JP3589338B2 - Optical transmission module - Google Patents

Optical transmission module Download PDF

Info

Publication number
JP3589338B2
JP3589338B2 JP19895897A JP19895897A JP3589338B2 JP 3589338 B2 JP3589338 B2 JP 3589338B2 JP 19895897 A JP19895897 A JP 19895897A JP 19895897 A JP19895897 A JP 19895897A JP 3589338 B2 JP3589338 B2 JP 3589338B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
lens
optical
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19895897A
Other languages
Japanese (ja)
Other versions
JPH1144829A (en
Inventor
貴彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19895897A priority Critical patent/JP3589338B2/en
Publication of JPH1144829A publication Critical patent/JPH1144829A/en
Application granted granted Critical
Publication of JP3589338B2 publication Critical patent/JP3589338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光通信に用いられる光伝送装置に関し、より詳しくは、光ファイバ、受光素子及び光ファイバと受光素子とを光学的に結合させるレンズを有して構成される光伝送モジュールに関する。
【0002】
【従来の技術】
図3はこの種の光伝送モジュールの一従来例を示す。この光伝送モジュールは、光ファイバ31と、光ファイバ31からの出射光を集光するレンズ32と、受光素子(半導体受光素子)33とで構成されている。
【0003】
光ファイバ31からの出射光はレンズ32により集光され、光軸35上の焦点341で結像する。なお、図中の符号34は光ファイバ31から出射された光が受光素子33に到達するまでの光路を示す。
【0004】
ここで、受光素子33は、光軸35が受光領域の中心を垂直に通り、かつ焦点341に受光素子33の受光領域の中心が来るように位置している。
【0005】
次に、図3に示す光伝送モジュールの動作を説明する。
【0006】
光ファイバ31より出射された光はレンズ32により集光され、受光素子33の受光領域に入射する。入射した光は空乏化された光吸収層内においてキャリアを生成する。このキャリアは受光素子33に印加されている逆バイアス電圧による電界によって加速される。このため、光電流を外部へ取り出すことができ、光信号として検出できる。
【0007】
ところで、光CATV等のアナログ伝送システムで用いられる光伝送モジュールにおいては、極めて低い相互変調歪特性が要求される。具体的には、2次相互変調歪<−80dBcという目標値を満足しなければならない。
【0008】
しかるに、図3に示した従来の光伝送モジュールでは、受光素子33が焦点341に位置しているため、受光領域内に発生するキャリアの密度が高く、空間電荷効果によって上記の2次相互変調歪の目標値を満足することが困難であった。
【0009】
ここで、空間電荷効果とは、空乏層内の電界が多量に生成されたキャリアによって打ち消されるため本来の電界分布が歪む現象をいい、この空乏層内の電界分布の歪みにより空乏層内に移動の速いキャリアと遅いキャリアが発生する。これが原因となって、2次相互変調歪が発生し、伝送特性が劣化するのである。
【0010】
このような問題点を解決するものとして、特開平5−224101号公報に開示された半導体受光装置がある。図4(a)、(b)はこの半導体受光装置を示す。
【0011】
この半導体受光装置は、光ファイバ41と、光ファイバ41からの出射光を集光するレンズ42と、受光素子43とで構成されており、光ファイバ41からの出射光は受光素子43の表面の後方又は前方で集光されるようになっている。
【0012】
即ち、同図(a)の場合は、受光素子43は受光領域が焦点441の前方になるように位置している。また、同図(b)の場合は、受光素子43は受光領域が焦点441の後方になるように位置している。
【0013】
従って、いずれの場合も、受光素子44の受光領域内にはデフォーカス状態の光束が入射するため、受光領域内での単位面積あたりの光量が低下する。このため、受光領域内に発生するキャリアの密度は低下し、空間電荷効果の影響は減少する。この結果、2次相互変調歪が低減され、図3に示す光伝送モジュールの場合に比べて伝送特性が改善される。
【0014】
【発明が解決しようとする課題】
しかしながら、特開平5−224101号公報に開示された半導体受光装置では、以下に示す問題点がある。
【0015】
今、この半導体受光装置において、受光素子43の取付位置が、光軸上で焦点441から遠ざかる方向(図4(a)では光軸方向、図4(b)では光軸と反対方向)にずれた場合について説明する。
【0016】
受光素子43の取付位置の光軸方向の位置ずれによって、レンズ42により集光された光束の受光素子43上での面積が受光領域の面積より大きくなると、受光領域に入る光量が低下し、光ファイバ41と受光素子43との光結合効率が急激に低下する。
【0017】
ここで、光結合効率に一定の最低目標値を設定すると、光軸方向の取付位置の許容量が決定される。
【0018】
しかるに、図4に示す半導体受光装置の構造では、受光素子43の光軸方向の取付位置許容量を大きくできないため、光軸方向の位置調整が簡略化できないという新たな課題がある。
【0019】
即ち、図3に示すものに比べて伝送特性を改善できるという利点を有するものの、光結合効率の急激な低下を防止する必要があるため、受光素子44の光軸方向の位置調整が非常に煩わしいものになるという問題点がある。
【0020】
本発明は、このような現状に鑑みてなされたものであり、伝送特性の改善と併せて、受光素子の光軸方向の取付位置許容量を大きくでき、結果的に受光素子の光軸方向の位置調整を簡略化できる光伝送モジュールを提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明の光伝送モジュールは、光ファイバと、該光ファイバからの出射光を集光するために、光軸が該光ファイバの光軸と一致させて配置されたレンズと、該レンズにて集光される光をデフォーカス状態で受光するように配置された受光素子とを有し、2次相互変調歪が−80dBc未満である光伝送モジュールにおいて、該レンズは光軸上に2つ以上の焦点を持つレンズであり、これらの焦点間に該受光素子を配置したおり、そのことにより上記目的が達成される。
【0022】
以下に本発明の作用を説明する。
【0023】
まず、本発明では、受光素子は、複数の焦点間に配置されるため、その受光領域にはデフォーカス状態で光束が入射する。よって、空間電荷効果の影響を低減できるので、図3の場合に比べて伝送特性を改善することが可能である。
【0024】
加えて、本発明では、レンズとして複数の焦点を持つレンズを用いているので、図4の半導体受光装置と比較すると、受光素子の光軸方向の取付位置許容量を大きくできる。以下にその理由を2焦点を有するレンズを用いた場合を例にとって、図2に基づき説明する。
【0025】
ここで、図2中の曲線E1は図4のように1つの焦点を持つレンズ42を用いた場合の光ファイバと受光素子との光結合効率の変化を示し、曲線E2は2つの焦点を持つレンズを用いた場合の光結合効率の変化を示している。
【0026】
光結合効率の最低目標値E0で決まる光軸方向の取付位置許容量は曲線E1、E2でそれぞれZ1、Z2であり、2つの焦点を持つレンズ2(図1参照)を用いる系の許容量の方が大きくなっている(Z2>Z1)。
【0027】
これは、レンズ2の領域2−1、2−2、つまりレンズ2−1、2−2(図1参照)からそれぞれ出射される光と受光素子との光結合効率の曲線E21、E22が光軸方向にずれているため、2つの曲線E21、E22を重畳すると、光結合効率の最高値は低下するが、光結合効率の変化の少ない平坦な部分が広がることによる。
【0028】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき具体的に説明する。
【0029】
(実施形態)
図1及び図2は本発明光伝送モジュールの実施形態を示す。図1に示すように、この光伝送モジュールは、光ファイバ1と、光ファイバ1からの出射光を集光するレンズ2と、受光素子(半導体受光素子)3とで構成されている。但し、このレンズ2は2つの焦点を有するレンズであり、この点で、図3及び図4に示す従来例の構成とは明確に異なっている。以下にレンズ2の詳細について説明する。
【0030】
図1に示すように、このレンズ2は2つのレンズ2−1、2−2を同軸配置した複合型レンズであり、各レンズ2−1、2−2は光軸5上で互いに異なる位置の焦点4−1、4−2を持っている。そして、光軸5上の両焦点4−1、4−2間に受光素子3が配置されており、受光素子3の受光領域の中心を光軸5が垂直に通る構成になっている。
【0031】
上記構成において、光ファイバ1から出射された光はレンズ2−1、2−2でそれぞれ集光され、光軸5上の焦点4−1、4−2で結像する。
【0032】
本実施形態の光伝送モジュールは、集光レンズとして、2焦点を有するレンズ2を備えているため、伝送特性の改善を図った図4の半導体受光装置と比較すると、受光素子3の光軸方向の取付位置許容量を大きくできる、といった効果を奏することができる。
【0033】
以下にその理由を図2に基づき説明する。但し、図2はレンズ2と受光素子3との相対位置に対する受光素子3への結合効率の関係を示している。
【0034】
ここで、図2中の曲線E1は図4のように1つの焦点を持つレンズ42を用いた場合の光ファイバ1と受光素子3との光結合効率の変化を示し、曲線E2は2つの焦点を持つレンズ2を用いた場合の光結合効率の変化を示している。
【0035】
光結合効率の最低目標値E0で決まる光軸5方向の取付位置許容量は曲線E1、E2でそれぞれZ1、Z2であり、図1の2つの焦点を持つレンズ2を用いる系の許容量の方が大きくなっている(Z2>Z1)。
【0036】
これは、レンズ2の領域2−1、2−2、つまりレンズ2−1、2−2からそれぞれ出射される光と受光素子3との光結合効率の曲線E21、E22が光軸5方向にずれているため、2つの曲線E21、E22を重畳すると、光結合効率の最高値は低下するが、光結合効率の変化の少ない平坦な部分が広がることによる。
【0037】
加えて、本実施形態の光伝送モジュールも、図4の半導体受光装置と同様に受光素子3の受光領域内にデフォーカス状態で光束が入射し、空間電荷効果の影響を低減できるので、図3の場合に比べて伝送特性を改善することが可能である。
【0038】
この結果、本実施形態の光伝送モジュールによれば、伝送特性の改善と併せて、受光素子の光軸方向の取付位置許容量を大きくでき、結果的に受光素子の光軸方向の位置調整を簡略化できる、といった効果を奏することができる。
【0039】
なお、図1に示す実施形態では、レンズとして、2つの焦点を持つレンズ2を用いているが、3つ以上の焦点を持つレンズを用いる場合も上記同様の理由により同様の効果を奏することが可能である。
【0040】
【発明の効果】
以上の本発明光伝送モジュールによれば、レンズとして、光軸上に2つ以上の焦点を持つレンズを用い、これらの焦点間に受光素子を配置する構成をとるため、上記した理由により、伝送特性の改善と併せて、受光素子の光軸方向の取付位置許容量を大きくでき、結果的に受光素子の光軸方向の位置調整を簡略化できる、といった効果を奏することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す光伝送モジュールの断面図。
【図2】レンズと受光素子との相対位置に対する光結合効率の変化を示すグラフ。
【図3】光伝送モジュールの一従来例を示す断面図。
【図4】光伝送モジュールの他の従来例を示す、(a)は受光素子の受光領域が焦点の前方になるように位置している場合の断面図、(b)は受光素子の受光領域が焦点の後方になるように位置している場合の断面図。
【符号の説明】
1 光ファイバ
2 レンズ
2−1、2−2 レンズ2を構成するレンズ
3 受光素子
4−1 レンズ2−1が作る焦点
4−2 レンズ2−2が作る焦点
5 光軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmission device used for optical communication, and more particularly, to an optical transmission module including an optical fiber, a light receiving element, and a lens for optically coupling the optical fiber and the light receiving element.
[0002]
[Prior art]
FIG. 3 shows a conventional example of this type of optical transmission module. This optical transmission module includes an optical fiber 31, a lens 32 for condensing light emitted from the optical fiber 31, and a light receiving element (semiconductor light receiving element) 33.
[0003]
Light emitted from the optical fiber 31 is condensed by the lens 32 and forms an image at the focal point 341 on the optical axis 35. Reference numeral 34 in the figure indicates an optical path until the light emitted from the optical fiber 31 reaches the light receiving element 33.
[0004]
Here, the light receiving element 33 is positioned such that the optical axis 35 passes vertically through the center of the light receiving area and the center of the light receiving area of the light receiving element 33 is located at the focal point 341.
[0005]
Next, the operation of the optical transmission module shown in FIG. 3 will be described.
[0006]
The light emitted from the optical fiber 31 is collected by the lens 32 and enters the light receiving area of the light receiving element 33. The incident light generates carriers in the depleted light absorbing layer. The carriers are accelerated by the electric field generated by the reverse bias voltage applied to the light receiving element 33. Therefore, the photocurrent can be extracted to the outside and can be detected as an optical signal.
[0007]
By the way, in an optical transmission module used in an analog transmission system such as an optical CATV, an extremely low intermodulation distortion characteristic is required. Specifically, a target value of second-order intermodulation distortion <-80 dBc must be satisfied.
[0008]
However, in the conventional optical transmission module shown in FIG. 3, since the light receiving element 33 is located at the focal point 341, the density of carriers generated in the light receiving area is high, and the above-mentioned secondary intermodulation distortion is caused by the space charge effect. It was difficult to satisfy the target value of
[0009]
Here, the space charge effect refers to a phenomenon that the original electric field distribution is distorted because the electric field in the depletion layer is canceled by a large amount of generated carriers, and moves into the depletion layer due to the distortion of the electric field distribution in the depletion layer. Fast carriers and slow carriers are generated. As a result, secondary intermodulation distortion occurs and the transmission characteristics deteriorate.
[0010]
To solve such a problem, there is a semiconductor light receiving device disclosed in Japanese Patent Application Laid-Open No. 5-224101. FIGS. 4A and 4B show this semiconductor light receiving device.
[0011]
This semiconductor light receiving device includes an optical fiber 41, a lens 42 for condensing light emitted from the optical fiber 41, and a light receiving element 43. The light emitted from the optical fiber 41 is provided on the surface of the light receiving element 43. The light is focused rearward or forward.
[0012]
That is, in the case of FIG. 7A, the light receiving element 43 is positioned such that the light receiving area is in front of the focal point 441. In the case of FIG. 3B, the light receiving element 43 is positioned so that the light receiving area is behind the focal point 441.
[0013]
Therefore, in any case, since the defocused light beam enters the light receiving region of the light receiving element 44, the amount of light per unit area in the light receiving region decreases. For this reason, the density of carriers generated in the light receiving region decreases, and the effect of the space charge effect decreases. As a result, the secondary intermodulation distortion is reduced, and the transmission characteristics are improved as compared with the optical transmission module shown in FIG.
[0014]
[Problems to be solved by the invention]
However, the semiconductor light receiving device disclosed in JP-A-5-224101 has the following problems.
[0015]
Now, in this semiconductor light receiving device, the mounting position of the light receiving element 43 is shifted in the direction away from the focal point 441 on the optical axis (the optical axis direction in FIG. 4A, the direction opposite to the optical axis in FIG. 4B). The following describes the case where
[0016]
If the area of the light flux condensed by the lens 42 on the light receiving element 43 becomes larger than the area of the light receiving area due to a positional shift of the mounting position of the light receiving element 43 in the optical axis direction, the amount of light entering the light receiving area decreases, The optical coupling efficiency between the fiber 41 and the light receiving element 43 rapidly decreases.
[0017]
Here, when a certain minimum target value is set for the optical coupling efficiency, the allowable amount of the mounting position in the optical axis direction is determined.
[0018]
However, the structure of the semiconductor light receiving device shown in FIG. 4 has a new problem that the adjustment of the position of the light receiving element 43 in the optical axis direction cannot be simplified because the allowable mounting position of the light receiving element 43 in the optical axis direction cannot be increased.
[0019]
That is, although there is an advantage that the transmission characteristics can be improved as compared with that shown in FIG. 3, it is necessary to prevent a sharp decrease in the optical coupling efficiency, so that the position adjustment of the light receiving element 44 in the optical axis direction is very troublesome. There is a problem that it becomes something.
[0020]
The present invention has been made in view of such a situation, and together with the improvement of the transmission characteristics, the permissible mounting position of the light receiving element in the optical axis direction can be increased, and as a result, the light receiving element in the optical axis direction can be increased. It is an object to provide an optical transmission module that can simplify position adjustment.
[0021]
[Means for Solving the Problems]
An optical transmission module according to the present invention includes an optical fiber , a lens whose optical axis is aligned with the optical axis of the optical fiber, for condensing light emitted from the optical fiber, and a lens. A light receiving element arranged to receive the light to be emitted in a defocused state , and wherein the lens has two or more secondary intermodulation distortions less than -80 dBc on the optical axis. This is a lens having a focal point, and the light receiving element is arranged between these focal points, thereby achieving the above object.
[0022]
Hereinafter, the operation of the present invention will be described.
[0023]
First, in the present invention, since the light receiving element is disposed between a plurality of focal points, a light beam enters the light receiving region in a defocused state. Therefore, since the influence of the space charge effect can be reduced, the transmission characteristics can be improved as compared with the case of FIG.
[0024]
In addition, according to the present invention, since a lens having a plurality of focal points is used as the lens, the allowable mounting position of the light receiving element in the optical axis direction can be increased as compared with the semiconductor light receiving device of FIG. The reason will be described below with reference to FIG. 2 by taking a case where a lens having two focal points is used as an example.
[0025]
Here, a curve E1 in FIG. 2 shows a change in optical coupling efficiency between the optical fiber and the light receiving element when the lens 42 having one focus as shown in FIG. 4, and a curve E2 has two focuses. 5 shows a change in optical coupling efficiency when a lens is used.
[0026]
The permissible mounting positions in the optical axis direction determined by the minimum target value E0 of the optical coupling efficiency are Z1 and Z2 in curves E1 and E2, respectively. The permissible amounts of the system using the lens 2 having two focal points (see FIG. 1) are shown. Is larger (Z2> Z1).
[0027]
This is because the curves E21 and E22 of the light coupling efficiency between the light emitted from the regions 2-1 and 2-2 of the lens 2, ie, the lenses 2-1 and 2-2 (see FIG. 1) and the light receiving element, respectively. When the two curves E21 and E22 are superimposed because of the displacement in the axial direction, the maximum value of the optical coupling efficiency decreases, but the flat portion where the optical coupling efficiency does not change much increases.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
[0029]
(Embodiment)
1 and 2 show an embodiment of the optical transmission module of the present invention. As shown in FIG. 1, the optical transmission module includes an optical fiber 1, a lens 2 for condensing light emitted from the optical fiber 1, and a light receiving element (semiconductor light receiving element) 3. However, this lens 2 is a lens having two focal points, and this point is clearly different from the configuration of the conventional example shown in FIGS. The details of the lens 2 will be described below.
[0030]
As shown in FIG. 1, the lens 2 is a compound lens in which two lenses 2-1 and 2-2 are coaxially arranged, and each of the lenses 2-1 and 2-2 has a different position on the optical axis 5. It has focal points 4-1 and 4-2. The light receiving element 3 is disposed between the focal points 4-1 and 4-2 on the optical axis 5, and the optical axis 5 passes through the center of the light receiving area of the light receiving element 3 vertically.
[0031]
In the above configuration, light emitted from the optical fiber 1 is condensed by the lenses 2-1 and 2-2, respectively, and forms an image at the focal points 4-1 and 4-2 on the optical axis 5.
[0032]
Since the optical transmission module of the present embodiment includes the lens 2 having two focal points as the condensing lens, the optical transmission module in the optical axis direction of the light receiving element 3 as compared with the semiconductor light receiving device of FIG. Can be increased.
[0033]
The reason will be described below with reference to FIG. However, FIG. 2 shows the relationship between the relative position of the lens 2 and the light receiving element 3 and the coupling efficiency to the light receiving element 3.
[0034]
Here, a curve E1 in FIG. 2 shows a change in optical coupling efficiency between the optical fiber 1 and the light receiving element 3 when the lens 42 having one focus as shown in FIG. 5 shows changes in optical coupling efficiency when a lens 2 having the following is used.
[0035]
The permissible mounting positions in the direction of the optical axis 5 determined by the minimum target value E0 of the optical coupling efficiency are Z1 and Z2 in the curves E1 and E2, respectively, which is the permissible amount of the system using the lens 2 having two focal points in FIG. Is larger (Z2> Z1).
[0036]
This is because the curves E21 and E22 of the light coupling efficiency between the light emitted from the lenses 2-1 and 2-2 and the light receiving element 3 in the regions 2-1 and 2-2 of the lens 2, respectively, in the direction of the optical axis 5. Since the two curves E21 and E22 overlap each other, the maximum value of the optical coupling efficiency decreases, but the flat portion where the optical coupling efficiency changes little increases.
[0037]
In addition, in the light transmission module of the present embodiment, similarly to the semiconductor light receiving device of FIG. 4, a light beam enters the light receiving region of the light receiving element 3 in a defocused state, and the effect of the space charge effect can be reduced. It is possible to improve the transmission characteristics as compared with the case of.
[0038]
As a result, according to the optical transmission module of the present embodiment, in addition to the improvement of the transmission characteristics, the allowable amount of the mounting position of the light receiving element in the optical axis direction can be increased, and as a result, the position adjustment of the light receiving element in the optical axis direction can be performed. The effect that simplification is possible can be obtained.
[0039]
In the embodiment shown in FIG. 1, the lens 2 having two focal points is used as the lens. However, the same effect can be obtained even when a lens having three or more focal points is used for the same reason as described above. It is possible.
[0040]
【The invention's effect】
According to the optical transmission module of the present invention described above, a lens having two or more focal points on the optical axis is used as the lens, and the light receiving element is arranged between these focal points. Along with the improvement of the characteristics, the permissible amount of the mounting position of the light receiving element in the optical axis direction can be increased, and as a result, the adjustment of the position of the light receiving element in the optical axis direction can be simplified.
[Brief description of the drawings]
FIG. 1 is a sectional view of an optical transmission module according to an embodiment of the present invention.
FIG. 2 is a graph showing a change in optical coupling efficiency with respect to a relative position between a lens and a light receiving element.
FIG. 3 is a sectional view showing a conventional example of an optical transmission module.
4A and 4B show another conventional example of an optical transmission module, in which FIG. 4A is a cross-sectional view when a light receiving area of a light receiving element is located in front of a focal point, and FIG. FIG. 3 is a cross-sectional view in a case where is positioned behind a focal point.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Optical fiber 2 Lens 2-1 2-2 Lens 2 constituting lens 2 Light receiving element 4-1 Focus 4-2 created by lens 2-1 Focus 5 created by lens 2-2 Optical axis

Claims (1)

光ファイバと、該光ファイバからの出射光を集光するために、光軸が該光ファイバの光軸と一致させて配置されたレンズと、該レンズにて集光される光をデフォーカス状態で受光するように配置された受光素子とを有し、2次相互変調歪が−80dBc未満である光伝送モジュールにおいて、
該レンズは光軸上に2つ以上の焦点を持つレンズであり、これらの焦点間に該受光素子を配置した光伝送モジュール。
An optical fiber , a lens whose optical axis is aligned with the optical axis of the optical fiber for condensing light emitted from the optical fiber, and a light focused by the lens in a defocused state. And a light receiving element arranged to receive light at a second order, wherein the second order intermodulation distortion is less than -80 dBc .
An optical transmission module in which the lens has two or more focal points on an optical axis, and the light receiving element is arranged between the focal points.
JP19895897A 1997-07-24 1997-07-24 Optical transmission module Expired - Fee Related JP3589338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19895897A JP3589338B2 (en) 1997-07-24 1997-07-24 Optical transmission module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19895897A JP3589338B2 (en) 1997-07-24 1997-07-24 Optical transmission module

Publications (2)

Publication Number Publication Date
JPH1144829A JPH1144829A (en) 1999-02-16
JP3589338B2 true JP3589338B2 (en) 2004-11-17

Family

ID=16399773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19895897A Expired - Fee Related JP3589338B2 (en) 1997-07-24 1997-07-24 Optical transmission module

Country Status (1)

Country Link
JP (1) JP3589338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470784B2 (en) * 2008-09-12 2014-04-16 オムロン株式会社 Light receiving device and sensor device

Also Published As

Publication number Publication date
JPH1144829A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP5278165B2 (en) Focus detection device, imaging device, and electronic camera
US7978251B2 (en) Imaging apparatus and arranging method for the same
US7683397B2 (en) Semi-planar avalanche photodiode
JP5818673B2 (en) Optical module
JP3227561B2 (en) Micro lens pattern mask
JP2012199373A (en) Light receiving device
US9312965B2 (en) Optical receiver module
GB2173610A (en) Dichroic beam splitter having four prisms
JP2011075978A (en) Optical module
US20100200730A1 (en) Solid state imaging device and electronic apparatus
JP3589338B2 (en) Optical transmission module
JP2008124086A (en) Light sensing element and optical receiver using same
EP1008878A1 (en) Optical wavelength demultiplexer
JPH05346556A (en) Solid image pickup element
CN114883420A (en) Packaging structure and packaging method for improving high-power working characteristics of photoelectric detector
JPH05224101A (en) Semiconductor light-intercepting
JP3287318B2 (en) Light beam heating device
US20230126332A1 (en) Funnel laser coupler
JPH0527196A (en) Solid state image pickup element
US20240113144A1 (en) Solid-state imaging device
JP3191823B2 (en) Semiconductor light receiving device
US7142241B1 (en) Image pickup device
JP4763875B2 (en) Focus detection device
JPH0645572A (en) Solid-state image pick-up device with microlens
JPS61105877A (en) Optical semiconductor element for light-receiving

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees