas, and a good arc start. The cable of the torch switch 35 for connecting and disconnecting a pilot cable 34 insulated with a synthetic resin or the like to a conductive wire for carrying a high frequency to perform ON / OFF of an output by connecting the conductive wire to the The plasma cutting torch 20 was attached to the tip.
[0004]
Next, FIG. 4 is a cross-sectional view showing the tip of a conventional plasma cutting torch when the electrodes are solid. In this case, the cooling liquid guided from the outside of the torch passes through the cooling pipe of the torch main body, then cools the surface of the rear end of the electrode, further cools the torch main body through the cooling liquid return path inside the torch main body, and then goes to the outside of the torch. And go home.
[0005]
Next, FIG. 5 is a cross-sectional view showing a tip portion of a conventional plasma cutting torch when a coolant passage is provided in an electrode. In this case, the cooling liquid guided from the outside of the torch passed through the cooling pipe of the torch main body, then cooled the electrode through the cooling liquid passage in the electrode, and further cooled the torch main body through the cooling liquid return path in the torch main body. Later, we go back to the outside of the torch.
[0006]
In a conventional example, as disclosed in Japanese Patent Publication No. 63-68273, the cooling of the rod electrode is enhanced by forming a water-cooled bottom inside the electrode support tube on a flat surface or a top surface of a truncated cone. Was.
[0007]
[Problems to be solved by the invention]
The conventional torch configured as described above has the following disadvantages.
[0008]
First, if the electrodes are solid, the electrodes are only cooled at the rear end surface. Therefore, the cooling capacity of the electrode is low, and if the cutting current is increased, the life of the electrode is shortened due to heat generation of the electrode.
[0009]
Second, if there is a coolant passage in the electrode, if the electrode continues to be used beyond its usage rate and life, the coolant will boil in the electrode or the electrode will burn out, and the flow of the coolant will be interrupted. is there. Continued use at this time or thereafter has caused the torch body to burn out.
[0010]
[Means for Solving the Problems]
In order to solve this problem, the first means of the present invention is to cool the electrode by passing a coolant introduced from the outside of the torch through a cooling pipe of the torch body, and then through a coolant passage formed inside the electrode. Further, there is a path for cooling the torch main body through the cooling liquid return path in the torch main body and returning to the outside of the torch, and the cooling liquid from the cooling pipe to the cooling liquid return path by a bypass hole provided in the cooling pipe of the torch main body. Having a structure for forming a path for diverting the water.
[0011]
Further, the second means of the present invention, in addition to the first means, allows the cooling pipe to be divided into the torch main body and the inside of the electrode in order to prevent the torch main body from burning when the cooling liquid in the electrode or the electrode burns out. It is characterized in that the hole is provided in the vicinity of the electrode mounting portion of the cooling pipe.
[0012]
Further, the third means of the present invention further comprises, in addition to the first means, the total cross-sectional area of the bypass hole in order to prevent the torch main body from being burned when the electrode is burned and the coolant passage in the electrode is continuously used after being cut off. Is 1/3 or more of the sectional area of the cooling pipe.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
With the configuration of the first means, even if the coolant is shut off in the coolant passage in the electrode due to coolant boiling or electrode burning in the electrode, the coolant passing through the bypass hole causes the torch body other than the cooling pipe to be cut off. Burnout has an action that can be avoided.
[0014]
Further, by the configuration of the second means, it is possible to prevent the torch main body including the cooling pipe in the torch main body when the coolant is boiled in the electrode and the electrode is burned out.
[0015]
Further, according to the configuration of the third means, it is possible to prevent the torch main body from being burned when the electrode is burned and the coolant passage in the electrode is shut off and the torch body is continuously used.
[0016]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, 1 is a torch main body, 2 is an electrode, 3 is a cooling pipe, 4 is a coolant return path, 5 is a coolant passage, 6 is a bypass hole, 7 is a cooling pipe II, and 8 is a chip.
In FIG. 2, reference numeral 11 denotes a coolant flow rate flowing through the coolant passage 5 in the electrode 2, 12 denotes a coolant flow rate flowing through the bypass hole 6, and 13 denotes a minimum coolant flow rate required for cooling the torch main body 1. .
[0017]
In the torch according to the present embodiment, the coolant flows from the cooling pipe 3 to the coolant return path 4 by the bypass hole 6 provided in the cooling pipe 3 in the torch main body 1 together with the coolant passage 5 through which the coolant circulates into the electrode 2. Even if the coolant passage 5 in the electrode 2 is cut off due to the boiling of the coolant or the burning of the electrode 2 by providing the branch path, the torch main body other than the cooling pipe 3 is cooled by the coolant passing through the bypass hole 6. Burnout 1 can be avoided.
[0018]
Further, by providing the cooling pipe II7 in the electrode 2, it is possible to prevent the cooling pipe 3 in the torch main body 1 from burning when the coolant is boiled or when the electrode 2 burns.
[0019]
FIG. 2 shows a coolant flow rate 12 flowing through the bypass hole 6 and a coolant flow rate 11 flowing through the coolant passage 5 in the electrode 2 when the total sectional area of the bypass hole 6 is changed with respect to the sectional area of the cooling pipe 3. It is a graph showing. According to this graph, when the cooling liquid passage 5 in the electrode 2 is shut off due to boiling of the cooling liquid or burning out of the electrode 2, the total cross-sectional area of the bypass hole 6 is 1 to the cross-sectional area of the cooling pipe 3. If the ratio is set to less than / 3, the cooling liquid flow rate 13 required for cooling the torch main body 1 falls below the minimum, and even the torch main body 1 is burned. Therefore, in order to secure the minimum required coolant flow rate 13 for cooling the torch body 1 when the coolant passage 5 in the electrode 2 is continued after the coolant passage 5 in the electrode 2 is shut off, the total cross-sectional area of the bypass hole 6 is reduced by the cooling pipe. It is understood that it is necessary to set the cross-sectional area to be 1/3 or more of the cross-sectional area of No.
[0020]
【The invention's effect】
According to the first aspect of the present invention, the cooling liquid guided from the outside of the torch passes through the cooling pipe in the torch main body, and then cools the electrode through the cooling liquid passage formed inside the electrode, and further cools the torch main body. It has a path to return to the outside of the torch after cooling the torch main body through the cooling liquid return path inside, and diverts the cooling liquid from the cooling pipe to the cooling liquid return path by the bypass hole provided in the cooling pipe in the torch main body It has a structure that forms a path, and the coolant is not interrupted by boiling of the coolant or burning of the electrode. According to the second means of the present invention, by providing the cooling pipe II in the electrode, the burning of the electrode is prevented. In some cases, burning of the cooling pipe in the torch body can be prevented, and according to the third means of the present invention, the total cross-sectional area of the bypass hole is set to 1/3 or more of the cross-sectional area of the cooling pipe, so that the electrode is formed. Burning and cooling inside the electrode One in which an excellent effect that it is possible to prevent the burnout of the torch body when continuously used after the passage has been cut off.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a plasma cutting torch according to an embodiment of the present invention. FIG. 2 is a flow rate of a coolant flowing through a bypass hole and an electrode when a total cross-sectional area of the bypass hole is changed with respect to a cross-sectional area of a cooling pipe. FIG. 3 is a graph showing the flow rate of a coolant flowing through a coolant passage in the inside. FIG. 3 is a conceptual diagram showing the entire configuration of a conventional plasma cutting apparatus. FIG. 4 is a cross-sectional view showing the tip of a conventional plasma cutting torch (electrode is solid). in the case of)
FIG. 5 is a cross-sectional view showing a tip portion of a conventional plasma cutting torch (when there is a coolant passage in an electrode).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Torch main body 2 Electrode 3 Cooling pipe 4 Coolant return path 5 Coolant passage 6 Bypass hole 7 Cooling pipe II
8 Chip 11 Coolant flow rate flowing through the coolant passage in the electrode 12 Coolant flow rate flowing through the bypass hole 13 Minimum required coolant flow rate for cooling the torch body

Claims (3)

トーチ本体や電極の冷却の為に冷却液を用いるプラズマ切断トーチであって、トーチ外部より導かれた冷却液がトーチ本体の冷却パイプを通り、次に電極の内側に形成された冷却液通路を通り電極を冷却し、さらにトーチ本体内の冷却液復路を通りトーチ本体を冷却した後トーチ外部へと帰っていく経路を有し、トーチ本体の冷却パイプに設けられたバイパス孔によって冷却パイプから冷却液復路へ冷却液を分流する経路を形成する構造を有するプラズマ切断トーチ。A plasma cutting torch that uses a cooling liquid to cool the torch body and electrodes, and a cooling liquid guided from outside the torch passes through a cooling pipe of the torch body, and then a cooling liquid passage formed inside the electrode. It has a path that cools the electrode and further cools the torch body through the cooling liquid return path inside the torch body and then returns to the outside of the torch, and cools from the cooling pipe by the bypass hole provided in the cooling pipe of the torch body A plasma cutting torch having a structure for forming a path for diverting a cooling liquid to a liquid return path. 冷却パイプをトーチ本体内と電極内部に分割できるようにし、バイパス孔を冷却パイプの電極取付部近傍設けた請求項1記載のプラズマ切断トーチ。The cooling pipe to be divided up into interior and the electrode torch body, the plasma cutting torch according to claim 1 wherein in which a bypass hole in the vicinity of the electrode mounting portion of the cooling pipe. バイパス孔の総断面積を冷却パイプの断面積に対して1/3以上としたバイパス孔を有する請求項1記載のプラズマ切断トーチ。The plasma cutting torch according to claim 1, wherein the plasma cutting torch has a bypass hole in which a total cross-sectional area of the bypass hole is 1/3 or more of a cross-sectional area of the cooling pipe.
JP22782897A 1997-08-25 1997-08-25 Plasma cutting torch Expired - Fee Related JP3591233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22782897A JP3591233B2 (en) 1997-08-25 1997-08-25 Plasma cutting torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22782897A JP3591233B2 (en) 1997-08-25 1997-08-25 Plasma cutting torch

Publications (2)

Publication Number Publication Date
JPH1158021A JPH1158021A (en) 1999-03-02
JP3591233B2 true JP3591233B2 (en) 2004-11-17

Family

ID=16867017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22782897A Expired - Fee Related JP3591233B2 (en) 1997-08-25 1997-08-25 Plasma cutting torch

Country Status (1)

Country Link
JP (1) JP3591233B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT7065B (en) 2022-07-11 2024-06-10 Lietuvos Energetikos Institutas Plasma generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2901485A1 (en) * 2013-02-15 2014-08-21 Pyrogenesis Canada Inc. High power dc non transferred steam plasma torch system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT7065B (en) 2022-07-11 2024-06-10 Lietuvos Energetikos Institutas Plasma generator

Also Published As

Publication number Publication date
JPH1158021A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
CA2614378C (en) Plasma-generating device, plasma surgical device and use of plasma surgical device
US7281478B2 (en) Assembled cathode and plasma igniter with such cathode
JP2775198B2 (en) Gas cooled cathode for arc torch
WO2007006517A2 (en) Plasma-generating device, plasma surgical device and use of a plasma surgical device
JP2009527882A (en) Transfer arc type plasma torch
JP3591233B2 (en) Plasma cutting torch
CA1138941A (en) Manual torches for tig welding with rotatable electrode
JPH038872B2 (en)
US20060209919A1 (en) Pumping light source for laser-active media
RU2234881C2 (en) Plasmotron device for cutting biological tissues and coagulating blood vessels
JPH11291050A (en) Electrode for plasma arc torch
JP3006262B2 (en) Plasma cutting torch
JPS63154273A (en) Plasma torch
JPH0761544B2 (en) Plasma cutting torch
JP3906590B2 (en) TIG welding equipment
RU2072640C1 (en) Arc-plasma torch
JPH0832363B2 (en) Torch for plasma cutting
US5903709A (en) Electrode-type steam production device with automatically controlled water inlet and outlet valves
JPH0151040B2 (en)
WO1997033458A2 (en) Device for plasma cutting of metals
KR200270991Y1 (en) inverter welding machine multiple use thawing of ice machine
RU62009U1 (en) PLASMOTRON FOR CUTTING LIQUID TISSUES AND COAGULATION OF VESSELS
RU2037983C1 (en) Electric-arc plasmatron
CN117583702A (en) Ultra-narrow gap welding equipment and welding method
RU45888U1 (en) PLASMATRON

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees