JP3589169B2 - Ultrasonic probe and manufacturing method thereof - Google Patents

Ultrasonic probe and manufacturing method thereof Download PDF

Info

Publication number
JP3589169B2
JP3589169B2 JP2000286729A JP2000286729A JP3589169B2 JP 3589169 B2 JP3589169 B2 JP 3589169B2 JP 2000286729 A JP2000286729 A JP 2000286729A JP 2000286729 A JP2000286729 A JP 2000286729A JP 3589169 B2 JP3589169 B2 JP 3589169B2
Authority
JP
Japan
Prior art keywords
shield
signal line
ultrasonic probe
piezoelectric
back load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000286729A
Other languages
Japanese (ja)
Other versions
JP2002101496A (en
Inventor
明久 足立
利春 佐藤
英知 永原
恵作 山口
雅彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000286729A priority Critical patent/JP3589169B2/en
Publication of JP2002101496A publication Critical patent/JP2002101496A/en
Application granted granted Critical
Publication of JP3589169B2 publication Critical patent/JP3589169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、医療用の超音波診断装置、工業用の探傷装置、民生用の魚群探知器などの超音波計測装置に用いる超音波探触子に関するものである。
【0002】
【従来の技術】
従来この種の超音波探触子は、特開平7−131895号に記載されたものが知られている。この超音波探触子の構造は図15に示されているように、信号線28は背面負荷材27の内部を貫通し、溝30で複数に分割された圧電体26の背面の電極と導電性接着剤29を介して電気的に接続され、圧電体26の送受波面の電極は共通電極31に接続されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の超音波探触子では信号線が背面負荷材の内部を通る構造としていたため、
(1)外部からのノイズを拾いやすい
(2)不要輻射を放射しやすい
(3)複数の圧電体を備える場合、信号線間でクロスト−クが発生しやすい等の課題を有していた。
【0004】
本発明は上記課題を解決するもので、信号線の周囲にシ−ルド部を設けることにより、外部ノイズの影響や信号線からの信号漏れを低減することを目的としている。
【0005】
【課題を解決するための手段】
この課題を解決するために本発明は、超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する複数の圧電体と、前記複数の圧電体の背面側に設けられた背面負荷材と、前記複数の圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された複数の信号線と、前記複数の信号線の各々を電磁的にシールドする複数のシールド部と、前記背面負荷材の圧電体と反対面側に設けられ前記複数のシールド部と固定接続される背面グランド体とを有するものである。
【0006】
上記発明によれば、信号線の周囲にシ−ルド部が有るため、信号線で外部ノイズを受信することが妨げられるため、受信信号のS/Nが向上できるうえ、信号線から漏れた電磁波が外部に放射されることも妨げるため、不要輻射やクロスト−クを低減することができる。
【0007】
【発明の実施の形態】
本発明の第1の実施形態は、超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する複数の圧電体と、前記複数の圧電体の背面側に設けられた背面負荷材と、前記複数の圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された複数の信号線と、前記複数の信号線の各々を電磁的にシールドする複数のシールド部と、前記背面負荷材の圧電体と反対面側に設けられ前記複数のシールド部と固定接続される背面グランド体とを有する超音波探触子であり、外部ノイズの影響や不要輻射を低減することができるという作用を有する。
【0008】
本発明の第2実施形態は、超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する複数の圧電体と、前記複数の圧電体の背面側に設けられた背面負荷材と、前記複数の圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された複数の信号線と、前記複数の信号線の各々を電磁的にシールドする複数のシールド部とを備え、前記シールド部は前記背面負荷材の内部に格子状に配置されている超音波探触子であり、外部ノイズの影響や不要輻射を低減することができるという作用を有する。
【0009】
本発明の第3の実施形態は、好ましくは前記背面負荷材の少なくとも側壁面は導電性を有する超音波探触子であり、簡易な構成で外部ノイズの影響や不要輻射を低減することができるという作用を有する。
【0010】
本発明の第4の実施形態は好ましくは背面負荷材の少なくとも側壁面は導電性を有する超音波探触子であり、信号線に対して2重のシ−ルド効果により外部ノイズの影響や不要輻射をさらに低減することができるという作用を有する。
【0011】
本発明の第5の実施形態は、好ましくは1つの圧電体に対し2つ以上の信号線が接続された超音波探触子であり、圧電体と信号線の接続の信頼性が向上できるという作用を有する。
【0012】
本発明の第6の実施形態は、好ましくは複数の圧電体を備え、1つの圧電体に対し少なくとも1つの信号線が接続され、1つの圧電体に接続されたすべての信号線の周囲に1つのシ−ルド部を有する超音波探触子であり、信号線間のクロスト−クが低減できるという作用を有する。
【0013】
本発明の第7の実施形態は、好ましくは信号線とシ−ルド部は一体化された同軸線である超音波探触子であり、背面負荷材、信号線、シ−ルド部の組み立てが容易となるという作用を有する。
【0014】
本発明の第8の実施形態は、好ましくは背面負荷材内部で複数のシ−ルド部が電気的に接続された超音波探触子であり、外部ノイズの影響や不要輻射をさらに低減することができるという作用を有する。
【0015】
本発明の第9の実施形態は、好ましくはシ−ルド部は導電性を有する弾性体である超音波探触子であり、シ−ルド部での超音波の反射が低減でき、受信信号のS/Nがさらに向上できるという作用を有する。
【0016】
以下、本発明の実施の形態について図面を用いて説明する。なお図面中で同一符号を付しているものは同一なものであり、詳細な説明は省略する。
【0017】
(実施の形態1)
図1は本発明の一実施の形態の超音波探触子の一部を分解した斜視図である。図1において、1は超音波探触子、2は溝3で分割されたアレイ状に配列された圧電体、4は背面負荷材、5は背面負荷材4を貫通して配置された信号線、6は信号線5の周囲に配置された円筒シ−ルド体、7は円筒シ−ルド体6に接続された背面グランド体、8は圧電体2の送受波面電極2aに接続する共通電極である。
【0018】
まず、周波数が2.5MHz、素子数が縦64素子、横64素子の2次元アレイプロ−ブを構成する超音波探触子1の組立方法について、図1から図5を用いて説明する。ただし説明に用いる図には、縦64素子、横64素子のうちの一部の構成のみを概略構成として示した。
【0019】
図2に示すように、直径0.2mmの穴が開けられた銅板製の背面グランド体7に対し銅製の円筒で作られた円筒シ−ルド体6を、隣接する円筒シ−ルド体6が互いに接触しないよう、かつほぼ垂直となるよう取り付けて作成する。
【0020】
図3(a)に示すように、円筒シ−ルド体6を取り付けた背面グランド体7を円筒シ−ルド体6が下側となるよう背面負荷材作成治具10に配置する。ここで用いる背面負荷材作成治具10の深さは円筒シ−ルド体6の長さよりも若干程度長いものとする。
【0021】
図3(b)に示すように、樹脂基盤からなる信号線取付板9に設けた直径0.05mmの穴11と円筒シ−ルド体6がほぼ同心円となるよう、信号線取付板9を背面グランド体7にエポキシ系接着剤で接着固定する。
【0022】
図3(c)に示すように、信号線5は穴11から挿入し、その先端は背面負荷材作成治具10まで到達させ、背面負荷材作成治具10に対しほぼ垂直となるように配置する。
【0023】
すべての穴11に信号線5を配置した後、信号線5は信号線取付板9にエポキシ系接着剤で接着固定する。このとき信号線5は円筒シ−ルド体6、背面グランド体7に接触させない。図示していない背面負荷材注入口より、背面負荷材作成治具10内部に、鉄粉など減衰媒体を含有させたゴム系材料12を注入し、ゴム系材料12を硬化させて背面負荷材4を作成する。
【0024】
信号線取付板9から突き出した信号線5の長さを調整した後、背面負荷材作成治具10から背面負荷材4を取り外す。背面負荷材4の上端面13は必要に応じて切削、研磨加工等により整形する。このとき上端面13に対し信号線5の端面14がほぼ同一平面上に構成されるように、背面負荷材4を整形するほうが好ましい。
【0025】
圧電体2をエポキシ系接着剤で背面負荷材4の上端面13上に接着固定し、圧電体2の背面電極2bと信号線5の電気的接続も同時に行う。たとえばダイシングソーなどの素子分割装置で縦64素子、横64素子となるよう、圧電体2の上方から背面負荷材4の一部にまで到達する深さの溝3を格子状に設け圧電体2を分割する。
【0026】
圧電体2の送受波面電極2aに銅箔からなる共通電極8をエポキシ系接着剤を用いて接着し、分割された圧電体2のすべての送受波面電極2aの電気的接続を行い、超音波探触子1を組み立てる。この組み立てた超音波探触子1に図示していない接続用コネクタや信号伝達用ケーブル等を接続し、超音波プローブを構成する。
【0027】
次に超音波探触子1の動作、作用について説明する。信号線5を介して横方向、縦方向分割された圧電体2を駆動して超音波を送信し、被測定対象部からの反射信号を再び圧電体2で受信する。このときそれぞれの圧電体2を駆動するタイミングや同時に駆動する圧電体2の素子数を制御することにより、超音波ビームを制御する。
【0028】
駆動信号は数十Vから百数十V程度と高い電圧のため、信号線5を伝播するときに電磁波が生じ隣接する信号線5で受信され、受信された電磁波から発生した漏れ信号と駆動信号の合成信号により隣接した圧電体2は駆動される可能性がある。
【0029】
このように合成信号により圧電体2が駆動されてしまうと、所望の超音波ビーム制御が困難となる。これに対し超音波探触子1では信号線5の外側に円筒シールド体6が設けられているため、円筒シールド体6のシールド効果により電磁波が漏れにくい構成となっている。
【0030】
このため駆動信号に対し隣接した信号線5からの電磁波の干渉を受けることが少なくなり、所望の超音波ビーム制御が可能となる。またすべての円筒シールド体6は背面グランド体7に接続されているため、すべての円筒シールド体6の接地を容易に行うことができる。
【0031】
なお本実施の形態では、1本の円筒シールド体6に1本の信号線5を配置しているが、圧電体2との電気的接続の信頼性を向上するため図6に示すように1個の円筒シールド体に2本以上の信号線5を配置しても構わない。
【0032】
また信号線5と同心円状に円筒シールド体6を配置する構成としたが、同軸ケーブルやセミリジットケーブルのように信号線5と円筒シールド体6が一体となったケーブルを用いても構わない。
【0033】
(実施の形態2)
以下、本発明の一実施の形態について、図面を参照しながら説明する。図7は本実施の形態の超音波探触子の一部を分解した斜視図である。1は超音波探触子、2は溝3で分割されたアレイ状に配列された圧電体、4は背面負荷材、5は背面負荷材4を貫通して配置された信号線、7は背面グランド体、8は圧電体2の送受波面電極2aに接続する共通電極で、以上は図1の構成と同様なものである。図1の構成と異なるのは、信号線6の周囲に導電性を有する弾性体からなるシールド部15を格子状に配置した点である。
【0034】
実施の形態1と同様に、周波数が2.5MHz、素子数が縦64素子、横64素子の2次元アレイプロ−ブを構成する超音波探触子1の組立方法について図7から図9を用いて説明する。ただし説明に用いる図には縦64素子、横64素子のうちの一部の構成のみを概略構成として示した。
【0035】
図8に示すような直径0.2mm程度の穴18を設けたシールド部形成金型16を例えば真ちゅうブロックから切削加工にて作成する。
【0036】
図9(a)に示すように、シールド部作成金型16の溝形成部19を下向きに背面負荷材作成治具10に配置する。ここで用いる背面負荷材作成治具10の深さは、溝形成部19の高さよりも若干程度深いものとする。
【0037】
図9(b)に示すように、信号線5はシールド部形成金型16の台座17に設けた穴18から挿入し、その先端は背面負荷材作成治具10まで到達させ、背面負荷材作成治具10に対しほぼ垂直となるように配置する。すべての穴18に信号線5を配置した後、図示していない背面負荷材注入口より背面負荷材作成治具10内部に、ガラス中空球体からなる減衰媒体を含有させたエポキシ系樹脂材料20を注入し、エポキシ系樹脂材料20を熱硬化する。
【0038】
シールド部作成金型16を取り外し、溝形成部19により作られた空間に例えば導電性を有するシリコンゴムからなる弾性体21を流し込んで、格子状のシールド部15を形成する。
【0039】
図9(c)に示すように、背面グランド体7をシールド部15と電気的接触が可能となるようエポキシ系接着剤で接着固定し、その上に信号線取付板9を背面グランド体7にエポキシ系接着剤で接着固定する。信号線取付板9の穴11と信号線5はエポキシ系接着剤で固定する。このとき信号線5と背面グランド体7は接触させない。
【0040】
信号線取付板9から突き出した信号線5の長さを調整した後、背面負荷材作成治具10から背面負荷材4を取り外す。これ以降の超音波探触子の組立方法、動作・作用は実施の形態1と同様なので省略する。
【0041】
シールド部15を弾性体21で形成したため、圧電体2から背面負荷材4に放射された超音波がシールド部15で反射される量が低減できるので、超音波の送受信信号に対する後方反射の影響が低減できる。
【0042】
なお本実施の形態では、信号線6の周囲に導電性を有するシールド部15を格子状に配置する構成としたが、上記条件に限定されるわけでなく、図10に示すようなアルミ薄板からなるハニカム構造体22を背面グランド体7に接続する構成でも構わない。
【0043】
またシールド部15を形成するためにシールド部作成金型16を用いた工法としたが、上記工法に限定されるわけでなく、ダイシングソーのような分割装置で溝を形成しシールド部15を設けても構わない。
【0044】
またシールド部15を背面グランド体7に接続する構成としたが、背面グランド体7を用いない構成にしても構わない。
【0045】
またシールド部作成金型16の溝形成部19はすべて接続された構成としたが、図11に示すような溝形成部23a、23bを設けることにより2つの独立したシールド部を備えることが可能となり、Bモードとドップラモードの2つの異なる計測が同時に行えるようになる。
【0046】
(実施の形態3)
以下、本発明の一実施形態について、図面を参照しながら説明する。図12は本実施の形態の超音波探触子の一部を分解した斜視図である。1は超音波探触子、2は溝3で分割されたアレイ状に配列された圧電体、4は背面負荷材、5は背面負荷材4を貫通して配置された信号線、8は圧電体2の送受波面電極2aに接続する共通電極、9は信号線取付板で、以上は図1の構成と同様なものである。図1の構成と異なるのは、背面シールド体7と信号線6の周囲にシールド部を設けていない点である。
【0047】
実施の形態1と同様に、周波数が2.5MHz、素子数が縦64素子、横64素子の2次元アレイプロ−ブを構成する超音波探触子1の組立方法について図12、図13を用いて説明する。ただし説明に用いる図には縦64素子、横64素子のうちの一部の構成のみを概略構成として示した。図13(a)に示すように信号線取付板9を背面負荷材作成治具10に配置する。 図13(b)に示すように、信号線5は穴11から挿入し、その先端は背面負荷材作成治具10まで到達させ、背面負荷材作成治具10に対しほぼ垂直となるように配置する。
【0048】
すべての穴11に信号線5を配置した後、信号線5は信号線取付板9にエポキシ系接着剤で接着固定する。図示していない背面負荷材注入口より背面負荷材作成治具10内部に、鉄粉など電波吸収体を含有させた電波吸収材料24を注入し、電波吸収材料24を硬化させて背面負荷材4を作成する。これ以降の超音波探触子の組立方法、動作・作用は実施の形態1と同様なので省略する。
【0049】
背面負荷材4は電波吸収材料24で構成されたため、信号線5から放射される電磁波が隣接する信号線5で受信されたり、空中に浮遊する電磁波ノイズを信号線5で受信することが防止できるので、非常に簡単な構成でクロストークの低減やS/Nの向上を図ることができる。
【0050】
(実施の形態4)
以下、本発明の一実施形態について、図面を参照しながら説明する。図14は本実施の形態の超音波探触子の一部を分解した斜視図である。1は超音波探触子、2は溝3で分割されたアレイ状に配列された圧電体、4は背面負荷材、5は背面負荷材4を貫通して配置された信号線、6は信号線5の周囲に配置された円筒シ−ルド体、8は圧電体2の送受波面電極2aに接続する共通電極で、以上は図1の構成と同様なものである。図1の構成と異なるのは、背面負荷材4の側壁面に導電性を有する側壁シールド体25を設けた点である。
【0051】
実施の形態1と同様に、周波数が2.5MHz、素子数が縦64素子、横64素子の2次元アレイプロ−ブを構成する超音波探触子1の組立方法について図14を用いて説明する。ただし説明に用いる図には縦64素子、横64素子のうちの一部の構成のみを概略構成として示した。
【0052】
実施の形態1と同様に背面負荷材4を組み立てた後、背面負荷材4のすべての側壁面(4面)に例えば厚みが0.2mmの銅箔からなる側壁シールド体25を図14のようにエポキシ系接着剤で接着固定する。このとき側壁シールド体25は、圧電体2の背面電極2bと図示されていない背面シールド体7には接触しないように構成する。
【0053】
このように側壁シールド体25と背面シールド体7を設けることにより、背面負荷材4は導体でほぼ外周を覆われるため、信号線5からの不要輻射の低減や信号線5への空中を浮遊する電磁波ノイズの影響を低減可能となる。
【0054】
なお本実施の形態では、背面負荷材4の側壁面に銅箔からなる側壁シールド体25を設けるとしたが、上記条件に限定されるわけでなく、導電性のゴムを接着したり導電性を有する塗料を塗布しても構わない。
【0055】
また信号線5の周囲に円筒シールド体6を設けるとしたが、背面負荷材4を電波吸収材料で作成するなら、円筒シールド体6を設ける必要はない。
【0056】
なお本実施の形態1〜4では、周波数が2.5MHz、素子数が縦64素子、横64素子の2次元アレイプロ−ブを構成する超音波探触子としたが、上記条件に限定されるわけでなく、周波数、縦・横の素子数を必要に応じて変更しても構わない。
【0057】
また背面負荷材の作成工法、使用する材料、寸法を示したが、上記条件に限定されるわけでなく、同等の機能が得られるならばどのような工法、材料、寸法を選択しても構わない。
【0058】
またダイシングソーを用いて圧電体の上方から背面負荷材の一部にまで到達する深さの溝を格子状に設け圧電体を分割するとしたが、圧電体と樹脂からなる複合圧電体を用いる場合は溝を格子状に設ける必要はなく、圧電体に適した工法を選択すればよい。
【0059】
また2次元プローブを構成する超音波探触子としたが、信号線が背面負荷材を貫通して配置された超音波探触子であれば1.25Dプローブ、1.5Dプローブなど様々なプローブや超音波センサに用いてよい。
【0060】
また共通電極8の圧電体2と対向する面には何も接続していないが、必要に応じて1層以上の整合層や音響レンズを設けても構わない。
【0061】
また圧電体2の送受波面電極2aと共通電極8を接続するとしたが、第1整合層にグラファイト材料などの導電材料を用いるならば共通電極8を設ける必要はない。
【0062】
また接着固定と電気的接続を同時に取るためエポキシ系接着剤を用いたが、上記条件に限定されるわけでなく、他の導電性材料を用いても構わない。
【0063】
以上説明から明らかなように、本実施形態によれば、次の効果が得られる。
第1の超音波探触子は、超音波を送受信する前面側とその前面側に対向する背面側の2 つの方向に電極を有する圧電体と、前記圧電体の背面側に設けられた背面負荷材と、前記圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された信号線とを備え、前記信号線の周囲にシ−ルド部を有するため、外部ノイズの影響や不要輻射を低減した超音波探触子を得ることができるという有利な効果が得られる。
【0064】
第2の超音波探触子は、超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する圧電体と、前記圧電体の背面側に設けられた背面負荷材と、前記圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された信号線とを備え、前記背面負荷材が電波吸収材料からなるため、簡易な構成で外部ノイズの影響や不要輻射を低減した超音波探触子を得ることができるという有利な効果が得られる。
【0065】
第3の超音波探触子は、超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する圧電体と、前記圧電体の背面側に設けられた背面負荷材と、前記圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された信号線とを備え、前記背面負荷材の少なくとも側壁面は導電性を有するため、簡易な構成で外部ノイズの影響や不要輻射を低減した超音波探触子を得ることができるという有利な効果が得られる。
【0066】
第4の超音波探触子は、第1、第2の超音波探触子において、背面負荷材の少なくとも側壁面は導電性を有するため、信号線に対して2重のシ−ルド効果により外部ノイズの影響や不要輻射をさらに低減した超音波探触子を得ることができるという有利な効果が得られる。
【0067】
第5の超音波探触子は、第1から第3のいずれかの超音波探触子において、1つの圧電体に対し2つ以上の信号線が接続されているため、圧電体と信号線の接続の信頼性が向上した超音波探触子を得ることができるという有利な効果が得られる。
【0068】
第6の超音波探触子は、第1の超音波探触子において、複数の圧電体を備え、1つの圧電体に対し少なくとも1つの信号線が接続され、1つの圧電体に接続されたすべての信号線の周囲に1つのシ−ルド部を有するため、信号線間のクロスト−クが低減した超音波探触子を得ることができるという有利な効果が得られる。
【0069】
第7の超音波探触子は、第6の超音波探触子において、複数の圧電体を備え、信号線とシ−ルド部は一体化された同軸線であるため、背面負荷材、信号線、シ−ルド部の組み立てが容易な超音波探触子を得ることができるという有利な効果が得られる。
【0070】
第8の超音波探触子は、第6の超音波探触子において、背面負荷材内部で複数のシ−ルド部が電気的に接続されたため、外部ノイズの影響や不要輻射をさらに低減した超音波探触子を得ることができるという有利な効果が得られる。
【0071】
第9の超音波探触子は、第1の超音波探触子において、シ−ルド部は導電性を有する弾性体であるため、シ−ルド部での超音波の反射が低減でき、受信信号のS/Nがさらに向上した超音波探触子を得ることができるという有利な効果が得られる。
【0072】
【発明の効果】
以上説明から明らかなように、本発明によれば、次の効果が得られる。
超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する複数の圧電体と、前記複数の圧電体の背面側に設けられた背面負荷材と、前記複数の圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された複数の信号線と、前記複数の信号線の各々を電磁的にシールドする複数のシールド部と、前記背面 負荷材の圧電体と反対面側に設けられ前記複数のシールド部と固定接続される背面グランド体とを有することにより、外部ノイズの影響や不要輻射を低減した超音波探触子を得ることができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における超音波探触子の一部を分解した斜視図
【図2】同超音波探触子のシールド部の斜視図
【図3】同超音波探触子の背面負荷材の組立手順を示す断面図
【図4】同超音波探触子の組立手順を示す断面図
【図5】同超音波探触子の組立手順を示す断面図
【図6】同超音波探触子の変形例の断面図
【図7】本発明の一実施の形態における超音波探触子の一部を分解した斜視図
【図8】同超音波探触子のシールド部作成金型の斜視図
【図9】同超音波探触子の背面負荷材の組立手順を示す断面図
【図10】同超音波探触子の変形例の斜視図
【図11】同超音波探触子のシールド部作成金型の変形例の斜視図
【図12】本発明の一実施の形態における超音波探触子の一部を分解した斜視図
【図13】同超音波探触子の組立手順を示す断面図
【図14】本発明の一実施の形態における超音波探触子の一部を分解した斜視図
【図15】従来の超音波探触子の断面図
【符号の説明】
1 超音波探触子
2 圧電体
2a 送受波面電極
2b 背面電極
3 溝
4 背面負荷材
5 信号線
6 円筒シールド体
7 背面グランド体
8 共通電極
9 信号線取付板
10 背面負荷材作成治具
11 穴
12 ゴム系材料
13 上端面
14 端面
15 シールド部
16 シールド部形成金型
17 台座
18 穴
19 溝形成部
20 エポキシ系樹脂材料
21 弾性体
22 ハニカム構造体
23a、b 溝形成部
24 電波吸収材料
25 側壁シールド体
26 圧電体
27 背面負荷材
28 信号線
29 導電性接着剤
30 溝
31 共通電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic probe used for an ultrasonic measuring device such as a medical ultrasonic diagnostic device, an industrial flaw detection device, and a commercial fish finder.
[0002]
[Prior art]
Conventionally, an ultrasonic probe of this type is disclosed in Japanese Patent Application Laid-Open No. Hei 7-131895. As shown in FIG. 15, the structure of this ultrasonic probe is such that the signal line 28 passes through the inside of the back load member 27 and is electrically connected to the electrode on the back of the piezoelectric body 26 divided into a plurality of parts by the groove 30. The electrodes on the transmitting and receiving surfaces of the piezoelectric body 26 are connected to the common electrode 31 via the conductive adhesive 29.
[0003]
[Problems to be solved by the invention]
However, the conventional ultrasonic probe has a structure in which the signal line passes through the inside of the back load material,
(1) It is easy to pick up external noise. (2) It is easy to emit unnecessary radiation. (3) When a plurality of piezoelectric bodies are provided, there is a problem that a crosstalk is easily generated between signal lines.
[0004]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to reduce the influence of external noise and signal leakage from a signal line by providing a shield portion around the signal line.
[0005]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a plurality of piezoelectric bodies having electrodes in two directions of a front side for transmitting and receiving ultrasonic waves and a back side opposed to the front side, and a back side of the plurality of piezoelectric bodies. The provided rear load material, a plurality of signal lines that can be electrically connected to the electrodes on the back side of the plurality of piezoelectric bodies and are disposed through the inside of the back load material, and each of the plurality of signal lines. is for closed and a plurality of shield portions which electromagnetically shielded, and a back ground body to be the piezoelectric body of the backing material and provided on the opposite side fixedly connected to the plurality of shield portions.
[0006]
According to the above invention, since the shield portion is provided around the signal line, it is prevented that the signal line receives external noise, so that the S / N of the received signal can be improved and the electromagnetic wave leaked from the signal line can be improved. Is also prevented from being radiated to the outside, so that unnecessary radiation and crosstalk can be reduced.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention includes a plurality of piezoelectric bodies having electrodes in two directions, a front side for transmitting and receiving ultrasonic waves and a back side opposed to the front side, and a plurality of piezoelectric bodies provided on the back side of the plurality of piezoelectric bodies. And a plurality of signal lines that are electrically connectable to the electrodes on the back side of the plurality of piezoelectric bodies and are disposed through the inside of the back load material, and each of the plurality of signal lines is electromagnetically coupled. An ultrasonic probe comprising: a plurality of shield portions for electrically shielding, and a back ground body provided on the side opposite to the piezoelectric body of the back load member and fixedly connected to the plurality of shield portions , and an external noise And the effect that unnecessary radiation can be reduced.
[0008]
A second embodiment of the present invention includes a plurality of piezoelectric bodies having electrodes in two directions, a front side for transmitting and receiving ultrasonic waves and a back side opposed to the front side, and a plurality of piezoelectric bodies provided on the back side of the plurality of piezoelectric bodies. Back load material, a plurality of signal lines that can be electrically connected to electrodes on the back side of the plurality of piezoelectric bodies, are arranged through the inside of the back load material, and each of the plurality of signal lines is electromagnetically connected. And a plurality of shield portions for shielding, the shield portion is an ultrasonic probe arranged in a lattice shape inside the back load member , and can reduce the influence of external noise and unnecessary radiation. It has the action of:
[0009]
In the third embodiment of the present invention , preferably , at least the side wall surface of the back load member is an ultrasonic probe having conductivity, and the influence of external noise and unnecessary radiation can be reduced with a simple configuration. It has the action of:
[0010]
In the fourth embodiment of the present invention, preferably , at least the side wall surface of the back load member is an ultrasonic probe having conductivity, and the influence of external noise due to the double shielding effect on the signal line is reduced. It has an effect that unnecessary radiation can be further reduced.
[0011]
The fifth embodiment of the present invention is preferably an ultrasonic probe in which two or more signal lines are connected to one piezoelectric body, and the reliability of connection between the piezoelectric body and the signal lines can be improved. Has an action.
[0012]
A sixth embodiment of the present invention preferably includes a plurality of piezoelectric bodies, and at least one signal line is connected to one piezoelectric body, and one piezoelectric line is provided around all the signal lines connected to one piezoelectric body. This is an ultrasonic probe having two shield portions, and has an effect that crosstalk between signal lines can be reduced.
[0013]
The seventh embodiment of the present invention is an ultrasonic probe in which the signal line and the shield portion are preferably coaxial lines integrated with each other, and the rear load member, the signal line, and the shield portion are assembled. It has the effect of being easy.
[0014]
An eighth embodiment of the present invention is an ultrasonic probe in which a plurality of shield portions are preferably electrically connected inside the back load member, and further reduces the influence of external noise and unnecessary radiation. It has the effect of being able to.
[0015]
In the ninth embodiment of the present invention, preferably, the shield part is an ultrasonic probe which is an elastic body having conductivity, the reflection of the ultrasonic wave at the shield part can be reduced, and the reception signal can be reduced. S / N can be further improved.
[0016]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, components denoted by the same reference numerals are the same components, and a detailed description thereof will be omitted.
[0017]
(Embodiment 1)
FIG. 1 is an exploded perspective view of a part of an ultrasonic probe according to an embodiment of the present invention. In FIG. 1, 1 is an ultrasonic probe, 2 is a piezoelectric body arranged in an array divided by a groove 3, 4 is a back load member, and 5 is a signal line disposed through the back load member 4. Reference numeral 6 denotes a cylindrical shield body disposed around the signal line 5, reference numeral 7 denotes a back ground body connected to the cylindrical shield body 6, and reference numeral 8 denotes a common electrode connected to the transmitting / receiving surface electrode 2a of the piezoelectric body 2. is there.
[0018]
First, a method of assembling the ultrasonic probe 1 constituting a two-dimensional array probe having a frequency of 2.5 MHz and a number of elements of 64 elements vertically and 64 elements horizontally will be described with reference to FIGS. However, in the drawings used for description, only a part of the configuration of the 64 elements vertically and the 64 elements horizontally is shown as a schematic configuration.
[0019]
As shown in FIG. 2, a cylindrical shield body 6 made of a copper cylinder is arranged on a rear ground body 7 made of a copper plate having a hole of 0.2 mm in diameter, and an adjacent cylindrical shield body 6 is formed of a copper cylinder. They are mounted so that they do not touch each other and are almost vertical.
[0020]
As shown in FIG. 3A, the rear ground body 7 to which the cylindrical shield body 6 is attached is disposed on the rear load material producing jig 10 so that the cylindrical shield body 6 is on the lower side. The depth of the back load material producing jig 10 used here is slightly longer than the length of the cylindrical shield body 6.
[0021]
As shown in FIG. 3 (b), the signal line mounting plate 9 is placed on the rear surface such that the hole 11 having a diameter of 0.05 mm provided in the signal line mounting plate 9 made of a resin base and the cylindrical shield body 6 are substantially concentric. The ground body 7 is bonded and fixed with an epoxy adhesive.
[0022]
As shown in FIG. 3 (c), the signal line 5 is inserted from the hole 11, and the tip of the signal line 5 reaches the back load material forming jig 10 and is arranged substantially perpendicular to the back load material forming jig 10. I do.
[0023]
After arranging the signal lines 5 in all the holes 11, the signal lines 5 are fixed to the signal line mounting plate 9 with an epoxy-based adhesive. At this time, the signal line 5 is not brought into contact with the cylindrical shield body 6 and the back ground body 7. A rubber-based material 12 containing an attenuation medium such as iron powder is injected into a rear-loading material forming jig 10 from a rear-loading material injection port (not shown), and the rubber-based material 12 is cured to form the rear-loading material 4. Create
[0024]
After adjusting the length of the signal line 5 protruding from the signal line mounting plate 9, the rear load member 4 is removed from the rear load member forming jig 10. The upper end surface 13 of the back load member 4 is shaped by cutting, polishing, or the like as necessary. At this time, it is preferable to shape the back load member 4 so that the end surface 14 of the signal line 5 is substantially coplanar with the upper end surface 13.
[0025]
The piezoelectric body 2 is adhered and fixed on the upper end surface 13 of the back load member 4 with an epoxy-based adhesive, and the electrical connection between the back electrode 2b of the piezoelectric body 2 and the signal line 5 is simultaneously performed. For example, grooves 3 having a depth reaching from the upper part of the piezoelectric body 2 to a part of the back load member 4 are provided in a lattice shape so as to have 64 elements vertically and 64 elements horizontally by an element dividing device such as a dicing saw. Split.
[0026]
A common electrode 8 made of copper foil is bonded to the transmitting / receiving surface electrode 2a of the piezoelectric body 2 using an epoxy-based adhesive, and all the transmitting / receiving surface electrodes 2a of the divided piezoelectric body 2 are electrically connected to each other. Assemble the probe 1. A connecting connector (not shown), a signal transmission cable, and the like are connected to the assembled ultrasonic probe 1 to form an ultrasonic probe.
[0027]
Next, the operation and operation of the ultrasonic probe 1 will be described. The piezoelectric body 2 divided in the horizontal direction and the vertical direction is driven via the signal line 5 to transmit an ultrasonic wave, and the piezoelectric body 2 receives a reflected signal from the measurement target portion again. At this time, the ultrasonic beam is controlled by controlling the timing of driving each piezoelectric body 2 and the number of elements of the piezoelectric body 2 driven simultaneously.
[0028]
Since the drive signal has a high voltage of about several tens of volts to about one hundred and several tens of volts, an electromagnetic wave is generated when the signal propagates through the signal line 5 and is received by the adjacent signal line 5, and a leakage signal generated from the received electromagnetic wave and the drive signal The adjacent piezoelectric body 2 may be driven by the combined signal of
[0029]
If the piezoelectric body 2 is driven by the combined signal in this manner, it becomes difficult to control a desired ultrasonic beam. On the other hand, in the ultrasonic probe 1, the cylindrical shield 6 is provided outside the signal line 5, so that the shield effect of the cylindrical shield 6 prevents electromagnetic waves from leaking.
[0030]
Therefore, the drive signal is less susceptible to electromagnetic wave interference from the adjacent signal line 5, and desired ultrasonic beam control can be performed. Also, since all the cylindrical shields 6 are connected to the back ground body 7, all the cylindrical shields 6 can be easily grounded.
[0031]
In the present embodiment, one signal line 5 is disposed on one cylindrical shield 6, but as shown in FIG. 6, one signal line 5 is provided to improve the reliability of electrical connection with the piezoelectric body 2. Two or more signal lines 5 may be arranged on one cylindrical shield.
[0032]
Further, although the cylindrical shield 6 is arranged concentrically with the signal line 5, a cable in which the signal line 5 and the cylindrical shield 6 are integrated, such as a coaxial cable or a semi-rigid cable, may be used.
[0033]
(Embodiment 2)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 7 is an exploded perspective view of a part of the ultrasonic probe according to the present embodiment. 1 is an ultrasonic probe, 2 is a piezoelectric body arranged in an array divided by a groove 3, 4 is a back load member, 5 is a signal line disposed through the back load member 4, and 7 is a back surface. The ground body 8 is a common electrode connected to the wave transmitting / receiving surface electrode 2a of the piezoelectric body 2, and has the same configuration as that of FIG. The difference from the configuration of FIG. 1 is that shield portions 15 made of a conductive elastic body are arranged in a grid around the signal line 6.
[0034]
As in the first embodiment, a method of assembling the ultrasonic probe 1 constituting a two-dimensional array probe having a frequency of 2.5 MHz, the number of elements is 64 elements vertically, and 64 elements horizontally is described with reference to FIGS. Will be explained. However, in the drawings used for explanation, only a part of the structure of 64 elements vertically and 64 elements horizontally is schematically shown.
[0035]
As shown in FIG. 8, a shield forming die 16 provided with a hole 18 having a diameter of about 0.2 mm is formed by cutting a brass block, for example.
[0036]
As shown in FIG. 9A, the groove forming portion 19 of the shield portion forming die 16 is placed on the back load material forming jig 10 in a downward direction. It is assumed that the depth of the back load material creating jig 10 used here is slightly deeper than the height of the groove forming portion 19.
[0037]
As shown in FIG. 9B, the signal line 5 is inserted through a hole 18 provided in a pedestal 17 of a shield forming die 16 and its tip reaches the rear load material forming jig 10 to form the rear load material. It is arranged so as to be substantially perpendicular to the jig 10. After arranging the signal lines 5 in all the holes 18, an epoxy resin material 20 containing a damping medium consisting of a hollow glass sphere is introduced into the jig 10 from the back load material injection port (not shown). Then, the epoxy resin material 20 is thermally cured.
[0038]
The shield portion forming die 16 is removed, and the elastic body 21 made of, for example, conductive silicon rubber is poured into the space formed by the groove forming portion 19 to form the grid-shaped shield portion 15.
[0039]
As shown in FIG. 9 (c), the back ground body 7 is bonded and fixed with an epoxy-based adhesive so that the back ground body 7 can be electrically contacted with the shield portion 15, and the signal line mounting plate 9 is mounted on the back ground body 7. Adhesively fix with epoxy adhesive. The hole 11 of the signal line mounting plate 9 and the signal line 5 are fixed with an epoxy adhesive. At this time, the signal line 5 and the back ground body 7 are not brought into contact.
[0040]
After adjusting the length of the signal line 5 protruding from the signal line mounting plate 9, the rear load member 4 is removed from the rear load member forming jig 10. Subsequent assembling methods, operations, and operations of the ultrasonic probe are the same as those in the first embodiment, and thus will not be described.
[0041]
Since the shield part 15 is formed of the elastic body 21, the amount of the ultrasonic wave radiated from the piezoelectric body 2 to the back load member 4 can be reduced by the shield part 15, so that the influence of the back reflection on the transmission and reception signal of the ultrasonic wave can be reduced. Can be reduced.
[0042]
In the present embodiment, the shield portions 15 having conductivity are arranged around the signal line 6 in a lattice shape. However, the present invention is not limited to the above conditions. The honeycomb structure 22 may be connected to the rear ground body 7.
[0043]
In addition, although the method using the mold 16 for forming the shield part was used to form the shield part 15, the method is not limited to the above-described method. The groove is formed by a dividing device such as a dicing saw and the shield part 15 is provided. It does not matter.
[0044]
Further, the shield portion 15 is connected to the rear ground body 7, but the rear ground body 7 may not be used.
[0045]
Although the groove forming portions 19 of the shield portion forming die 16 are all connected, the provision of the groove forming portions 23a and 23b as shown in FIG. 11 makes it possible to provide two independent shield portions. , B mode and Doppler mode can be simultaneously performed.
[0046]
(Embodiment 3)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 12 is an exploded perspective view of a part of the ultrasonic probe according to the present embodiment. 1 is an ultrasonic probe, 2 is a piezoelectric body arranged in an array divided by a groove 3, 4 is a back load material, 5 is a signal line disposed through the back load material 4, and 8 is a piezoelectric material. A common electrode 9 connected to the transmitting / receiving surface electrode 2a of the body 2 is a signal line mounting plate, which has the same configuration as that of FIG. The difference from the configuration of FIG. 1 is that no shield portion is provided around the rear shield body 7 and the signal line 6.
[0047]
As in the first embodiment, a method of assembling the ultrasonic probe 1 constituting a two-dimensional array probe having a frequency of 2.5 MHz, the number of elements is 64 elements in length, and 64 elements in width will be described with reference to FIGS. Will be explained. However, in the drawings used for explanation, only a part of the structure of 64 elements vertically and 64 elements horizontally is schematically shown. As shown in FIG. 13A, the signal line mounting plate 9 is disposed on the back load material creating jig 10. As shown in FIG. 13B, the signal line 5 is inserted from the hole 11, and the end of the signal line 5 reaches the back load material creating jig 10 and is arranged so as to be substantially perpendicular to the back load material creating jig 10. I do.
[0048]
After arranging the signal lines 5 in all the holes 11, the signal lines 5 are fixed to the signal line mounting plate 9 with an epoxy-based adhesive. An electromagnetic wave absorbing material 24 containing an electromagnetic wave absorber such as iron powder is injected into the inside of the rear load material producing jig 10 from a rear load material injection port (not shown), and the electromagnetic wave absorbing material 24 is cured to form the rear load material 4 Create Subsequent assembling methods, operations, and operations of the ultrasonic probe are the same as those in the first embodiment, and thus will not be described.
[0049]
Since the back load member 4 is made of the radio wave absorbing material 24, it is possible to prevent the electromagnetic wave radiated from the signal line 5 from being received by the adjacent signal line 5 or the electromagnetic wave noise floating in the air from being received by the signal line 5. Therefore, it is possible to reduce crosstalk and improve S / N with a very simple configuration.
[0050]
(Embodiment 4)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 14 is an exploded perspective view of a part of the ultrasonic probe according to the present embodiment. 1 is an ultrasonic probe, 2 is a piezoelectric element arranged in an array divided by a groove 3, 4 is a back load member, 5 is a signal line disposed through the back load member 4, and 6 is a signal. A cylindrical shield body 8 arranged around the line 5 is a common electrode connected to the transmitting / receiving surface electrode 2a of the piezoelectric body 2, and the above is the same as the configuration of FIG. The difference from the configuration of FIG. 1 is that a side wall shield body 25 having conductivity is provided on the side wall surface of the back load member 4.
[0051]
As in the first embodiment, a method of assembling the ultrasonic probe 1 constituting a two-dimensional array probe having a frequency of 2.5 MHz, the number of elements is 64 elements vertically and 64 elements horizontally will be described with reference to FIG. . However, in the drawings used for explanation, only a part of the structure of 64 elements vertically and 64 elements horizontally is schematically shown.
[0052]
After assembling the back load member 4 in the same manner as in the first embodiment, a side wall shield body 25 made of copper foil having a thickness of, for example, 0.2 mm is provided on all the side wall surfaces (four surfaces) of the back load member 4 as shown in FIG. Is fixed with an epoxy adhesive. At this time, the side wall shield 25 is configured so as not to contact the back electrode 2b of the piezoelectric body 2 and the back shield 7 not shown.
[0053]
By providing the side wall shield body 25 and the back shield body 7 in this manner, the outer periphery of the back load member 4 is substantially covered with the conductor, so that unnecessary radiation from the signal line 5 is reduced and the signal line 5 floats in the air. The effect of electromagnetic wave noise can be reduced.
[0054]
In the present embodiment, the side wall shield body 25 made of copper foil is provided on the side wall surface of the back load member 4. However, the present invention is not limited to the above conditions. You may apply the paint which has.
[0055]
Although the cylindrical shield 6 is provided around the signal line 5, it is not necessary to provide the cylindrical shield 6 if the back load member 4 is made of a radio wave absorbing material.
[0056]
In the first to fourth embodiments, the ultrasonic probe constituting the two-dimensional array probe having a frequency of 2.5 MHz and the number of elements of 64 elements vertically and 64 elements horizontally is limited to the above condition. However, the frequency and the number of vertical and horizontal elements may be changed as needed.
[0057]
In addition, although the creation method of the back load material, the material to be used, and the dimensions are shown, the invention is not limited to the above conditions, and any method, material, and dimensions may be selected as long as equivalent functions can be obtained. Absent.
[0058]
Also, a dicing saw was used to divide the piezoelectric body by providing grooves in a grid shape with a depth reaching from the upper part of the piezoelectric body to a part of the back load material, but when using a composite piezoelectric body consisting of a piezoelectric body and a resin It is not necessary to provide grooves in a grid pattern, and a method suitable for the piezoelectric body may be selected.
[0059]
Although the ultrasonic probe is a two-dimensional probe, various probes such as a 1.25D probe and a 1.5D probe can be used as long as the ultrasonic probe has a signal line penetrating the back load member. Or an ultrasonic sensor.
[0060]
Although nothing is connected to the surface of the common electrode 8 facing the piezoelectric body 2, one or more matching layers or acoustic lenses may be provided as necessary.
[0061]
Although the wave transmitting / receiving surface electrode 2a of the piezoelectric body 2 is connected to the common electrode 8, the common electrode 8 need not be provided if a conductive material such as a graphite material is used for the first matching layer.
[0062]
Although an epoxy-based adhesive was used to simultaneously perform the adhesive fixing and the electrical connection, the present invention is not limited to the above conditions, and another conductive material may be used.
[0063]
As is clear from the above description, according to the present embodiment , the following effects can be obtained.
The first ultrasonic probe includes a piezoelectric body having electrodes in two directions, a front side for transmitting and receiving ultrasonic waves, and a back side opposed to the front side, and a back load provided on the back side of the piezoelectric body. Material, and a signal line that is electrically connectable to an electrode on the back side of the piezoelectric body and is disposed through the inside of the back load material. An advantageous effect is obtained that an ultrasonic probe with reduced influence of noise and unnecessary radiation can be obtained.
[0064]
The second ultrasonic probe includes a piezoelectric body having electrodes in two directions, a front side for transmitting and receiving ultrasonic waves and a back side opposed to the front side, and a back load provided on the back side of the piezoelectric body. Material, and a signal line that is electrically connectable to an electrode on the back side of the piezoelectric body and is disposed through the inside of the back load material. The back load material is made of a radio wave absorbing material, so that a simple configuration is provided. Thus, an advantageous effect that an ultrasonic probe in which the influence of external noise and unnecessary radiation is reduced can be obtained.
[0065]
The third ultrasonic probe includes a piezoelectric body having electrodes in two directions, a front side for transmitting and receiving ultrasonic waves and a back side opposed to the front side, and a back load provided on the back side of the piezoelectric body. Material, comprising a signal line that can be electrically connected to the electrode on the back side of the piezoelectric body and is disposed through the inside of the back load material, and at least the side wall surface of the back load material has conductivity, An advantageous effect is obtained in that an ultrasonic probe with a simple configuration and reduced influence of external noise and unnecessary radiation can be obtained.
[0066]
The fourth ultrasonic probe is different from the first and second ultrasonic probes in that at least the side wall surface of the back load member is conductive, so that a double shield effect is applied to the signal line. An advantageous effect is obtained that an ultrasonic probe in which the influence of external noise and unnecessary radiation is further reduced can be obtained.
[0067]
In the fifth ultrasonic probe, in one of the first to third ultrasonic probes, two or more signal lines are connected to one piezoelectric body. An advantageous effect is obtained that an ultrasonic probe with improved connection reliability can be obtained.
[0068]
The sixth ultrasonic probe is different from the first ultrasonic probe in that a plurality of piezoelectric bodies are provided, and at least one signal line is connected to one piezoelectric body and connected to one piezoelectric body. Since one shield portion is provided around all signal lines, an advantageous effect that an ultrasonic probe with reduced crosstalk between signal lines can be obtained can be obtained.
[0069]
The seventh ultrasonic probe is different from the sixth ultrasonic probe in that a plurality of piezoelectric bodies are provided and the signal line and the shield portion are integrated coaxial lines. An advantageous effect is obtained in that an ultrasonic probe in which the wire and shield portions can be easily assembled can be obtained.
[0070]
The eighth ultrasonic probe is different from the sixth ultrasonic probe in that a plurality of shield portions are electrically connected inside the back load member, so that the influence of external noise and unnecessary radiation are further reduced. The advantageous effect that an ultrasonic probe can be obtained is obtained.
[0071]
The ninth ultrasonic probe is different from the first ultrasonic probe in that, since the shield portion is an elastic body having conductivity, the reflection of ultrasonic waves at the shield portion can be reduced, and An advantageous effect that an ultrasonic probe with further improved signal S / N can be obtained is obtained.
[0072]
【The invention's effect】
As is clear from the above description, according to the present invention, the following effects can be obtained.
A plurality of piezoelectric bodies having electrodes in two directions of a front side for transmitting and receiving ultrasonic waves and a back side opposed to the front side, a back load member provided on the back side of the plurality of piezoelectric bodies, and A plurality of signal lines that can be electrically connected to the electrode on the back side of the piezoelectric body and are disposed through the inside of the back load member, and a plurality of shield portions that electromagnetically shield each of the plurality of signal lines, By providing a back ground body fixedly connected to the plurality of shield portions provided on the side opposite to the piezoelectric body of the back load member, an ultrasonic probe with reduced influence of external noise and unnecessary radiation is obtained. This has the advantageous effect of being able to do so.
[Brief description of the drawings]
1 is an exploded perspective view of a part of an ultrasonic probe according to an embodiment of the present invention; FIG. 2 is a perspective view of a shield part of the ultrasonic probe; FIG. FIG. 4 is a cross-sectional view showing the procedure for assembling the rear load member of the probe. FIG. 4 is a cross-sectional view showing the procedure for assembling the ultrasonic probe. FIG. 5 is a cross-sectional view showing the procedure for assembling the ultrasonic probe. FIG. 7 is a cross-sectional view of a modified example of the ultrasonic probe. FIG. 7 is an exploded perspective view of a part of the ultrasonic probe according to an embodiment of the present invention. FIG. 8 is a shield section of the ultrasonic probe. FIG. 9 is a cross-sectional view showing a procedure for assembling a back load member of the ultrasonic probe. FIG. 10 is a perspective view of a modified example of the ultrasonic probe. FIG. FIG. 12 is a perspective view of a modified example of a mold for forming a shield portion of a probe. FIG. 12 is an exploded perspective view of a part of an ultrasonic probe according to an embodiment of the present invention. Sectional view showing an assembly procedure [14] a perspective view and FIG. 15 is a cross-sectional view of a conventional ultrasonic probe was degraded portion of the ultrasonic probe according to an embodiment of the present invention Description of Reference Numerals]
DESCRIPTION OF SYMBOLS 1 Ultrasonic probe 2 Piezoelectric body 2a Transmitting and receiving surface electrode 2b Back electrode 3 Groove 4 Back load material 5 Signal line 6 Cylindrical shield 7 Back ground body 8 Common electrode 9 Signal line mounting plate 10 Back load material creation jig 11 Hole DESCRIPTION OF SYMBOLS 12 Rubber-based material 13 Upper end surface 14 End surface 15 Shield part 16 Shield part forming die 17 Pedestal 18 Hole 19 Groove forming part 20 Epoxy resin material 21 Elastic body 22 Honeycomb structure 23a, b Groove forming part 24 Radio wave absorbing material 25 Side wall Shield body 26 Piezoelectric body 27 Back load material 28 Signal line 29 Conductive adhesive 30 Groove 31 Common electrode

Claims (8)

超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する複数の圧電体と、前記複数の圧電体の背面側に設けられた背面負荷材と、前記複数の圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された複数の信号線と、前記複数の信号線の各々を電磁的にシールドする複数のシールド部と、前記背面負荷材の圧電体と反対面側に設けられ前記複数のシールド部と固定接続される背面グランド体とを有する超音波探触子。A plurality of piezoelectric material having a front side and the electrode in two directions on the back side facing the front side for transmitting and receiving ultrasonic waves, a backing load member provided on the back side of the plurality of piezoelectric, said plurality of A plurality of signal lines that can be electrically connected to the electrode on the back side of the piezoelectric body and are disposed through the inside of the back load member , and a plurality of shield portions that electromagnetically shield each of the plurality of signal lines , An ultrasonic probe having a back ground member fixedly connected to the plurality of shield portions and provided on a surface of the back load member opposite to the piezoelectric body . 超音波を送受信する前面側とその前面側に対向する背面側の2つの方向に電極を有する複数の圧電体と、前記複数の圧電体の背面側に設けられた背面負荷材と、前記複数の圧電体の背面側の電極と電気接続が可能で前記背面負荷材内部を貫通して配置された複数の信号線と、前記複数の信号線の各々を電磁的にシールドする複数のシールド部とを備え、前記シールド部は前記背面負荷材の内部に格子状に配置されている超音波探触子。A plurality of piezoelectric material having a front side and the electrode in two directions on the back side facing the front side for transmitting and receiving ultrasonic waves, a backing load member provided on the back side of the plurality of piezoelectric, said plurality of A plurality of signal lines that can be electrically connected to the electrode on the back side of the piezoelectric body and are disposed through the inside of the back load material , and a plurality of shield portions that electromagnetically shield each of the plurality of signal lines. An ultrasonic probe , wherein the shield portion is arranged in a lattice shape inside the back load member . 背面負荷材の圧電体と反対面側に設けられ複数のシールド部と固定接続される背面グランド体を有する請求項2に記載の超音波探触子。 The ultrasonic probe according to claim 2, further comprising a back ground member provided on a surface of the back load member opposite to the piezoelectric body and fixedly connected to the plurality of shield portions . 背面負荷材の少なくとも側壁面は導電性を有する請求項1または2に記載の超音波探触子。The ultrasonic probe according to claim 1, wherein at least a side wall surface of the back load member has conductivity. 1つの圧電体に対し2つ以上の信号線が接続された請求項1から3のいずれかに記載の超音波探触子。4. The ultrasonic probe according to claim 1, wherein two or more signal lines are connected to one piezoelectric body. シ−ルド部は導電性を有する弾性体である請求項2記載の超音波探触子。The ultrasonic probe according to claim 2, wherein the shield portion is an elastic body having conductivity. 複数のシールド部を取り付けた背面グランド体を背面負荷材作成治具に配置する工程と、前記シールド部内に信号線を挿入配置する工程と、前記背面負荷材作成治具内部にゴム系材料を注入硬化し前記シールド部を内部に包含する背面負荷材を作成する工程と、前記背面負荷材を前記背面負荷材作成治具から取り外す工程と、前記背面負荷材の背面グランド体と対向する端面を平滑化して、前記信号線の端面を露出させる工程と、前記背面負荷材の信号線端面が露出した面に圧電体を接着する工程と、前記圧電素子と前記背面負荷材の一部を前記信号線に基づく間隔で切断し複数の電気的に独立にする素子を製作する工程と、前記複数の圧電素子の背面負荷材と対向する面に一体の共通電極を接着する工程とを有することを特徴とする超音波探触子の製造方法。A step of disposing a rear ground body to which a plurality of shield parts are attached on a rear load material producing jig; a step of inserting and arranging a signal line in the shield part; and injecting a rubber-based material into the rear load material producing jig. Hardening to create a back load material including the shield portion therein; removing the back load material from the back load material creating jig; and smoothing an end face of the back load material facing the back ground body. Exposing the end surface of the signal line, bonding a piezoelectric body to the exposed surface of the rear load material with the signal line end surface exposed, and connecting a part of the piezoelectric element and the back load material to the signal line. Manufacturing a plurality of electrically independent elements by cutting at intervals based on, and bonding an integral common electrode to a surface of the plurality of piezoelectric elements facing the backing load material. Ultrasound Method of manufacturing a probe. シールド部形成金型を背面負荷材作成治具に配置する工程と、前記シールド部形成金型によって複数の信号線を所望の間隔で配置する工程と、前記背面負荷材作成治具内部にエポキシ系樹脂材料を注入し熱硬化し前記信号線を内部に包含する背面負荷材を製作する工程と、前記シールド部形成金型を前記背面負荷材から取り外す工程と、前記シールド部形成金型の取り外された部分に導電性の弾性体を流し込んで前記複数の信号線の一つ一つをシールドする格子状のシールド部を形成する工程と、前記シールド部の露出面側に背面グランド体を接着する工程と、前記背面負荷材を前記背面負荷材作成治具から取り外す工程と、前記背面負荷材の背面グランド体と対向する端面を平滑化して、前記信号線の端面を露出させる工程と、前記背面負荷材の信号線端面が露出した面に圧電体を接着する工程と、前記圧電素子と前記背面負荷材の一部を前記信号線に基づく間隔で切断し複数の電気的に独立にする素子を製作する工程と、前記複数の圧電素子の背面負荷材と対向する面に一体の共通電極を接着する工程とを有することを特徴とする超音波探触子の製造方法。Arranging a shield forming mold on a back load material forming jig; arranging a plurality of signal lines at desired intervals by the shield forming mold; A step of injecting a resin material and thermosetting to produce a back load material including the signal line therein; a step of removing the shield portion forming mold from the back load material; and removing the shield portion forming mold. Forming a grid-shaped shield portion for shielding each of the plurality of signal lines by pouring a conductive elastic body into the portion, and bonding a back ground body to an exposed surface side of the shield portion. Removing the back load member from the back load member forming jig; smoothing an end surface of the back load member facing the back ground body to expose an end surface of the signal line; Bonding a piezoelectric body to the surface of the material where the signal line end face is exposed, and fabricating a plurality of electrically independent elements by cutting the piezoelectric element and a part of the back load material at intervals based on the signal line. And a step of adhering an integral common electrode to a surface of the plurality of piezoelectric elements facing the back load member. A method of manufacturing an ultrasonic probe, comprising:
JP2000286729A 2000-09-21 2000-09-21 Ultrasonic probe and manufacturing method thereof Expired - Fee Related JP3589169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286729A JP3589169B2 (en) 2000-09-21 2000-09-21 Ultrasonic probe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286729A JP3589169B2 (en) 2000-09-21 2000-09-21 Ultrasonic probe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002101496A JP2002101496A (en) 2002-04-05
JP3589169B2 true JP3589169B2 (en) 2004-11-17

Family

ID=18770606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286729A Expired - Fee Related JP3589169B2 (en) 2000-09-21 2000-09-21 Ultrasonic probe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3589169B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674363B2 (en) * 2005-06-27 2011-04-20 独立行政法人産業技術総合研究所 Abnormal state detection method and sheet-like piezoelectric sensor
JP2009153851A (en) * 2007-12-27 2009-07-16 Konica Minolta Medical & Graphic Inc Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor
JP2009210440A (en) * 2008-03-04 2009-09-17 Toin Gakuen Cylindrical cavitation sensor and manufacturing method thereof
JP5618507B2 (en) * 2009-08-10 2014-11-05 株式会社Ihi検査計測 Manufacturing method of ultrasonic sensor
JP2012075555A (en) 2010-09-30 2012-04-19 Advantest Corp Transducer and measurement device

Also Published As

Publication number Publication date
JP2002101496A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
US20220022845A1 (en) Focused rotational ivus transducer using single crystal composite material
US5545942A (en) Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
US5577507A (en) Compound lens for ultrasound transducer probe
US20060036178A1 (en) Cableless coupling methods for ultrasound
US6537224B2 (en) Multi-purpose ultrasonic slotted array transducer
US7103960B2 (en) Method for providing a backing member for an acoustic transducer array
JP4408974B2 (en) Ultrasonic transducer and manufacturing method thereof
US20210043825A1 (en) Multi-cell transducer
US3898840A (en) Multi-frequency ultrasonic search unit
US20060230605A1 (en) Ultrasound transducer and method of producing the same
US20180028159A1 (en) Rearward acoustic diffusion for ultrasound-on-a-chip transducer array
US5541468A (en) Monolithic transducer array case and method for its manufacture
JP7362659B2 (en) dual frequency ultrasound transducer
CN103239259A (en) Ultrasonic probe and manufacturing method thereof
JP3589169B2 (en) Ultrasonic probe and manufacturing method thereof
WO2005055195A1 (en) Implementing ic mounted sensor with high attenuation backing
JP2007036642A (en) Ultrasonic probe and its manufacturing method
KR20130088675A (en) Backing element of ultrasonic probe, backing of ultrasonic probe and manufacturing method thereof
CN209884191U (en) Two-dimensional area array ultrasonic imaging probe
JPH0965489A (en) Ultrasonic probe
JPH05123317A (en) Two-dimensional array ultrasonic probe
JP3507655B2 (en) Backing material for probe, method for manufacturing ultrasonic probe using the same, and ultrasonic probe
JPH0422349A (en) Ultrasonic probe
CN219978201U (en) Array ultrasonic probe based on active backing structure
KR20140032528A (en) Backing block for ultrasound probe and method for preparing of backing block thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees