JP3589439B2 - Transmit / receive antenna device - Google Patents

Transmit / receive antenna device Download PDF

Info

Publication number
JP3589439B2
JP3589439B2 JP14500697A JP14500697A JP3589439B2 JP 3589439 B2 JP3589439 B2 JP 3589439B2 JP 14500697 A JP14500697 A JP 14500697A JP 14500697 A JP14500697 A JP 14500697A JP 3589439 B2 JP3589439 B2 JP 3589439B2
Authority
JP
Japan
Prior art keywords
antenna
antennas
coupling attenuation
reception
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14500697A
Other languages
Japanese (ja)
Other versions
JPH10335930A (en
Inventor
正佳 新宅
佳雄 恵比根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP14500697A priority Critical patent/JP3589439B2/en
Publication of JPH10335930A publication Critical patent/JPH10335930A/en
Application granted granted Critical
Publication of JP3589439B2 publication Critical patent/JP3589439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は例えば移動通信システムに用いられ、同一周波数帯かつ同一偏波で送信を行うアンテナと、受信を行うアンテナよりなるアンテナ装置に関する。
【0002】
【従来の技術】
移動通信システムや固定無線方式において同一周波数帯域で送信と受信を行う場合、設置場所その他の関係から、送信アンテナと受信アンテナとを近接して設置することが多く、アンテナ間の結合減衰量を十分にとれない場合が多い。このような場合、アンテナ間の結合による干渉などが問題となる。このような問題をさけるために従来では、アンテナにフィルタをつけて結合減衰量を確保したり、図4Aに示すように同一直線10上に1つの半波長ダイポールアンテナ11と、これより間隔sをおいて、2分の1波長の間隔をもつ2つの半波長ダイポールアンテナ12,13が配列して設けられ、ダイポールアンテナ11を送信用(受信用)とする時、ダイポールアンテナ12,13を受信用(送信用)として同相給電されるように構成し、アンテナ11とアンテナ12,13との結合減衰量を確保していた。
【0003】
【発明が解決しようとする課題】
しかし、アンテナにフィルタをつけると、フィルタの通過損失により必要な利得が確保できないことがある。また、アンテナの利得を向上させても、フィルタを接続するためあまり効果が得られないといった状況もあり得た。
また図4Aに示した同一直線上に1素子12と2素子13,14の対の送受信アンテナを配置し、2素子13,14の間隔を約2分の1波長のアレーアンテナを用いる方法では、アンテナの利得が最大約5dBiにしか成らず、必要な利得が得られないという状況も有る。
【0004】
【課題を解決するための手段】
請求項1の発明によれば同一直線上に第1乃至第4アンテナが配され、これらアンテナは同一周波数帯で、同一偏波とされ、これらアンテナ配列の一端の第1アンテナが送信用(又は受信用)とされ、他の第2乃至第4アンテナが受信用(又は送信用)とされて同相給電される。上記送受信用アンテナ間の結合減衰量を所定値以上にするよう上記第1アンテナと第2アンテナとの間隔s、及び上記第3アンテナと第4アンテナとの間隔dを離す。
請求項2の発明によれば上記sは2.6λ以上4.0λ以下、上記dは2.0λ以上3.0λ以下とされる。
【0005】
この構成により、第1アンテナと、同相給電された第2〜第4アンテナとの間の相互インピーダンスが減少し、結果としてアンテナ間の結合減衰量が確保できる。
【0006】
【発明の実施の形態】
図1にこの発明の実施例を示す。この実施例では4つの素子として半波長ダイポールアンテナ11,12,13,14が同一直線10上に配列され、かつ各ダイポールアンテナ11〜14はそのアンテナ素子が直線10上に平行して位置されている。アンテナ11と12の間隔はsとされ、アンテナ12と13の間隔は約2分の1波長とされ、アンテナ13と14の間隔はdとされる。アンテナ11〜14は同一周波数帯であり、同一偏波である。アンテナ11は送信用又は受信用とされ、アンテナ12〜14は同相給電され、受信用又は送信用とされる。
【0007】
この構成によれば優れた結合減衰量が得られることを以下に説明する。なおアンテナ間の結合減衰量Lc は次式で計算される。
Lc =20 log 2Rr /|Zm | (1)
Rr はアンテナ放射抵抗であり、アンテナ間隔には影響されずほぼ一定であり、送受信アンテナの相互インピーダンスZm によりほぼ決定される。
【0008】
比較のために、図4Aのアンテナ11と12の間隔sを変化させた場合の結合減衰量の計算値を図4Bに示す。アンテナ内の相互インピーダンス、ならびに、各放射抵抗はモーメント法を用いて計算し、式(1)を用いてアンテナ間の結合減衰量を計算した。
図2に、ダイポールアンテナ13とダイポールアンテナ14の間隔dを2.0波長とし、ダイポールアンテナ11とダイポールアンテナ12の間隔sを変化させた場合の結合減衰量の計算値を示す。なお、ダイポールアンテナ11とアンテナ12〜14のアレーアンテナとの間の相互インピーダンス、ならびに各々の放射抵抗はモーメント法を用いて計算し、式(1)を用いてアンテナ間の結合減衰量を計算した。
【0009】
図2から図4Bよりも結合減衰量がとれていることが判別でき、特にダイポールアンテナ11とダイポールアンテナ12の間隔sが3波長の場合において最大約20dBほど改善作用が得られている。図4Bではs=5λで75dBであったが、図2ではsが約2.5λ〜5λで75dB以上、特に約2.6λ〜3.3λで特に大となっている。
【0010】
図1の実施例においてダイポールアンテナ13とダイポールアンテナ14の間隔dを3.0波長離し、ダイポールアンテナ11とダイポールアンテナ12の間隔sを変化させた場合の結合減衰量の計算値を図3に示す。この計算法は先の場合と同様である。この図より図4Bよりも結合減衰量がとれていることが理解され、特にダイポールアンテナ11とダイポールアンテナ12の間隔sが、3.5波長の場合において約15dBほど改善作用が得られている。また、sが約3λ以上で結合減衰量が75dB以上となり、sが約3.2λ〜3.8λで、結合減衰量が80dB以上となる。またアンテナ11〜14により構成され、アンテナ装置の全長が10波長以内で結合減衰量が最大90dB確保できる。
【0011】
更に図2、図3からdを大とすると、結合減衰量が最大となるsの値が大となり、かつ、その最大結合減衰量も大となることが理解される。dを約2.0〜3.0λとし、sを2.5λ以上、特に2.6λ程度〜4λ程度が好ましい。図4Aに示した従来のアンテナ装置の利得の最大が5dBiであったのに対し、この実施例によると最大約7dBiとすることが可能となる。なおSを5λ以上にすると、給合減衰量が減少する。
【0012】
上述において各アンテナ11〜14に、反射素子、あるいは導波素子、またはその両者をそれぞれ設けてもよく、更には前記線状素子とする場合に限らず、他の形状のアンテナ素子を用いてもよい。またアンテナ12と13の間隔も必ずしも半波長に固定しなくてもよい。
【0013】
【発明の効果】
以上述べたようにこの発明によれば同一周波数帯、同一偏波の4つのアンテナを同一直線上に配列し、その一端のアンテナと、残りを同相給電としたアンテナとを用い、これら間の結合減衰量を従来より大とし、かつ、アンテナ利得も大とすることができる。
【図面の簡単な説明】
【図1】この発明の実施例を示す図。
【図2】図1の実施例によるアンテナ間の結合減衰量の計算結果例1を示す図。
【図3】図2の実施例によるアンテナ間の結合減衰量の計算結果例2を示す図。
【図4】Aは従来の送受信アンテナ装置を示す図、Bはそのアンテナ間結合減衰量の計算結果を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antenna device that is used in, for example, a mobile communication system and includes an antenna that performs transmission in the same frequency band and the same polarization, and includes an antenna that performs reception.
[0002]
[Prior art]
When transmitting and receiving in the same frequency band in a mobile communication system or fixed wireless system, the transmitting antenna and the receiving antenna are often installed close to each other due to the installation location and other factors, and the coupling attenuation between the antennas is sufficiently reduced. Often cannot be taken. In such a case, interference due to coupling between the antennas becomes a problem. Conventionally, in order to avoid such a problem, a filter is attached to the antenna to secure a coupling attenuation amount, or as shown in FIG. In this case, two half-wavelength dipole antennas 12 and 13 having an interval of a half wavelength are arranged and provided. When the dipole antenna 11 is used for transmission (for reception), the dipole antennas 12 and 13 are used for reception. (For transmission) so that in-phase power is supplied, and the coupling attenuation between the antenna 11 and the antennas 12 and 13 is ensured.
[0003]
[Problems to be solved by the invention]
However, if a filter is attached to the antenna, the required gain may not be secured due to the passing loss of the filter. Further, even if the gain of the antenna was improved, there was a situation in which a filter was connected, so that little effect was obtained.
Further, in the method of arranging a pair of transmitting and receiving antennas of one element 12 and two elements 13 and 14 on the same straight line shown in FIG. 4A and using an array antenna having a wavelength of about half the distance between the two elements 13 and 14, In some situations, the gain of the antenna is only up to about 5 dBi and the required gain cannot be obtained.
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, the first to fourth antennas are arranged on the same straight line, these antennas are in the same frequency band, have the same polarization, and the first antenna at one end of these antenna arrays is used for transmission (or Reception), and the other second to fourth antennas are used for reception (or transmission) and fed in-phase. The distance s between the first antenna and the second antenna and the distance d between the third antenna and the fourth antenna are increased so that the coupling attenuation between the transmitting and receiving antennas is equal to or greater than a predetermined value.
According to the second aspect of the present invention, the value s is set to 2.6 to 4.0 λ, and the value d is set to 2.0 λ to 3.0 λ.
[0005]
With this configuration, the mutual impedance between the first antenna and the second to fourth antennas fed in-phase is reduced, and as a result, the coupling attenuation between the antennas can be secured.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. In this embodiment, half-wavelength dipole antennas 11, 12, 13, and 14 are arranged on the same straight line 10 as four elements, and each dipole antenna 11 to 14 has its antenna element positioned parallel to the straight line 10. I have. The interval between the antennas 11 and 12 is s, the interval between the antennas 12 and 13 is about a half wavelength, and the interval between the antennas 13 and 14 is d. The antennas 11 to 14 are in the same frequency band and have the same polarization. The antenna 11 is used for transmission or reception, and the antennas 12 to 14 are supplied with in-phase power and used for reception or transmission.
[0007]
The fact that excellent coupling attenuation can be obtained with this configuration will be described below. The coupling attenuation Lc between the antennas is calculated by the following equation.
Lc = 20 log 2Rr / | Zm | 2 (1)
Rr is the antenna radiation resistance, which is substantially constant without being affected by the antenna interval, and is substantially determined by the mutual impedance Zm of the transmitting and receiving antennas.
[0008]
For comparison, FIG. 4B shows a calculated value of the coupling attenuation when the distance s between the antennas 11 and 12 in FIG. 4A is changed. The mutual impedance in the antenna and each radiation resistance were calculated using the moment method, and the coupling attenuation between the antennas was calculated using the equation (1).
FIG. 2 shows calculated values of the coupling attenuation when the distance d between the dipole antennas 13 and 14 is 2.0 wavelengths and the distance s between the dipole antennas 11 and 12 is changed. The mutual impedance between the dipole antenna 11 and the array antennas of the antennas 12 to 14 and the respective radiation resistances were calculated using the moment method, and the coupling attenuation between the antennas was calculated using the equation (1). .
[0009]
From FIG. 2 to FIG. 4B, it can be determined that the coupling attenuation is higher than that of FIG. 4B. In particular, when the distance s between the dipole antenna 11 and the dipole antenna 12 is three wavelengths, an improvement effect of about 20 dB at maximum is obtained. In FIG. 4B, 75 dB is obtained when s = 5λ. In FIG. 2, however, s is 75 dB or more in the range of about 2.5λ to 5λ, and particularly large in the range of about 2.6λ to 3.3λ.
[0010]
FIG. 3 shows the calculated values of the coupling attenuation when the distance d between the dipole antenna 13 and the dipole antenna 14 is 3.0 wavelengths apart and the distance s between the dipole antenna 11 and the dipole antenna 12 is changed in the embodiment of FIG. . This calculation method is the same as the previous case. From this figure, it is understood that the coupling attenuation is larger than that of FIG. 4B. In particular, when the distance s between the dipole antenna 11 and the dipole antenna 12 is 3.5 wavelengths, an improvement effect of about 15 dB is obtained. Further, when s is about 3λ or more, the coupling attenuation becomes 75 dB or more, and when s is about 3.2λ to 3.8λ, the coupling attenuation becomes 80 dB or more. Further, the antenna device is constituted by the antennas 11 to 14, and a maximum coupling attenuation of 90 dB can be secured when the total length of the antenna device is within 10 wavelengths.
[0011]
2 and 3, it is understood that when d is increased, the value of s at which the coupling attenuation is maximized is increased, and the maximum coupling attenuation is also increased. It is preferable that d is about 2.0 to 3.0λ and s is 2.5λ or more, particularly about 2.6 to 4λ. While the maximum gain of the conventional antenna device shown in FIG. 4A is 5 dBi, according to this embodiment, the maximum gain can be about 7 dBi. When S is set to 5λ or more, the combined attenuation decreases.
[0012]
In the above description, each of the antennas 11 to 14 may be provided with a reflection element, a waveguide element, or both of them. Good. Also, the interval between the antennas 12 and 13 does not necessarily have to be fixed to a half wavelength.
[0013]
【The invention's effect】
As described above, according to the present invention, the four antennas having the same frequency band and the same polarization are arranged on the same straight line, and the antenna at one end and the other antenna having the same-phase feeding are used. The amount of attenuation can be made larger than before, and the antenna gain can be made larger.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing a calculation result example 1 of a coupling attenuation amount between antennas according to the embodiment of FIG. 1;
FIG. 3 is a diagram showing a calculation result example 2 of a coupling attenuation amount between antennas according to the embodiment of FIG. 2;
4A is a diagram showing a conventional transmitting / receiving antenna device, and FIG. 4B is a diagram showing a calculation result of a coupling attenuation between antennas.

Claims (1)

偏波面と同一とした同一周波数帯域の送信用アンテナと受信用アンテナよりなる送受信アンテナ装置であって、
同一直線上に第1乃至第4アンテナが、それぞれの偏波面を揃えて配列され、その第1アンテナは送信用又は受信用とされ、上記第2乃至第4アンテナは受信用又は送信用として同相給電され、
上記送受信用アンテナ間の結合減衰量を所定値以上にするよう上記第1のアンテナと第2のアンテナとの間隔s、及び上記第3のアンテナと第4のアンテナとの間隔dを離し、
上記sは2.6λ以上4.0λ以下、上記dは2.0λ以上3.0λ以下であることを特徴とする送受信アンテナ装置。
A transmitting and receiving antenna device comprising a transmitting antenna and a receiving antenna in the same frequency band as the same as the polarization plane,
First to fourth antennas are arranged on the same straight line with their respective polarization planes aligned. The first antenna is used for transmission or reception, and the second to fourth antennas are used for reception or transmission. Powered
Spacing s between the first antenna and the second antenna to the coupling attenuation between the transmitting and receiving antenna above a predetermined value, and the distance d between the third antenna and the fourth antenna away City,
The transmission / reception antenna device according to claim 1, wherein s is from 2.6λ to 4.0λ, and d is from 2.0λ to 3.0λ .
JP14500697A 1997-06-03 1997-06-03 Transmit / receive antenna device Expired - Lifetime JP3589439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14500697A JP3589439B2 (en) 1997-06-03 1997-06-03 Transmit / receive antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14500697A JP3589439B2 (en) 1997-06-03 1997-06-03 Transmit / receive antenna device

Publications (2)

Publication Number Publication Date
JPH10335930A JPH10335930A (en) 1998-12-18
JP3589439B2 true JP3589439B2 (en) 2004-11-17

Family

ID=15375278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14500697A Expired - Lifetime JP3589439B2 (en) 1997-06-03 1997-06-03 Transmit / receive antenna device

Country Status (1)

Country Link
JP (1) JP3589439B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998360B1 (en) * 2016-03-28 2019-07-09 주식회사 경우 Sensor module

Also Published As

Publication number Publication date
JPH10335930A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US5450093A (en) Center-fed multifilar helix antenna
KR100637346B1 (en) Antenna system for a radio communication device
EP0444679B1 (en) Mobile antenna
CA2261906C (en) Dual-band coupled segment helical antenna
JP3029231B2 (en) Double circularly polarized TEM mode slot array antenna
CA2011298A1 (en) Dual polarization dipole array antenna
JP2001517011A5 (en)
MXPA04004432A (en) A dual band phased array employing spatial second harmonics.
JPS6187434A (en) Portable radio equipment
AU2001230764A1 (en) Vivaldi cloverleaf antenna
AU5955696A (en) Multiple band printed monopole antenna
AU5573596A (en) Method and antenna for providing an omnidirectional pattern
US4466003A (en) Compact wideband multiple conductor monopole antenna
US7365699B2 (en) Independently center fed dipole array
US3696438A (en) Log-periodic scaled directional coupler feed line for antennas
JPH06224628A (en) Multi-frequency common use array antenna
JP3589439B2 (en) Transmit / receive antenna device
JP3992660B2 (en) Transmit / receive separation type microstrip antenna
Nishimoto et al. Narrowband/wideband decoupling networks for antenna arrays and excitation ditribution control
WO2020037558A1 (en) Antenna and unmanned aerial vehicle
JPH01248805A (en) Microstrip antenna
RU2225663C1 (en) Antenna
JPH0447484B2 (en)
JP3038205B1 (en) Waveguide-fed planar antenna
JP2582255Y2 (en) Helical antenna

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term