JP3589672B2 - ヘリコプターの回転翼の釣り合わせ方法及びその装置 - Google Patents

ヘリコプターの回転翼の釣り合わせ方法及びその装置 Download PDF

Info

Publication number
JP3589672B2
JP3589672B2 JP50877296A JP50877296A JP3589672B2 JP 3589672 B2 JP3589672 B2 JP 3589672B2 JP 50877296 A JP50877296 A JP 50877296A JP 50877296 A JP50877296 A JP 50877296A JP 3589672 B2 JP3589672 B2 JP 3589672B2
Authority
JP
Japan
Prior art keywords
rotor
ible
obte
oble
ibte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50877296A
Other languages
English (en)
Other versions
JPH10505305A (ja
Inventor
シー. ラインフェルダー,ウイリアム
ピー. リーヒー,ケビン
ディー. ジョーンズ,コアリー
エイ. コヴァルスキー,デイビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPH10505305A publication Critical patent/JPH10505305A/ja
Application granted granted Critical
Publication of JP3589672B2 publication Critical patent/JP3589672B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/008Rotors tracking or balancing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

技術分野
本発明は、ヘリコプター上で適切に機能するようにヘリコプターの回転翼を釣り合わせるための方法及び装置に関する。
背景技術
ヘリコプターの回転翼は、それらが使用される動的環境内で適切に作動するためには、ヘリコプター内に高レベルの振動を引き起こすことがないように適切な釣り合いがとられていなければならない。回転翼は、通常、桁、前縁被覆、後縁ポケット対を含む多要素アセンブリで製造される。これらの桁等は、翼毎にその重量又は質量が変動し得るが、各翼で等しく釣り合いをとることが求められる。翼アセンブリは、標準的には、接着剤フィルム層を用いて前述の構成要素を接着することによって製造される。このような多くの構成要素を用いて回転翼を形成することの結果として、翼毎に重量分布の変動が存在することになる。回転翼が適切な性能を発揮するためには、翼の重量分布及び結果として得られるモーメントは、根元から先端まで翼の長さ又は幅に沿ってと同様、その前縁から後縁まで翼弦方向又は縁部方向においても、目標重量分布及びモーメントを限定する所望の基準を満たしていなくてはならない。
所望のモーメントは、前縁及び後縁の両方における翼の根端とその先端の間の翼長重量比、及び翼の根端及び先端の両方における翼弦重量比として限定できる。このような所定の重量分布基準を達成することによって、結果としてその意図された環境内で適切に作動する「釣り合いのとれた」回転翼が得られることになる。従って、各々の回転翼を重量分布について個別にチェックし、「釣り合い」状態にすること、換言すると、最適な根元−先端翼モーメント及び前縁−後縁翼モーメント、ひいては回転翼の適切な作動を生じて所望の理想的重量分布に適合させることが必要である。
前述の手順は、2つの異なる釣り合わせ装置を必要とすることから時間のかかるものである。翼内の翼幅方向及び翼弦方向モーメントを両方とも決定するのに同じ装置を使用して、単一の釣り合わせ手順を用いて単一の釣り合わせ装置にて翼幅方向(spanwise)及び翼弦方向(chordwise)の両方で翼を釣り合わせできることが望ましい。
発明の開示
本発明の1つの目的は、ヘリコプターの回転翼の実際の内側及び外側翼弦方向モーメントを決定するための静的釣り合わせアセンブリを提供することにある。
本発明のこの目的は、回転翼の内側前縁コーナーの近くに位置付けされた第1の計量はかり、回転翼の内側後縁コーナーの近くに位置付けされた第2の計量はかり、回転翼の外側前縁コーナーの近くに位置付けされた第3の計量はかり及び回転翼の外側後縁コーナーの近くに位置付けされた第4の計量はかりを特徴とする、静的釣り合わせアセンブリによって得られる。
第1及び第2の計量はかりは、組合わさって、回転翼のために実際の内側翼弦方向モーメントを決定するための内側重量値を提供する内側翼弦方向手段を形成する。第3及び第4の計量はかりは、組合わさって、回転翼のために実際の外側翼弦方向モーメントを決定するための外側重量値を提供する外側翼弦方向手段を形成する。
内側及び外側翼弦方向手段には、マイクロプロセッサが接続されており、これは内側及び外側重量値を利用して回転翼の実際の内側及び外側翼弦方向モーメントを決定すべく作動する。
本発明の他の目的は、ヘリコプター回転翼の実際の内側及び外側翼弦方向モーメントを決定するための静的釣り合わせアセンブリを提供することにある。
本発明のこの目的は、前項に記載された静的釣り合わせアセンブリによって得られる。第1及び第3の計量はかりは、回転翼の実際の前縁翼幅方向モーメントを決定するために前縁重量値を提供する前縁手段を形成する。第2及び第4の計量はかりは、回転翼の実際の後縁翼幅方向モーメントを決定するために後縁重量値を提供する後縁手段を形成する。
マイクロプロセッサは、前縁及び後縁手段に接続されており、前縁及び後縁重量値を利用して回転翼の実際の前縁及び後縁翼幅方向モーメントを決定するべく作動する。
本発明のもう1つの目的は、上述の静的釣り合わせ装置を用いて翼弦方向及び翼幅方向の両方でヘリコプタ回転翼を静的に釣り合わせる方法を提供することにある。
本発明のこの目的は、回転翼の実際の内側及び外側翼弦方向モーメントを決定する段階、回転翼の実際の内側及び外側翼弦方向モーメントを回転翼の目標内側及び外側翼弦方向モーメントに適合させるための必要性に応じて回転翼上で内側及び外側重量を翼弦方向に付加又は削除する段階、翼の適合された目標内側及び外側翼弦方向モーメントの結果としてもたらされる翼の実際の前縁及び後縁翼幅方向モーメントを決定する段階、及び実際の前縁及び後縁翼幅方向モーメントを翼の目標前縁及び後縁翼幅方向モーメントに適合させる必要性に応じて回転翼上で翼幅方向に内側及び外側重量を付加又は削除する段階、を含む方法によって達成される。
【図面の簡単な説明】
図1は、回転翼の翼弦方向から見た、本発明を実施するのに使用される静的釣り合わせアセンブリの一実施形態の立面図である。
図2は、回転翼の翼幅方向から見た、図1の静的釣り合わせアセンブリの断片的側面立面図である。
図3は、計量はかりの位置設定、及び実際の翼モーメント値を計算するため、及び所望の作動モーメント値に到達するのに必要とする翼重量分布の変更を計算するのに使用される、基準パラメータを示す、翼の概略的平面図である。
図4は、図1の装置の中の様々な構成要素の概略的システムダイヤグラムである。
発明の最良の実施形態
ここで図面を参照すると、図1及び図2には、本発明に従って、全体として符号2で表されているヘリコプター回転翼を釣り合わせるように作動する静的釣り合わせアセンブリの、それぞれ断片的な翼弦方向及び翼幅方向の縁部の図が示されている。この静的釣り合わせアセンブリには、複数のテーブル6が配置されている支持ベンチ4が含まれている。各々のテーブル6は、図1及び2には示されていないマイクロプロセッサと作動的に接続され、このマイクロプロセッサにデータ信号を供給する1対の別々の点はかり8を支持している。はかり8は、好ましくは、TOLEDO 19985型のはかり(TOLEDOは、計測装置及び測定値表示装置に関するオハイオ州、ウィースイントンのトレド スケール コーポレーション「Toledo Scale Corporation、Worthington、OH」の登録商標である)又はそれと同等の高精度はかりである。各々のはかり8には、図2に示されているようなプレート接触素子又ははかり点9が備わっている。はかり点9は、好ましくは、各々のはかり点が計量対象の物体との間に単一の接触点を有効に提供するように球形、半球形等々の形状をもつ。
ベンチ4上には複数の空気ジャッキ10も配置されており、これらのジャッキは、はかり8よりも上にあってこれと重なるプレート1と作動可能な形に連結されている。ジャッキ10を操作することによって、プレート12を、選択的にはかり8のはかり点9上に下降させたり、ここから上昇させたりすることができる。
静的釣り合いアセンブリはまた、複数の回転翼支持部材14も含んでいる。支持部材14は、強化又は剛化ファイバグラス複合材で形成され、各々の支持部材14は、それぞれの部材14によって係合される翼2上の表面部分18の輪郭に一致する正確に輪郭取りされた上部表面16を有している。支持部材14は、翼のたわみを防ぎながら、同時に正確な翼モーメント読み取り値を得るべく部材14のアセンブリ重量への影響度を最小限に抑えながら、強度及び剛性を提供するように作動可能である。
翼2の後縁20には、支持部材14の中の整合用開口部26内で、或いは図2に示されているように支持部材14の側面28と係合することによって、支持部材14と係合するように作動可能である位置設定用ピン24を収容する位置設定用穴22を具備することができる。位置設定用ピン24はかくして、静的釣り合わせアセンブリ上に翼(2)を適切に位置付けするように作動する。位置設定用ピン24はまた、支持部材14に対して翼2を締め付ける機能もできる。この結果、はかり8に相対する翼のコーナーの所望の位置付けを達成することができる。このことは又、釣り合いプロセス中に翼2の残りの部分に翼の外板をピン留めする役目も果たす。
回転翼の翼弦方向モーメントの読み取り値は、以下により詳細に説明するとおり、翼2のフェザリング軸からの各々のはかり8上の重量支持点の距離を考慮に入れて、4つのはかり8の各々の上に表示される重量を記録することによって得られる。はかり8は、4対の翼重量データ収集点を形成し、これらの点から、回転翼の重量分布を変更する必要性を確認することができる。回転翼2は、前縁−先端コーナー;後縁−先端コーナー;前縁−根元コーナー;及び後縁−根元コーナーという4つのモーメント限定点を有する。
4つのはかり8は、TOLEDO 8146型卓上表示インジケータ又はそれに類するもの、及びマイクロプロセッサに作動的に接続されており、このマイクロプロセッサは、(i)収集した重量データを分析し;(ii)回転翼2の実際のモーメントを計算し、(iii)適切な釣り合いを達成するのに付加的な重量を付加又は除去しなければならない翼2上の場所及び量を識別するように予めプログラムされている。マイクロプロセッサ内に予めプログラムされている情報は、複数の対になった翼重量データ収集点の間で所望の重量比、及び実際の重量比がひとたび確認された時点で、所望の又は目標の重量比を達成すべく翼重量を修正するように作動するアルゴリズムである。4つのコーナー重量比が、実際のもの、所望の(目標)のもの、の両方の、翼2上の4つの作動モーメントを確認することになるということが理解できるであろう。実際の前縁及び後縁翼幅方向モーメントの値がひとたび決定され、根元つまり「内側」及び先端つまり「外側」の実際の翼弦方向モーメントの値が決定されると、これら実際モーメント値は、所望の、つまり目標の翼幅方向及び翼弦方向の作動モーメントを達成するため、即ち翼2を釣り合わせるために必要である翼−重量分布調整を決定するべく、所望の又は目標の作動モーメント値と比較される。
ここで図3を参照すると、回転翼2の概略的平面図が、翼2の翼弦方向及び翼幅方向のモーメントを計算するのに用いられる様々な基準点及び寸法と共に示されている。回転翼2は、前縁30と後縁20を有する。翼2の根元つまり内側の端部は、符号32で示され、翼2の先端つまり外側の端部は符号34で示されている。翼2のフェザリング軸は、符号36で示されている。翼2用のはかりの支点は符号9で示され(上述の開示を参照)、回転翼の回転軸は、フェザリング軸36に対して垂直である基準線38によって表わされている。
OBTE(外側後縁:outboard trailing edge)と呼称される1つのはかり点9がフェザリング軸36から後縁20に向かって距離C4のところに、そして基準線38から外側に距離r2のところに位置設定されるということが理解できる。
フェザリング軸36から前縁に向かって距離C3のところ、そして基準線38から外側に距離r2のところに、OBLE(外側前縁:outboard leading edge)と呼称されるもう1つのはかり点9が位置設定されている。IBTE(内側後縁inboard trailing edge)と呼ばれる第3のはかり点9は、フェザリング軸36から後縁20に向かって距離C2のところ、そして基準線28から外側で距離r1のところに位置設定される。第4つまり最後のはかり点9は、IBLE(内側前縁:inboard leading edge)と呼ばれ、フェザリング軸36から前縁に向かって距離C1のところ、そして基準線38から距離r1のところに位置設定される。
上述のことから、1対の前縁はかり点9IBLE、9OBLE;1対の後縁はかり点9IBTE、9OBTE;1対の内側はかり点9IBLE、9IBTE;及び1対の外側はかり点9OBLE、9OBTEが存在することがわかるだろう。これらのはかり点対における重量(W)読み取り値は、以下のように、(フェザリング軸36に対する)回転翼の実際の内側(IBM)及び外側(OBM)翼弦方向モーメントを決定するのに用いられる。
IBMchordwise=(WIBLE)(C1)−(WIBTE)(C2)(等式1)
OBMchordwise=(WOBLE)(C3)−(WOBTE)(C4)(等式2)
図3に示されている記号WPIB及びWPOBは、実際の内側及び外側の翼弦方向のモーメントIBMchordwise、OBMchordwiseを修正してこれらを翼2を適切に釣り合わせるのに必要とされる目標翼弦方向モーメントと適合状態にするのに使用する重量分布変更素子の一般的場所を概略的に表すのに用いられている。実際の翼弦方向モーメントIBMchordwise、OBMchordwiseがひとたび分かると、WPIB及びWPOBの同一性は、以下の等式を解くことによって決定される。
IBMchordwise±WPIB=MCIB (等式3)
OBMchordwise±WPOB=MCOB (等式4)
尚式中、MCIBは、目標内側翼弦方向モーメントであり、MCOBは外側目標翼弦方向モーメントである。
WPIB及びWPOBがひとたび分かったならば、翼に対して、必要な翼弦方向重量調整が行われる。これらの翼弦方向重量調整は、幾つかの異なる方法で行うことができる。必要な重量調整が比較的僅かである場合、これらは、必要に応じて翼(2)上で重量調整場所、WPIB及び/又はWPOBにおいて、そのうちの一方又は両方に対して適当な数の接着性フィルムシートを付加することによって行うことができる。システムマイクロプロセッサは、付加又は削除しなければならない必要重量及びかかる重量を付加又は削除すべき回転翼2上の位置を決定する。代替的には、重量分布調整が比較的大きい場合、翼を適切に釣り合わせるために、翼2の内部におかれた錘付きインサートを使用することができる。
目標内側及び外側翼弦方向モーメントMCIB、MCOBを達成するよう翼2の重量がひとたび調整されら、翼幅方向モーメントは、翼2が静的釣り合わせアセンブリ上にとどまっている間にそのフェザリング軸36に沿って翼2上の内側及び外側部域に対して重量を付加又は除去することによって、目標翼幅方向モーメントに調整される。
ここで図4を参照すると、4つの点はかり8OBTE、8OBLE、8IBTE、8IBLEを示す静的釣り合わせ装置及びはかり8OBTE、8OBLE、8IBTE、8IBLEの中に連結されたマイクロプロセッサ(MPR)の概略図が示されている。マイクロプロセッサMPRには、点はかり8OBTE、8OBLE、8IBTE、8IBLEから重量情報が供給されということが理解できるであろう。測定されたモーメントに対する支持部材14の重量の影響分は、マイクロプロセッサMPR演算ソフトウェア内ではゼロにされる既知の要因である。静的釣り合わせアセンブリ上で回転翼2に対し重量変更が行われた後、点はかり8OBTE、8OBLE、8IBTE、8IBLEは、翼2が適切に釣り合わせされたことを確認するために使用される。目標の翼弦方向及び翼幅方向のモーメントが達成された時点で、翼2は静的釣り合わせアセンブリから取り外され、新しい翼が取り付けられて上述の通りに釣り合わせが行われる。
本発明の静的釣り合わせアセンブリは、翼の動的旋回スタンド釣り合わせを省略できるように、翼弦方向及び翼幅方向の両方においてヘリコプターの回転翼を正確に釣り合わせることができるものであるが、容易に理解できるであろう。
回転翼2を静的に釣り合わせるべく上述の静的釣り合わせアセンブリ及び方法を使用することに加えて、本発明の静的釣り合わせアセンブリ及び方法は、回転翼2を含む個々の構成要素を釣り合わせるのにも使用することができる。

Claims (14)

  1. フェザリング軸(36)をもつヘリコプターの回転翼(2)の実際の内側及び外側の翼弦方向モーメントを決定するための静的釣り合わせアセンブリにおいて、
    回転翼(2)の内側前縁(30)のコーナー近くに位置付けされた第1の計量はかり(8IBLE、9IBLE)と、
    回転翼(2)の内側後縁(20)のコーナー近くに位置付けされた第2の計量はかり(8IBTE、9IBTE)と、
    回転翼(2)の外側前縁(30)のコーナー近くに位置付けされた第3の計量はかり(8OBLE、9OBLE)と、
    回転翼(2)の外側後縁(20)のコーナー近くに位置付けされた第4の計量はかり(8OBTE、9OBTE)と、
    を含み、
    前記第1及び第2の計量はかり(8IBLE、9IBLE;8IBTE、9IBTE)は、回転翼(2)の実際の内側翼弦方向モーメント(IBMchordwise)を決定するために内側重量値(WIBLE、WIBTE)を提供する内側翼弦方向手段を形成し、
    前記第3及び第4の計量はかり(8OBLE、9OBLE;8OBTE、9OBTE)は、回転翼(2)の実際の外側翼弦方向モーメント(OBMchordwise)を決定するために外側重量値(WOBLE、WOBTE)を提供する外側翼弦方向手段を形成して、
    前記内側及び外側翼弦方向手段(8IBLE、9IBLE;8IBTE、9IBTE;;8OBLE、9OBLE;8OBTE、9OBTE)に連結され、前記内側及び外側重量値(WIBLE、WIBTE;WOBLE、WOBTE)を利用して回転翼(2)の実際の内側及び外側翼弦方向モーメント(IBMchordwise;OBMchordwise)を決定するべく作動可能なマイクロプロセッサ(MPR)を有すること
    を特徴とする静的釣り合わせアセンブリ。
  2. 前記第1の計量はかり(8IBLE、9IBLE)は、回転翼(2)のフェザリング軸(36)から前縁(30)側に向かって距離C1だけオフセットされており、
    前記第2の計量はかり(8IBTE、9IBTE)は、回転翼(2)のフェザリング軸(36)から後縁(20)側に向かって距離C2だけオフセットされており、
    前記第3の計量はかり(8OBLE、9OBLE)は、回転翼(2)のフェザリング軸(36)から前縁(30)側に向かって距離C3だけオフセットされており、
    前記第4の計量はかり(8OBTE、9OBTE)は、回転翼(2)のフェザリング軸から後縁(20)側に向かって距離C4だけオフセットされており、
    前記マイクロプロセッサ(MPR)は、
    IBMchordwise=WIBLE×C1−WIBTE×C2; (1)
    OBMchordwise=WOBLE×C3−WOBTE×C4; (2)
    という等式を解くことによって実際の内側及び外側翼弦方向モーメント(IBMchordwise;OBMchordwise)を決定するべくプログラムされており、
    この式中、
    WIBLEは、前記第1の計量はかり(8IBLE、9IBLE)により記録された重量、
    WIBTEは、前記第2の計量はかり(8IBTE、9IBTE)により記録された重量、
    WOBLEは、前記第3の計量はかり(8OBLE、9OBLE)により記録された重量、
    WOBTEは、前記第4の計量はかり(8OBTE、9OBTE)により記録された重量であることを特徴とする請求の範囲第1項に記載の静的釣り合わせアセンブリ。
  3. 前記マイクロプロセッサ(MPR)は、回転翼(2)の目標内側翼弦方向モーメント(MCIB)及び目標外側翼弦方向モーメント(MCOB)に達するのに必要とされる回転翼(2)の内側及び外側重量の補正(WPIB、WPOB)を計算するようにプログラムされており、前記内側及び外側の目標翼弦方向モーメント(MC IB、MC OB)が、回転翼(2)の翼弦方向空力釣り合いを達成するように設計されていることを特徴とする、請求の範囲第2項に記載の静的釣り合わせアセンブリ。
  4. 前記マイクロプロセッサ(MPR)は、
    WPIB=WIBLE×C1−WIBTE×C2±MCIB (3)
    WPOB=WOBLE×C3−WOBTE×C4±MCOB (4)
    という等式を解くことによって前記内側及び外側重量の補正(WPIB、WPOB)を計算するようにプログラムされており、ここで式中、
    MCIBは、前記目標内側翼弦方向モーメント、
    WPIBは、前記MCIBを達成するのに必要とされる前記内側重量補正、
    MCOBは、前記目標外側翼弦方向モーメント、
    WPOBは、MCOBを達成するのに必要とされる前記外側重量補正であることを特徴とする請求の範囲第3項に記載の静的釣り合いアセンブリ。
  5. 前記第1及び第3の計量はかり(8IBLE、9IBLE;8OBLE、9OBLE)が、回転翼(2)の実際の前縁翼幅方向モーメントを決定するために前記前縁重量値(WIBLE、WOBLE)を提供する前縁手段を形成し、
    前記第2及び第4の計量はかり(8IBTE、9IBTE;8OBTE、9OBTE)が、回転翼(2)の実際の前記後縁翼幅方向モーメントを決定するために前記後縁重量値(WIBTE、WOBTE)を提供する後縁手段を形成し、
    前記マイクロプロセッサ(MPR)が、前記前縁及び後縁手段(8IBLE、9IBLE;8OBLE、9OBLE;;8IBTE、9IBTE;8OBTE、9OBTE)に連結され、前縁及び後縁重量値(WIBLE、WOBLE);WIBTE、WOBTE)を利用して前記実際の前縁及び後縁翼幅方向回転翼モーメントを決定するように作動することを特徴とする、請求の範囲第4項に記載の静的釣り合わせアセンブリ。
  6. 前記第1及び第2の計量はかり(8IBLE、9IBLE;8IBTE、9IBTE)が、回転翼(2)の回転軸を表す基準線(38)からr1という距離だけ離隔し、
    前記第3及び第4の計量はかり(8OBLE、9OBLE;8OBTE、9OBTE)が前記基準線(38)からr2という距離だけ離隔しており、
    前記マイクロプロセッサ(MPR)は、
    Figure 0003589672
    という等式を解くことによって前記実際の前縁及び後縁翼方向回転翼モーメントを決定し、ここで式中、
    Mspanwiseは、回転翼(2)の実際の翼幅方向モーメントであることを特徴とする、請求の範囲第5項に記載の静的釣り合わせアセンブリ。
  7. 前記マイクロプロセッサ(MPR)が、回転翼(2)の目標翼幅方向モーメントに達するのに必要とされる回転翼(2)の内側及び外側翼幅方向重量の補正を計算するようにプログラムされており、この目標翼幅方向モーメントが回転翼(2)の翼幅方向空力釣り合いを達成するように設計されている、ことを特徴とする、請求の範囲第6項に記載の静的釣り合わせアセンブリ。
  8. 前記マイクロプロセッサ(MPR)が、
    Mspanwise(reqd)=Mspanwise±W36×rs
    という等式を解くことによって前記翼幅方向重量の補正を計算するようにプログラムされており、この式中、
    Msspanwise(reqd)は、翼(2)の所要最終翼幅方向モーメントであり、
    W36は、フェザリング軸(36)において付加又は除去されるべき重量であり、
    rsは、基準せん(38)からのW36の翼幅方向距離であることを特徴とする、請求の範囲第7項に記載の静的釣り合わせアセンブリ。
  9. 前記第1及び第2の計量はかり(8IBLE、9IBLE;8IBTE、9IBTE)上で回転翼(2)の内側部分を支持する内側支持部材(14)と、
    前記第3及び第4の計量はかり(8OBLE、9OBLE;8OBTE、9OBTE)上で回転翼(2)の外側部分を支持する外側支持部材(14)と、
    これらの内側及び外側支持部材(14)が各々、回転翼(2)のそれぞれの支持された表面(18)に適合するように輪郭取りされた表面(16)を有していること、を特徴とする請求の範囲第1項に記載の静的釣り合いアセンブリ。
  10. 前記内側及び外側支持部材(14)と心合わせされた組合せ状態に回転翼(2)を暫定的に締め付けるための位置設定用ピン(24)を特徴とする、請求の範囲第9項に記載の静的釣り合わせアセンブリ。
  11. 前記内側及び外側支持部材(14)を保持するための持ち上げ手段(10)を有し、
    この持ち上げ手段(10)は、前記対応する計量はかり(8IBLE、9IBLE;8IBTE、9IBTE;;8OBLE、9OBLE;8OBTE、9OBTE)に対して前記それぞれの内側及び外側支持部材(14)を選択的に下降及び上昇させるように作動することとを特徴とする請求の範囲第9項に記載の静的釣り合わせアセンブリ。
  12. 回転翼(2)の作動上の翼弦及び翼幅方向の釣り合わせを提供するべく、ヘリコプタ回転翼(2)の重量分布を静的に調整する方法において、
    回転翼(2)の実際の内側及び外側翼弦方向モーメント(IBMchordwise;OBMchordwise)を決定する段階と、
    翼(2)の前記実際の内側及び外側翼弦方向モーメント(IBMchordwise;OBMchordwise)を翼(2)の目標内側及び外側翼弦方向モーメントに適合させるべく必要に応じて回転翼(2)上で翼弦方向に内側及び外側重量を付加又は削除する段階と、
    翼(2)の適合された目標弦方向翼モーメントの結果としてもたらされる実際の前縁及び後縁翼幅方向翼モーメントを決定する段階と、
    実際の翼幅方向モーメントに適合させるべく必要に応じて回転翼(2)上で翼幅方向に内側及び外側重量を付加又は削除する段階と、
    を含む方法。
  13. ヘリコプターの回転翼構成要素の実際の内側及び外側の翼弦方向モーメントを静的に決定する静的釣り合わせアセンブリにおいて、
    構成要素の内側前縁コーナー近くに位置付けされた第1の計量はかり(8IBLE、9IBLE)と、
    構成要素の内側後縁コーナー近くに位置付けされた第2の計量はかり(8IBTE、9IBTE)と、
    構成要素の外側前縁コーナー近くに位置付けされた第3の計量はかり(8OBLE、9OBLE)と、
    構成要素の外側後縁コーナー近くに位置付けされた第4の計量はかり(8OBTE、9OBTE)と、
    と含み、
    前記第1及び第2の計量はかり(8IBLE、9IBLE;8IBTE、9IBTE)は、構成要素の実際の内側翼弦方向モーメントを決定するべく内側重量値を提供する内側翼弦方向手段を形成し、
    前記第3及び第4の計量はかり(8OBLE、9OBLE;8OBTE、9OBTE)は、構成要素の実際の翼弦方向外側モーメントを決定するために外側重量値を提供する外側翼弦方向手段を形成し、
    前記内側及び外側翼弦方向手段(8IBLE、9IBLE;8IBTE、9IBTE;8OBLE、9OBLE;8OBTE、9OBTE)に連結され、前記内側及び外側重量値を利用して構成要素の前記実際の内側及び外側翼弦方向のモーメントを決定するべく作動するマイクロプロセッサ(MPR)を含んでいることを特徴とする、静的釣り合わせアセンブリ。
  14. 構成要素の作動上の翼弦及び翼幅方向の釣り合いを提供するべく、ヘリコプタ回転翼構成要素の重量分布を静的に調整する方法において、
    構成要素の実際の内側及び外側翼弦方向モーメントを決定する段階と、
    構成要素の前記実際の内側及び外側翼弦方向翼モーメントを構成要素の目標内側及び外側翼弦方向モーメントに適合させるべく必要に応じて構成要素上で翼弦方向に内側及び外側重量を付加又は削除する段階と、
    構成要素の適合された目標翼弦方向モーメントの結果としてもたらされる構成要素の実際の前縁及び後縁翼幅方向モーメントを決定する段階と、
    構成要素の実際の翼幅方向モーメントを構成要素の目標前縁及び後縁翼幅方向モーメントに適合させるべく必要に応じて構成要素上で翼幅方向に内側及び外側重量を付加又は削除する段階と、
    を含むことを特徴とする方法。
JP50877296A 1994-08-31 1995-08-09 ヘリコプターの回転翼の釣り合わせ方法及びその装置 Expired - Fee Related JP3589672B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/298,712 1994-08-31
US08/298,712 US5475622A (en) 1994-08-31 1994-08-31 Method and apparatus for balancing helicopter rotor blades
PCT/US1995/010070 WO1996006775A1 (en) 1994-08-31 1995-08-09 Method and apparatus for balancing helicopter rotor blades

Publications (2)

Publication Number Publication Date
JPH10505305A JPH10505305A (ja) 1998-05-26
JP3589672B2 true JP3589672B2 (ja) 2004-11-17

Family

ID=23151708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50877296A Expired - Fee Related JP3589672B2 (ja) 1994-08-31 1995-08-09 ヘリコプターの回転翼の釣り合わせ方法及びその装置

Country Status (11)

Country Link
US (1) US5475622A (ja)
EP (1) EP0777601B1 (ja)
JP (1) JP3589672B2 (ja)
KR (1) KR970705498A (ja)
CN (1) CN1065492C (ja)
BR (1) BR9508646A (ja)
CA (1) CA2198718A1 (ja)
DE (1) DE69505682T2 (ja)
RU (1) RU2138790C1 (ja)
TR (1) TR199501075A2 (ja)
WO (1) WO1996006775A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824897A (en) * 1996-08-15 1998-10-20 Avion, Inc. Blade static balancing fixture
US7775107B2 (en) * 2007-10-03 2010-08-17 Hamilton Sundstrand Corporation Measuring rotor imbalance via blade clearance sensors
US8353673B2 (en) * 2008-04-26 2013-01-15 Sikorsky Aircraft Corporation Main rotor blade with integral cuff
US7966865B2 (en) * 2009-01-05 2011-06-28 Michael Alfred Wilhelm Lenz Method for balancing radical projections detached from a rotating assembly
CN102410905B (zh) * 2011-12-14 2014-03-26 中国人民解放军总参谋部第六十研究所 一种无人直升机转动惯量和重心一体化测量装置
US8954298B2 (en) 2012-01-03 2015-02-10 The Boeing Company Methods and systems for helicopter rotor blade balancing
US9216821B1 (en) 2012-01-03 2015-12-22 The Boeing Company Methods and systems for helicopter rotor blade balancing
RU2531091C2 (ru) * 2012-11-22 2014-10-20 Олег Юрьевич Егоров Способ балансировки вентиляторов в сборе
US20140260711A1 (en) * 2013-03-12 2014-09-18 Larry A. Turner Probe balancer
US9598168B2 (en) 2013-09-23 2017-03-21 Sikorsky Aircraft Corporation Method of assembling and balancing rotor blades
US9988146B2 (en) 2013-11-08 2018-06-05 Sikorsky Aircraft Corporation Rotor balancing apparatus
US9290237B1 (en) * 2014-10-24 2016-03-22 Jian-Xing Lin Hydrofoil
US9914534B2 (en) * 2015-04-07 2018-03-13 Sikorsky Aircraft Corporation Method for static balancing of aircraft rotor blades
CN106197844A (zh) * 2015-05-05 2016-12-07 昌河飞机工业(集团)有限责任公司 一种测量复合材料桨叶静矩的装置及其测量方法
WO2016209889A1 (en) 2015-06-22 2016-12-29 Sikorsky Aircraft Corporation Core material for composite structures
KR101686929B1 (ko) * 2016-05-03 2016-12-15 엘아이지넥스원 주식회사 비행체의 구동 날개 얼라인먼트 장치 및 방법
US11548627B2 (en) 2016-08-15 2023-01-10 Sikorsky Aircraft Corporation Core matertal for balanced rotor blade
DE102017206349B4 (de) * 2017-04-12 2019-04-11 Siemens Gamesa Renewable Energy A/S Wiegevorrichtung für ein Windenergieanlagen-Rotorblatt
CN109850138A (zh) * 2017-11-30 2019-06-07 中光电智能机器人股份有限公司 无人机及其螺旋桨
US11391156B2 (en) 2020-01-23 2022-07-19 Textron Innovations Inc. Static rotor blade assembly balancing

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE26047E (en) * 1966-06-28 Propeller balancing device
US2388705A (en) * 1942-11-05 1945-11-13 Aviat Corp Apparatus for balancing propeller blades
US3782202A (en) * 1972-04-20 1974-01-01 Balance Technology Inc Method and apparatus for balancing segmented parts
US3952601A (en) * 1974-12-18 1976-04-27 United Technologies Corporation Helicopter rotor blade balancing method
DE2528007C2 (de) * 1975-06-24 1984-04-19 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Korrektur der Schwerpunktlage und des Gewichts von Rotorblättern
US3999888A (en) * 1975-06-25 1976-12-28 United Technologies Corporation Composite tip weight attachment
DE2740454A1 (de) * 1977-09-08 1979-03-15 Hofmann Gmbh & Co Kg Maschinen Verfahren und vorrichtung zum auswuchten von rotoren, insbesondere von kfz-raedern
DE2935002C3 (de) * 1979-08-30 1982-03-11 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Vorrichtung zur Korrektur des Gesamtgewichts und des statischen Moments eines einzelnen Drehflügelblattes
US4348885A (en) * 1980-12-12 1982-09-14 Gebr. Hofmann Gmbh & Co. Kg, Maschinenfabrik Method and system for operational testing of a device for balancing bodies of rotation
DE3247503C1 (de) * 1982-12-22 1984-01-19 Wolf-Dieter 6100 Darmstadt Reutlinger Einrichtung zur Unwuchtbestimmung an Luftschrauben
US4489605A (en) * 1982-12-27 1984-12-25 Donald O. Gillman Balancing machine for large rotatable parts
USRE34207E (en) * 1986-11-19 1993-03-30 General Electric Company Counterrotating aircraft propulsor blades
US4971641A (en) * 1988-11-14 1990-11-20 General Electric Company Method of making counterrotating aircraft propeller blades
US4991437A (en) * 1988-11-30 1991-02-12 Hanchett Raymond L Airfoil balancer
US4986149A (en) * 1989-04-10 1991-01-22 Dayton-Walther Corporation System for final balancing of cast metal brake drums
US5273398A (en) * 1992-12-01 1993-12-28 United Technologies Corporation Rotor blade balance weight assembly

Also Published As

Publication number Publication date
RU2138790C1 (ru) 1999-09-27
DE69505682D1 (de) 1998-12-03
EP0777601B1 (en) 1998-10-28
TR199501075A2 (tr) 1996-06-21
KR970705498A (ko) 1997-10-09
WO1996006775A1 (en) 1996-03-07
CN1156433A (zh) 1997-08-06
CN1065492C (zh) 2001-05-09
CA2198718A1 (en) 1996-03-07
DE69505682T2 (de) 1999-06-10
JPH10505305A (ja) 1998-05-26
EP0777601A1 (en) 1997-06-11
BR9508646A (pt) 1997-11-25
US5475622A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP3589672B2 (ja) ヘリコプターの回転翼の釣り合わせ方法及びその装置
WO1996006775A9 (en) Method and apparatus for balancing helicopter rotor blades
RU97105023A (ru) Устройство и способ для статической балансировки лопастей винтов вертолетов
CN104748693A (zh) 一种基于双目立体视觉的桨叶剖面扭转刚度测量系统
US10288399B2 (en) Blade geometry characterization tool
JP6592721B2 (ja) 風洞模型支持装置における航空機模型の迎角設定方法およびその設定装置
JPH02504619A (ja) ローターとその主装置の全作動範囲における振動減少方法及び装置
CN107966128A (zh) 一种无人机复合材料桨叶扭角检测装置
CN111504596A (zh) 一种铰链力矩天平
CN110160758A (zh) 开裂式舵系统地面刚度试验方法
CN207717311U (zh) 一种直升机桨叶扭转刚度测量装置
US7966865B2 (en) Method for balancing radical projections detached from a rotating assembly
CN106092497B (zh) 一种柔性翼的安装装置
Dawson An experimental investigation of the stability of a bearingless model rotor in hover
Zimmerman Aerodynamic characteristics of several airfoils of low aspect ratio
US9914534B2 (en) Method for static balancing of aircraft rotor blades
CN113815513B (zh) 一种车载可变入射角飞行器桨翼气动耦合测试系统
Weick et al. The characteristics of a Clark Y wing model equipped with several forms of low-drag fixed slots
CN112124620A (zh) 应用于飞行器的伺服负载力矩计算方法、设备及存储介质
Mantay et al. Parametric tip effects for conformable rotor applications
KR102394047B1 (ko) 항공기의 에어포일용 중량 측정장치
Weller Fuselage state feedback for aeromechanical stability augmentation of a bearingless main rotor
Ganzer et al. An experimental investigation of the effect of wind tunnel walls on the aerodynamic performance of a helicopter rotor
Hohenemser et al. Analysis of the Vertical Flight Dynamic Characteristics of the Lifting Rotor with Floating Hub and Off‐Set Coning Hinges
RU2180735C1 (ru) Способ балансировки воздушных винтов вертолетов

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees