JP3590907B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP3590907B2
JP3590907B2 JP18385293A JP18385293A JP3590907B2 JP 3590907 B2 JP3590907 B2 JP 3590907B2 JP 18385293 A JP18385293 A JP 18385293A JP 18385293 A JP18385293 A JP 18385293A JP 3590907 B2 JP3590907 B2 JP 3590907B2
Authority
JP
Japan
Prior art keywords
imaging device
frequency
solid
state imaging
electromagnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18385293A
Other languages
Japanese (ja)
Other versions
JPH0738789A (en
Inventor
茂 西村
Original Assignee
富士写真光機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士写真光機株式会社 filed Critical 富士写真光機株式会社
Priority to JP18385293A priority Critical patent/JP3590907B2/en
Publication of JPH0738789A publication Critical patent/JPH0738789A/en
Application granted granted Critical
Publication of JP3590907B2 publication Critical patent/JP3590907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は撮像装置に係り、特に固体撮像素子を有し、かつ固体撮像素子の出力信号に電磁波ノイズを誘起させる処置機器と併用される撮像装置に関する。
【0002】
【従来の技術】
この種の撮像装置としては、高周波焼灼電源装置やYAGレーザ装置等と併用される電子内視鏡装置がある。
一般に、電子内視鏡の挿入部先端には撮像レンズ及び固体撮像素子(CCD)等が設けられており、観察像は撮像レンズを介してCCDに結像され、ここで光電変換される。光電変換された観察像を示す電気信号は、プロセッサで適宜信号処理されたのちモニタTVに出力される。これによりモニタTVに観察像を表示させることができる。
【0003】
一方、従来から上記モニタTVに映し出された画像を見ながら、電子内視鏡の処置具挿通チャンネルに高周波止血具、高周波スネア、高周波ナイフ等の高周波処置具を挿入し、高周波焼灼電源装置から高周波処置具に高周波電流を流することにより患部の止血/カット等の治療が行われている。例えば、止血治療をする場合には、高周波焼灼電源装置から高周波止血具に300KHz〜5MHz の範囲の高周波電流を間欠的に流すようにしている。
【0004】
しかし、止血治療中に高周波止血具の先端の導線部及び患部を流れる高周波電流による電磁波のエネルギがCCDとその周辺回路に加わり、CCD出力信号にノイズ信号として重畳されるため、モニタTVの画像が著しく低下するという問題があった。
従来、これを防ぐために挿入部先端や、CCDとその周辺回路を電磁シールドしており、特にCCDの受光面にも光透過性を有する電磁シールド層を設け、CCD全体を電磁シールドするようにしたものもある(特開平5−56916号公報)。
【0005】
【発明が解決しようとする課題】
ところで、上記特開平5−56916号公報に記載されている電磁シールド層の厚さは、光の透過率が最適となるような所定の厚さとしている。しかしながら、光も電磁波の一種であり、光の透過率が最適になるように電磁シールド層の厚さを決定したのでは、電磁シールドの効果がなくなるという問題がある。
【0006】
本発明はこのような事情に鑑みてなされたもので、固体撮像素子への入射光透過率を低下させることなく、効率良くノイズを防止することができ、電磁波を発生する高周波電流等を用いた処置中にも良好な画像を見ることができる撮像装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は前記目的を達成するために、固体撮像素子を有し、該固体撮像素子の出力信号に電磁波ノイズを誘起させる処置機器と併用される撮像装置において、前記固体撮像素子への入射光路となる開口部を除いて該固体撮像素子を囲繞し、前記処置機器において使用される電気信号の周波数以下の周波数に対しても電磁シールドする外周電磁シールド部材を設け、電磁シールド層の導電率をκ、透磁率をμ、前記処置機器において使用される電気信号の周波数である電磁シールド周波数をfとすると、電磁シールド層の厚みxが、次式、
(2/ωκμ)1/2 ≦x
但し、ω=2πf
を満たす電磁シールド層を、前記固体撮像素子の入射光窓及び該固体撮像素子の基板を含む表面全体に蒸着し、前記電磁シールド層と前記外周電磁シールド部材とを同電位になるように接続したことを特徴としている
【0008】
【作用】
本発明によれば、電磁シールド層の厚みxが、次式、
(2/ωκμ)1/2 ≦x
を満たすように電磁シールド層を設けるようにしたため、固体撮像素子に入射する電磁波エネルギが約1/3よりも小さくなるように電磁シールドすることができるようになる。これにより、電磁波が発生される高周波電流等を用いた処置中における画質の低下を抑制することができる。
【0009】
【実施例】
以下添付図面に従って本発明に係る撮像装置の好ましい実施例を詳説する。
図1は本発明に係る撮像装置が適用された電子内視鏡装置の第1実施例を示す全体構成図であり、高周波焼灼電源装置を用いて止血治療を行っている場合に関して示している。
【0010】
この電子内視鏡装置の挿入部先端10には、撮像レンズ12、プリズム13及びCCD14が配設されており、撮像レンズ12は、ライトガイド16及びレンズ18を介して照明された患部20を撮像し、これをプリズム13を介してCCD14の受光部に結像し、CCD14は入射光を光電変換してCCD出力をケーブル22を介してプロセッサ(図示せず)に出力する。
【0011】
プロセッサはCCD14を駆動制御する信号をケーブル22を介してCCD14に出力するとともに、CCD14から出力されるCCD出力信号をケーブル22を介して入力し、これを信号処理して映像信号を生成し、この映像信号を図示しないモニタTVに出力する。これにより、モニタTVには患部20の画像が映し出される。
【0012】
一方、高周波止血具24は内視鏡の処置具挿通チャンネル26に挿入され、この高周波止血具24の先端は、上述したモニタTVに映し出された画像を見ながら挿入部先端10からは患部20に向けて延出される。また、高周波止血具24は、高周波焼灼電源装置28と電気的に接続されている。
高周波焼灼電源装置28は、フットスイッチ30が操作されると、止血又はカットの治療内容に応じた300KHz〜5MHz の高周波の止血/カット動作信号を高周波処置具に出力する。尚、32は電極プレート、34は絶縁体である。
【0013】
さて、止血処置時には、高周波焼灼電源装置28から高周波止血具24、人体に流れる高周波電流によって挿入部先端10の全域に電磁波が伝播する。この電磁波はCCD14やケーブル22に対するノイズ信号となるが、CCD14やケーブル22には、ノイズ信号が入らないように、挿入部先端10には、CCD14の入射光路を除いてCCD14等を囲繞する外周電磁シールド部材36が設けられており、また、ケーブル22はその周囲にシールド外皮線38が設けれている。尚、外周電磁シールド部材36は、例えば60Hz 以上の電磁波をシールドできるように設計されている。
【0014】
更に、CCD14の入射光窓を含む表面全体は、電磁シールド層40によって被覆されている。また、上記外周電磁シールド部材36及び電磁シールド層40は、それぞれケーブル22のシールド外皮線38と同電位になるように電気的に接続されている。
次に、上記電磁シールド層40の詳細について説明する。
【0015】
まず、上記高周波電流にともなう電磁波がCCD14の入射光窓に形成される電磁シールド層40に入射する場合について考える。
いま、電磁波が電磁シールド層の任意の微小平面に入射する直前の電磁シールド層に平行な磁界Hを、
=Hexp (jωt)
とする。ここで、ω=2πfであり、fは高周波電流の周波数である。また、電磁シールド層内でも磁界はZ成分のみとする。
【0016】
一方、電磁シールド層(導体)内の電流密度(ベクトルi)と、磁界の強さ(ベクトルH)は、次式の関係がある。
【0017】
【数1】

Figure 0003590907
ここで、κ,μはそれぞれ電磁シールド層の導電率及び透磁率であり、ベクトルE,Bはそれぞれ電界及び磁束密度である。
【0018】
上記式から下記の2式が得られる。
【0019】
【数2】
Figure 0003590907
電磁シールド層内の位置で定まる電流と磁束密度分布は、次式となる。
【0020】
【数3】
Figure 0003590907
この関係式により、電磁シールド層40の厚み(x)方向の磁界B及び誘導電流iの分布は、次式で与えられる。
〔数4〕
=Kexp{− (ωκμ/2)1/2 ・x}× cos{ωt− (ωκμ/2)1/2 ・x}
=Kexp{− (ωκμ/2)1/2 ・x}× cos{ωt− (ωκμ/2)1/2 ・x}
但し、K はx=0(シールド層表面)での磁界B及び誘導電流iの値である。
【0021】
上記式からも明らかなように磁界B及び誘導電流iの値は、シールド層の厚みxが大きくなるにしたがって指数関数的に減衰し、厚みxが、次式、
(2/ωκμ)1/2 ≦x
を満たすようにすると、磁界B及び誘導電流iの値は、1/e (≒0.368)以下に減衰することになる。
【0022】
また、上記シールド層の厚みxを決定するためのパラメータとして、減衰すべき周波数f(=ω/2π)があるが、この周波数fを、例えば300KHzとすると、それ以上の周波数の高周波電流、即ち、高周波焼灼電源装置28から発生される使用範囲の高周波電流(300KHz〜5MHz )に対しても充分目的を達成することができる。
【0023】
図2は図1の要部拡大図である。
同図に示すように、CCD14の入射光窓(カバーガラス)14A及びCCD基板14Bを含む表面全体が電磁シールド層40によって被覆されているが、入射光窓14Aの表面には、透明ネサ膜(例えば、Cu,In又はその酸化膜)を用いる。
【0024】
尚、1MHz 程度の高周波電流に対しては、シールド層の厚さは、非磁性部材を用いると、数ミクロン〜数十ミクロン程度となり、入射光透過率を考慮して決めることになる。即ち、入射光窓14Aに蒸着されるシールド層の厚さxは、上記不等式を満たすように選定する必要があるが、その上限の厚みは、光の透過率を規定する厚みによって規制される。
【0025】
一方、入射光窓14A以外のシールド層の厚みは、数十ミクロン〜数百ミクロン又は、上記不等式を考慮しつつ多少厚めにする。尚、入射光窓14Aのシールド層と、それ以外のシールド層とは同電位になるように電気的に接続されている。
このように外周電磁シールド部材36を設けるとともに、入射光窓14等を含むCCD14の表面全体を電磁シールド層40で被覆することにより、光電変換部の高周波焼灼電源装置28からの高周波電流による電磁波に対して良好な電磁シールドが達成できる。
【0026】
尚、上記第1実施例では、外周電磁シールド部材36によって二重にシールドしているが、本発明はこれに限らず、外周電磁シールド部材36を取り除いてもよく、この場合には挿入部先端10の細径化を図ることができる。
図3は本発明の第2実施例を示す要部構成図である。尚、図2と共通する部分には同一の符号を付し、その詳細な説明は省略する。
【0027】
この第2実施例では、図3に示すようにCCD14等には電磁シールド層を設けずに、外周電磁シールド部材36の前面開口部分に透明ガラス42を配設し、この透明ガラス42上に、前記CCD14の入射光窓14Aに蒸着したシールド層と同様な電磁シールド層44が蒸着されている。また、この電磁シールド層44は外周電磁シールド部材36と同電位になるように電気的に接続されている。
【0028】
尚、第2実施例において、CCD14の入射光窓14Aを除く表面を第1実施例と同様に電磁シールド層で被覆するようにしてもよい。
図4は本発明の第3実施例を示す要部構成図である。尚、図3と共通する部分には同一の符号を付し、その詳細な説明は省略する。
この第3実施例は、図3の透明ガラス42の代わりにプリズム46を利用するようにした点で、第2実施例と相違する。即ち、このプリズム46は、その入射面が外周電磁シールド部材36の前面開口部分まで延出しており、このプリズム46の入射面上に電磁シールド層48が蒸着されている。また、この電磁シールド層48は外周電磁シールド部材36と同電位になるように電気的に接続されている。
【0029】
尚、本発明は電子内視鏡装置に限らず、例えば、溶接作業を行う機器等にも適用でき、要は固体撮像素子からの信号に基づいて被写体をモニタTVに表示し、その画像を見ながら高周波電流等を使用して作業を行うものであれば、如何なるものにも適用できる。
【0030】
【発明の効果】
以上説明したように本発明に係る撮像装置によれば、固体撮像素子の表面及び又は周囲全体を電磁シールドするとともに、少なくとも固体撮像素子の入射光路上に設けられる電磁シールド層の厚さを、処置中に発生する高周波電流の周波数に応じた好適な厚さにしたため、固体撮像素子等を介してTV画面に表示される画像上のノイズを大幅に低減することができる。特に、固体撮像素子への入射光透過率を低下させることなく、効率良くノイズを防止することができる。また、固体撮像素子の表面を電磁シールド層で被覆するとともに、外周電磁シールド部材で固体撮像素子等を囲繞して二重シールド構造にすることにより、60Hz 等の低周波数ノイズにも対応することができる。
【図面の簡単な説明】
【図1】図1は本発明に係る撮像装置が適用された電子内視鏡装置の第1実施例を示す全体構成図である。
【図2】図2は図1の要部拡大図である。
【図3】図3は本発明の第2実施例を示す要部構成図である。
【図4】図4は本発明の第3実施例を示す要部構成図である。
【符号の説明】
10…挿入部先端
12…撮像レンズ
13、46…プリズム
14…CCD
14A…入射光窓(カバーガラス)
14B…CCD基板
20…患部
22…ケーブル
24…高周波止血具
26…処置具挿通チャンネル
28…高周波焼灼電源装置
36…外周電磁シールド部材
38…シールド外皮線
40、44、48…電磁シールド層
44…透明ガラス[0001]
[Industrial applications]
The present invention relates to an imaging device, and more particularly to an imaging device having a solid-state imaging device and used together with a treatment device that induces electromagnetic noise in an output signal of the solid-state imaging device.
[0002]
[Prior art]
As this type of imaging apparatus, there is an electronic endoscope apparatus used in combination with a high-frequency ablation power supply apparatus, a YAG laser apparatus, or the like.
Generally, an imaging lens, a solid-state imaging device (CCD), and the like are provided at the distal end of an insertion portion of an electronic endoscope, and an observation image is formed on the CCD via the imaging lens, and is subjected to photoelectric conversion. The electric signal representing the photoelectrically converted observation image is output to a monitor TV after being appropriately processed by a processor. Thereby, an observation image can be displayed on the monitor TV.
[0003]
On the other hand, a high-frequency treatment tool such as a high-frequency hemostat, a high-frequency snare, and a high-frequency knife is inserted into the treatment tool insertion channel of the electronic endoscope while viewing the image projected on the monitor TV, and the high-frequency ablation power supply device A treatment such as hemostasis / cut of an affected part is performed by flowing a high-frequency current through a treatment tool. For example, when performing hemostatic treatment, a high-frequency current in the range of 300 KHz to 5 MHz is intermittently supplied from a high-frequency ablation power supply to a high-frequency hemostatic device.
[0004]
However, during the hemostatic treatment, the energy of the electromagnetic wave due to the high-frequency current flowing through the lead wire portion and the affected part of the high-frequency hemostatic device is applied to the CCD and its peripheral circuits, and is superimposed as a noise signal on the CCD output signal. There has been a problem that it is significantly reduced.
Conventionally, in order to prevent this, the distal end of the insertion portion, the CCD and its peripheral circuits are electromagnetically shielded, and in particular, an electromagnetic shield layer having light transmittance is provided on the light receiving surface of the CCD so that the entire CCD is electromagnetically shielded. Some are also disclosed (JP-A-5-56916).
[0005]
[Problems to be solved by the invention]
By the way, the thickness of the electromagnetic shield layer described in the above-mentioned Japanese Patent Application Laid-Open No. 5-56916 is a predetermined thickness so as to optimize the light transmittance. However, light is also a kind of electromagnetic wave, and there is a problem that the effect of the electromagnetic shield is lost if the thickness of the electromagnetic shield layer is determined so as to optimize the light transmittance.
[0006]
The present invention has been made in view of such circumstances, and it is possible to efficiently prevent noise without lowering the transmittance of incident light to a solid-state imaging device and use a high-frequency current or the like that generates an electromagnetic wave. It is an object of the present invention to provide an imaging device capable of viewing a good image even during a treatment.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a solid-state imaging device, an imaging apparatus used in conjunction with a treatment device that induces electromagnetic noise in the output signal of the solid-state imaging device, the incident light path to the solid-state imaging device, Surrounding the solid-state imaging device except for the opening, and providing an outer peripheral electromagnetic shield member that electromagnetically shields even a frequency equal to or lower than the frequency of the electric signal used in the treatment device, and sets the conductivity of the electromagnetic shield layer to κ. , The magnetic permeability is μ, and the electromagnetic shield frequency, which is the frequency of the electric signal used in the treatment device, is f, the thickness x of the electromagnetic shield layer is represented by the following formula:
(2 / ωκμ) 1/2 ≤x
Where ω = 2πf
Is deposited on the entire surface including the incident light window of the solid-state imaging device and the substrate of the solid-state imaging device, and the electromagnetic shielding layer and the outer peripheral electromagnetic shielding member are connected to have the same potential. it is characterized in that.
[0008]
[Action]
According to the present invention, the thickness x of the electromagnetic shield layer is expressed by the following formula:
(2 / ωκμ) 1/2 ≦ x
Since the electromagnetic shield layer is provided so as to satisfy the condition, the electromagnetic shielding can be performed so that the electromagnetic wave energy incident on the solid-state imaging device is smaller than about 1/3. Accordingly, it is possible to suppress a decrease in image quality during a treatment using a high-frequency current or the like that generates an electromagnetic wave.
[0009]
【Example】
Hereinafter, preferred embodiments of an imaging device according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram showing a first embodiment of an electronic endoscope apparatus to which an imaging apparatus according to the present invention is applied, and shows a case where hemostatic treatment is performed using a high-frequency ablation power supply apparatus.
[0010]
An imaging lens 12, a prism 13 and a CCD 14 are provided at a distal end 10 of an insertion portion of the electronic endoscope apparatus. The imaging lens 12 captures an image of an affected part 20 illuminated via a light guide 16 and a lens 18. Then, the image is formed on the light receiving portion of the CCD 14 via the prism 13, and the CCD 14 photoelectrically converts the incident light and outputs the CCD output to a processor (not shown) via the cable 22.
[0011]
The processor outputs a signal for controlling the driving of the CCD 14 to the CCD 14 via the cable 22, inputs a CCD output signal output from the CCD 14 via the cable 22, and processes the signal to generate a video signal. The video signal is output to a monitor TV (not shown). Thereby, an image of the affected part 20 is displayed on the monitor TV.
[0012]
On the other hand, the high-frequency hemostatic device 24 is inserted into the treatment tool insertion channel 26 of the endoscope, and the distal end of the high-frequency hemostatic device 24 extends from the distal end 10 of the insertion section to the diseased part 20 while watching the image displayed on the monitor TV. It is extended toward. The high-frequency hemostatic device 24 is electrically connected to the high-frequency ablation power supply device 28.
When the foot switch 30 is operated, the high-frequency ablation power supply device 28 outputs a high-frequency hemostatic / cut operation signal of 300 KHz to 5 MHz corresponding to the hemostatic or cut treatment content to the high-frequency treatment device. Incidentally, 32 is an electrode plate, and 34 is an insulator.
[0013]
By the way, at the time of hemostasis treatment, an electromagnetic wave is propagated to the entire region of the insertion portion distal end 10 by a high-frequency current flowing from the high-frequency ablation power supply 28 to the high-frequency hemostatic device 24 and the human body. This electromagnetic wave becomes a noise signal to the CCD 14 and the cable 22. To prevent the noise signal from entering the CCD 14 and the cable 22, the outer peripheral electromagnetic wave that surrounds the CCD 14 and the like except for the incident optical path of the CCD 14 is provided at the tip 10 of the insertion portion. The shield member 36 is provided, and the cable 22 is provided with a shield sheath 38 around the cable 22. The outer electromagnetic shield member 36 is designed so as to be able to shield, for example, electromagnetic waves of 60 Hz or higher.
[0014]
Further, the entire surface of the CCD 14 including the incident light window is covered with the electromagnetic shield layer 40. The outer peripheral electromagnetic shield member 36 and the electromagnetic shield layer 40 are electrically connected to each other so as to have the same potential as the shield outer conductor 38 of the cable 22.
Next, details of the electromagnetic shield layer 40 will be described.
[0015]
First, a case where an electromagnetic wave accompanying the high-frequency current is incident on the electromagnetic shield layer 40 formed in the incident light window of the CCD 14 will be considered.
Now, electromagnetic waves and the magnetic field H Z parallel to the electromagnetic shielding layer just prior to entering the arbitrary infinitesimal plane of the electromagnetic shield layer,
H z = H 0 exp (jωt)
And Here, ω = 2πf, where f is the frequency of the high-frequency current. In addition, the magnetic field is only the Z component even in the electromagnetic shield layer.
[0016]
On the other hand, the current density (vector i) in the electromagnetic shield layer (conductor) and the magnetic field strength (vector H) have the following relationship.
[0017]
(Equation 1)
Figure 0003590907
Here, κ and μ are the conductivity and the magnetic permeability of the electromagnetic shield layer, respectively, and the vectors E and B are the electric field and the magnetic flux density, respectively.
[0018]
The following two equations are obtained from the above equations.
[0019]
(Equation 2)
Figure 0003590907
The current and magnetic flux density distribution determined at a position in the electromagnetic shield layer are represented by the following equations.
[0020]
(Equation 3)
Figure 0003590907
This relationship, the distribution of the magnetic field B z and the induced current i y of the thickness of the electromagnetic shield layer 40 (x) direction is given by the following equation.
[Equation 4]
B z = K 1 exp {− (ωκμ / 2) 1/2 · x} × cos {ωt− (ωκμ / 2) 1/2 · x}
i y = K 2 exp {− (ωκμ / 2) 1/2 · x} × cos {ωt− (ωκμ / 2) 1/2 · x}
Here, K 1 and K 2 are the values of the magnetic field B z and the induced current i y at x = 0 (the shield layer surface).
[0021]
As is clear from the above equation, the values of the magnetic field B z and the induced current i y attenuate exponentially as the thickness x of the shield layer increases, and the thickness x becomes
(2 / ωκμ) 1/2 ≦ x
When the value is satisfied , the values of the magnetic field B z and the induced current i y are attenuated to 1 / e (≒ 0.368) or less.
[0022]
As a parameter for determining the thickness x of the shield layer, there is a frequency f to be attenuated (= ω / 2π). If the frequency f is, for example, 300 KHz, a high-frequency current of a frequency higher than that, that is, The purpose can be sufficiently achieved even for a high-frequency current (300 KHz to 5 MHz) in a use range generated from the high-frequency ablation power supply device 28.
[0023]
FIG. 2 is an enlarged view of a main part of FIG.
As shown in the figure, the entire surface including the incident light window (cover glass) 14A and the CCD substrate 14B of the CCD 14 is covered with the electromagnetic shield layer 40, and the surface of the incident light window 14A is covered with a transparent Nesa film ( For example, Cu, In or an oxide film thereof is used.
[0024]
For a high-frequency current of about 1 MHz, the thickness of the shield layer is about several microns to several tens of microns when a non-magnetic member is used, and is determined in consideration of the incident light transmittance. That is, the thickness x of the shield layer deposited on the incident light window 14A needs to be selected so as to satisfy the above inequality, but the upper limit thickness is regulated by the thickness that regulates the light transmittance.
[0025]
On the other hand, the thickness of the shield layer other than the incident light window 14A is several tens of microns to several hundreds of microns, or slightly larger in consideration of the inequality. The shield layer of the incident light window 14A and the other shield layers are electrically connected so as to have the same potential.
By providing the outer electromagnetic shield member 36 and covering the entire surface of the CCD 14 including the incident light window 14 and the like with the electromagnetic shield layer 40 in this manner, the electromagnetic wave generated by the high-frequency current from the high-frequency ablation power supply device 28 of the photoelectric conversion unit is reduced. Good electromagnetic shielding can be achieved.
[0026]
In the first embodiment, double shielding is performed by the outer peripheral electromagnetic shield member 36. However, the present invention is not limited to this, and the outer peripheral electromagnetic shield member 36 may be removed. 10 can be reduced in diameter.
FIG. 3 is a main part configuration diagram showing a second embodiment of the present invention. Note that parts common to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0027]
In the second embodiment, as shown in FIG. 3, a transparent glass 42 is disposed on the front opening of the outer peripheral electromagnetic shield member 36 without providing an electromagnetic shield layer on the CCD 14 or the like. An electromagnetic shield layer 44 similar to the shield layer deposited on the incident light window 14A of the CCD 14 is deposited. The electromagnetic shield layer 44 is electrically connected to the outer electromagnetic shield member 36 so as to have the same potential.
[0028]
In the second embodiment, the surface of the CCD 14 except for the incident light window 14A may be covered with an electromagnetic shield layer as in the first embodiment.
FIG. 4 is a main part configuration diagram showing a third embodiment of the present invention. Note that the same reference numerals are given to portions common to FIG. 3 and detailed description thereof is omitted.
The third embodiment differs from the second embodiment in that a prism 46 is used instead of the transparent glass 42 of FIG. That is, the entrance surface of the prism 46 extends to the front opening of the outer peripheral electromagnetic shield member 36, and the electromagnetic shield layer 48 is deposited on the entrance surface of the prism 46. The electromagnetic shield layer 48 is electrically connected to the outer electromagnetic shield member 36 so as to have the same potential.
[0029]
The present invention is not limited to the electronic endoscope apparatus, but can be applied to, for example, equipment for performing a welding operation. In short, the present invention displays a subject on a monitor TV based on a signal from a solid-state imaging device and views the image. However, the present invention can be applied to any operation that uses a high-frequency current or the like.
[0030]
【The invention's effect】
As described above, according to the imaging apparatus of the present invention, the surface and / or the entire periphery of the solid-state imaging device is electromagnetically shielded, and at least the thickness of the electromagnetic shielding layer provided on the incident optical path of the solid-state imaging device is reduced. Since the thickness is set to a suitable value according to the frequency of the high-frequency current generated therein, noise on an image displayed on a TV screen via a solid-state imaging device or the like can be significantly reduced. In particular, noise can be efficiently prevented without lowering the transmittance of incident light to the solid-state imaging device. In addition, by covering the surface of the solid-state imaging device with an electromagnetic shield layer and surrounding the solid-state imaging device with an outer electromagnetic shielding member to form a double shield structure, it is possible to cope with low-frequency noise such as 60 Hz. it can.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a first embodiment of an electronic endoscope apparatus to which an imaging device according to the present invention is applied.
FIG. 2 is an enlarged view of a main part of FIG.
FIG. 3 is a main part configuration diagram showing a second embodiment of the present invention.
FIG. 4 is a main part configuration diagram showing a third embodiment of the present invention.
[Explanation of symbols]
Reference numeral 10: insertion portion tip 12: imaging lens 13, 46 ... prism 14: CCD
14A: Incident light window (cover glass)
14B ... CCD board 20 ... Affected part 22 ... Cable 24 ... High frequency hemostat 26 ... Treatment tool insertion channel 28 ... High frequency cautery power supply 36 ... Outer circumference electromagnetic shield member 38 ... Shield outer sheath wire 40,44,48 ... Electromagnetic shield layer 44 ... Transparent Glass

Claims (1)

固体撮像素子を有し、該固体撮像素子の出力信号に電磁波ノイズを誘起させる処置機器と併用される撮像装置において、
前記固体撮像素子への入射光路となる開口部を除いて該固体撮像素子を囲繞し、前記処置機器において使用される電気信号の周波数以下の周波数に対しても電磁シールドする外周電磁シールド部材を設け、
電磁シールド層の導電率をκ、透磁率をμ、前記処置機器において使用される電気信号の周波数である電磁シールド周波数をfとすると、電磁シールド層の厚みxが、次式、
(2/ωκμ)1/2 ≦x
但し、ω=2πf
を満たす電磁シールド層を、前記固体撮像素子の入射光窓及び該固体撮像素子の基板を含む表面全体に蒸着し、前記電磁シールド層と前記外周電磁シールド部材とを同電位になるように接続したことを特徴とする撮像装置。
An imaging apparatus having a solid-state imaging device and used together with a treatment device that induces electromagnetic wave noise in an output signal of the solid-state imaging device,
Surrounding the solid-state imaging device except for an opening serving as an optical path of light incident on the solid-state imaging device, and providing an outer peripheral electromagnetic shield member that electromagnetically shields even a frequency equal to or lower than a frequency of an electric signal used in the treatment device. ,
When the conductivity of the electromagnetic shield layer is κ, the magnetic permeability is μ, and the electromagnetic shield frequency which is the frequency of the electric signal used in the treatment device is f, the thickness x of the electromagnetic shield layer is represented by the following formula:
(2 / ωκμ) 1/2 ≤x
Where ω = 2πf
Is deposited on the entire surface including the incident light window of the solid-state imaging device and the substrate of the solid-state imaging device, and the electromagnetic shielding layer and the outer peripheral electromagnetic shielding member are connected to have the same potential. An imaging device characterized by the above-mentioned.
JP18385293A 1993-07-26 1993-07-26 Imaging device Expired - Lifetime JP3590907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18385293A JP3590907B2 (en) 1993-07-26 1993-07-26 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18385293A JP3590907B2 (en) 1993-07-26 1993-07-26 Imaging device

Publications (2)

Publication Number Publication Date
JPH0738789A JPH0738789A (en) 1995-02-07
JP3590907B2 true JP3590907B2 (en) 2004-11-17

Family

ID=16142961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18385293A Expired - Lifetime JP3590907B2 (en) 1993-07-26 1993-07-26 Imaging device

Country Status (1)

Country Link
JP (1) JP3590907B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377360C (en) * 2004-04-14 2008-03-26 亚泰影像科技股份有限公司 Image sensor
DE102005000655A1 (en) 2005-01-04 2006-07-13 Robert Bosch Gmbh Image capture device
DE102005000656B4 (en) * 2005-01-04 2017-02-23 Robert Bosch Gmbh Camera and method for mounting a camera
JP2008104037A (en) 2006-10-20 2008-05-01 Fujifilm Corp Imaging apparatus
JP5995624B2 (en) * 2012-09-19 2016-09-21 キヤノン株式会社 Imaging device and interchangeable lens
US20180093908A1 (en) * 2015-03-31 2018-04-05 Aquatech International, Llc Enhanced Membrane Bioreactor Process for Treatment of Wastewater

Also Published As

Publication number Publication date
JPH0738789A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
JP3236716B2 (en) Shield structure of electronic endoscope device
US20160028926A1 (en) Endoscope apparatus
JPS59103644A (en) Endoscope photographing apparatus
JPH05245104A (en) Electronic endoscopic device
JP3590907B2 (en) Imaging device
JPH08243077A (en) Electronic endoscope
JP5376858B2 (en) Endoscope
WO2017217025A1 (en) Endoscope device
JP4197767B2 (en) Solid-state imaging device
JP2716917B2 (en) Electronic endoscope device
JPH0723265A (en) Image pickup device
JP6321917B2 (en) Imaging apparatus and electronic endoscope
JPS6083637A (en) Endoscope using solid image pick-up element
JP2992447B2 (en) Electronic endoscope tip
JP6336184B2 (en) Endoscope
JPH08271809A (en) Image pickup device
JP3284044B2 (en) Electronic endoscope device
JPH0556916A (en) Solid-state image pickup element module for endoscope
JPH02299629A (en) Imaging apparatus
JP3036549B2 (en) Electronic endoscope device
JP3383964B2 (en) Imaging device
JPH0453524A (en) Electronic endoscope system
JPH0355023A (en) Solid state imaging device adapter for endoscope
JPH04150826A (en) Endoscope
JP2655705B2 (en) Electronic endoscope device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

EXPY Cancellation because of completion of term