JP3588744B2 - Electrostatic image developing toner and image forming method using the same - Google Patents

Electrostatic image developing toner and image forming method using the same Download PDF

Info

Publication number
JP3588744B2
JP3588744B2 JP83998A JP83998A JP3588744B2 JP 3588744 B2 JP3588744 B2 JP 3588744B2 JP 83998 A JP83998 A JP 83998A JP 83998 A JP83998 A JP 83998A JP 3588744 B2 JP3588744 B2 JP 3588744B2
Authority
JP
Japan
Prior art keywords
molecular weight
toner
latex
resin latex
weight component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP83998A
Other languages
Japanese (ja)
Other versions
JPH11194541A (en
Inventor
健司 林
尚弘 廣瀬
芳樹 西森
智江 木谷
幹夫 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP83998A priority Critical patent/JP3588744B2/en
Publication of JPH11194541A publication Critical patent/JPH11194541A/en
Application granted granted Critical
Publication of JP3588744B2 publication Critical patent/JP3588744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複写機、プリンタ等に用いられる静電荷像現像用トナーとそれを用いた画像形成方法に関するものである。
【0002】
【従来の技術】
従来、一般的に用いられている静電荷像現像用トナーは各種重合法で得られるポリマーに、カーボンブラック等の着色剤、帯電制御剤及び/又は磁性体を適宜乾式混合を行い、その後押出機等により溶融混練し、次いで粉砕、分級することで製造されている。
【0003】
別の方法として、懸濁重合法等により直接トナーを製造する方法が提案されている。又乳化重合法により生成した粒子を用いる方法も提案(特開昭60−220358号公報、特開平4−284461号公報)されている。
【0004】
しかしながら、上記の様な溶融混練粉砕法により得られるトナーは、トナー粒径の制御に限界があり小粒径のトナーを収率良く製造することが困難である。又、トナーを形成する成分の分散が不均一で、帯電量分布がブロードになり易いという欠点を有している。
【0005】
又、懸濁重合法で直接製造する方法も、小粒径化が困難であるばかりでなく、その粒度分布は広いものになるという欠点を有している。更に、この方法で製造されるトナーは基本的に真球状であり、画像形成プロセス中で行われる残留トナーのクリーニングが困難であるという欠点を有している。
【0006】
一方、特開昭60−220358号公報及び特開平4−284461号公報に開示された方法は、上記のごとく真球状のトナーではなく表面に凸凹のある非球形粒子を得ることが可能であるが、粒径、粒度分布を制御することが困難であり、反応終了後所望の粒径、粒度分布にする為、分級をする必要がある。
【0007】
更に、特開平4−284461号公報に開示された方法では着色剤と重合体粒子のゼータ電位を微妙に調節する必要がある。この事が生産性の向上を困難としているばかりでなく、着色剤等が生成したトナー粒子内で局在化しやすく、また分子量の異なる樹脂粒子を用いた場合トナー粒子中に均一に混在するため、生成したトナー粒子の十分な機械的強度を持ち得ないという欠点を有している。
【0008】
【発明が解決しようとする課題】
本発明の目的は、トナーにおいて分子量の異なる樹脂をトナー粒子中で局在化させて、トナー粒子の機械的強度を改善することである。また、小粒径で粒度分布の狭いトナー粒子を提供することにある。
【0009】
【課題を解決するための手段】
本発明の目的は、下記構成を採ることにより達成される。
【0010】
(1) GPCによる分子量分布測定で重量分子量が1,000〜50,000の間にピークを有する低分子量成分樹脂ラテックス、重量分子量が80,000〜700,000の間にピークを有する高分子量成分樹脂ラテックス、着色剤及び定着改良剤を混合し、凝集・融着する事により生成される静電荷像現像用トナーにおいて、該低分子量成分樹脂ラテックス表面に存在するカルボキシル基量をA[mol/g]、該高分子量成分樹脂ラテックス表面に存在するカルボキシル基量をB[mol/g]としたとき、下記の式(1)が成り立つことを特徴とする静電荷像現像用トナー。
【0011】
0.6×10-4≦A≦3.5×10-4
0.8×10-4≦B≦4×10-4
1×10-6≦|A−B|≦2×10-4 式(1)
(2) GPCによる分子量分布測定で重量分子量が1,000〜50,000の間にピークを有する低分子量成分樹脂ラテックス、重量分子量が80,000〜700,000の間にピークを有する高分子量成分樹脂ラテックス、着色剤及び定着改良剤を混合し、凝集・融着する事により生成される静電荷像現像用トナーにおいて、該低分子量成分樹脂ラテックス表面に存在するカルボキシル基量をA[mol/g]、該高分子量成分樹脂ラテックス表面に存在するカルボキシル基量をB[mol/g]としたときに以下の式(2)が成り立つことを特徴とする静電荷像現像用トナー。
【0012】
0.6×10−4≦A≦3.5×10−4
0.8×10−4≦B≦4×10−4
1×10−6≦B−A≦2×10−4 式(2)
(3) 上記低分子量樹脂ラテックス、高分子量樹脂ラテックスが、カルボキシル基を持つイオン性単量体ユニットを含有することを特徴とする(1)又は(2)記載の静電荷像現像用トナー。
【0013】
(4) 感光体上に形成された静電荷潜像を顕像化しトナー像とする画像形成方法において、前記トナーが(1)又は(2)記載の静電荷像現像用トナーであることを特徴とする画像形成方法。
【0014】
(5) 感光体上に形成されたトナー像を転写する画像形成方法において、前記トナーが(1)又は(2)記載の静電荷像現像用トナーであることを特徴とする画像形成方法。
【0015】
(6) 感光体上に形成されたトナー像を転写材上に転写した後、該感光体上に残留したトナーをクリーニングする画像形成方法において、前記トナーが(1)又は(2)記載の静電荷像現像用トナーであることを特徴とする画像形成方法。
【0016】
上記構成により本発明の効果が得られる理由については、下記のごとく考えられる。
【0017】
低分子量成分樹脂ラテックス(A)及び高分子量成分樹脂ラテックス(B)の表面カルボキシル基量を調整することにより、ラテックス粒子を凝集させた粒子(トナー粒子)中のAとBの存在位置が制御できる。即ち、ラテックス表面のカルボキシル基量を多くすることにより、凝集しにくくなるためトナー粒子表面に集まりやすくなる。又、表面カルボキシル基量が少ないと逆にトナー粒子内部に集まり易くなる。このように表面カルボキシル基量を変えることによりトナー粒子中に局在化させることが可能になる。
【0018】
上記性質を利用して、例えば高分子量ラテックスの表面カルボキシル基量を低分子量ラテックスの表面カルボキシル基量より多くするとトナー粒子表面に高分子量成分が局在化するためにトナーの機械的強度が向上する。一方、ラテックスA,Bの表面カルボキシル基量の差が大きくなると、凝集性の差も大きくなりトナー粒子の粒度分布が広がる原因になる。これらのバランスがトナーとして最も良いのが、上記本発明の構成なのであろうと推定される。
【0019】
尚、本発明において分子量のピークとは、GPCで分子量分布を測定したときに検出器で検出された電圧のピークになるところを示す。又、単量体ユニットとは、本発明のラテックスは単量体単位のものを重合して得られるものであり、その単量体単位を指すものである。
【0020】
(ラテックス表面カルボキシル基量)
低分子量成分樹脂ラテックスの表面のカルボキシル基量が0.6×10−4mol/g未満、高分子量成分樹脂ラテックスの表面のカルボキシル基量が0.8×10−4mol/g未満であると、粒度分布が狭く、小粒径のトナーの生成が困難になる。また、トナーに機械的強度を持たせることができない。また、それぞれの表面カルボキシル基量が3.5×10−4mol/gあるいは4×10−4mol/gを越えるとトナー粒子の親水性が強くなり帯電量が不安定になる。
【0021】
低分子量成分樹脂ラテックスと高分子量成分樹脂ラテックスの表面カルボキシル基量の差の絶対値を1×10−6≦|A−B|≦2×10−4の範囲に調整することにより粒度分布の狭いトナー粒子を生成することができる。
【0022】
また、低分子量成分樹脂ラテックスを高分子量樹脂ラテックスの表面カルボキシル基量を1×10−6≦B−A≦2×10−4の範囲に調整することによりトナー粒子表面に高分子量成分が局在化してトナーの機械的強度を持たせることができる。
【0023】
(ラテックス表面カルボキシル基量の調整法)
ラテックス表面のカルボキシル基量の調整は、重合時に添加するモノマー中のカルボキシル基を有するモノマーの比率を変化させることにより可能である。また、重合時のモノマー添加量と水添加量を変化させることによっても可能である。
【0024】
モノマー中のカルボキシル基を有するモノマー比率は、好ましくは1〜12重量部、より好ましくは2〜10重量部である。
【0025】
モノマー添加量/水添加量は任意に変化させることが可能であるが、モノマー添加量が水添加量より多くなると重合が進行しない。好ましい範囲は重量比にて40/60〜3/97であり、より好ましい範囲は35/65〜5/95の範囲で変化させることが好ましい。
【0026】
(ラテックス表面カルボキシル基量の測定)
ラテックス粒子表面のカルボキシル基量は、滴定によって測定できる。滴定方法は、滴定試薬としては強塩基溶液、例えば水酸化ナトリウム水溶液を用いて電気的特性、例えば電導度、pH等を測定して滴定曲線より求める。ラテックス粒子表面のカルボキシル基量は、滴定で求めたカルボキシル基量をラテックス粒子の重量で割った値、即ち単位ラテックス重量当たりのカルボキシル基量として表す。
【0027】
(カルボキシル基を有するモノマー)
カルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、テトラヒドロテレフタル酸、α−アルキル置換アクリル酸(置換アルキルは炭素数1〜4)、モノアルキルイタコン酸(置換アルキルは炭素数1〜4)、モノアルキルマレイン酸(置換アルキルは炭素数1〜4)等が挙げられる。
【0028】
(樹脂ラテックス)
樹脂ラテックスは、一般に、乳化重合法、懸濁重合法、分散重合法、沈澱重合法、界面重合法、合成樹脂の粉砕微粉等を用いることが可能であるが、好ましくは乳化重合法により製造される樹脂ラテックスが用いられる。
【0029】
本発明に係る固体成分(静電荷像現像用トナーに必要なバインダ樹脂以外の成分)を樹脂ラテックスと複合化させる為には、本発明に係る固体成分を所望の単量体中に分散するか、又は固体成分が溶解可能であれば、単量体中に溶解させた後に分散液中に分散し、重合することで合成可能である。
【0030】
特に好ましくは、本発明に係る樹脂ラテックスは、臨界ミセル形成濃度(CMC)以上の濃度の界面活性剤の存在下で本発明に係る固体成分を分散し、この固体成分分散液が含有する界面活性剤がCMC以下になるように希釈を行い、ラジカル重合性単量体及びラジカル重合開始剤を添加し、所定の温度で重合を行うことにより得られる。
【0031】
これらの樹脂ラテックスの粒径は目的とする非球状粒子の粒径以下であれば任意のものを用いることが可能であるが、一般的に用いられる樹脂ラテックスの粒径としては0.01〜10μmの範囲のものが好ましい。
【0032】
(単量体)
本発明の樹脂ラテックスを得る為には、疎水性単量体が用いられる。
【0033】
本発明の疎水性単量体の例としては、スチレン誘導体、例えばスチレン、p−メチルスチレン、o−メチルスチレン、p−クロルスチレン、o−クロルスチレン、p−メトキシスチレン、o−メトキシスチレン、p−エトキシスチレン、p−ブトキシスチレン、2,4−ジメチルスチレン、2,4−ジクロルスチレン、p−クロルメチルスチレン、o−クロルメチルスチレン、p−ヒドロキシスチレン、o−ヒドロキシスチレン等が挙げられる。又、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ドデシル等の(メタ)アクリル酸エステル類も挙げられる。更にアクリロニトリル、メタアクリロニトリル等のニトリル系単量体、ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル系単量体、酢酸ビニルや酪酸ビニル等のビニルエステル系単量体、エチレン、プロピレン、イソブチレン等のオレフィン系単量体、ブタジエン、イソプレン、クロロプレン、ジメチルブタジエン等の共役ジエン類等も挙げられる。これらは必要に応じて単独又は二種以上で用いられる。
【0034】
これら上記各種単量体は、目的に応じ、例えば所望のガラス転移温度、溶融温度等にしたがって選択される。
【0035】
(ラジカル重合開始剤)
本発明の樹脂ラテックスを合成する際には、その重合方法に従ってラジカル重合開始剤の選択がなされる。即ち、懸濁重合法の場合、油溶性ラジカル重合開始剤が用いられ、乳化重合法の場合、水溶性ラジカル重合開始剤が用いられる。更に、分散重合の場合、用いられる分散媒によって適宜選択されるが、非水溶媒を用いる場合及び水混和性有機溶媒と水の混合溶媒を用いる際は、水溶性ラジカル重合開始剤を用いることが可能である。
【0036】
水溶性ラジカル重合開始剤の例として過硫酸塩、例えば過硫酸カリウム、過硫酸アンモニウム等、水溶性アゾ化合物、例えばアゾビスアミノジプロパン酢酸塩、アゾビスシアノ吉草酸及びその塩等、水溶性過酸化物、例えば過酸化水素等が挙げられる。
【0037】
油溶性ラジカル重合開始剤の例としては、油溶性過酸化物、例えばベンゾイルパーオキサイド、ラウロイルパーオキサイド等が挙げられる。油溶性アゾ系重合開始剤としてアゾビスイソブチロニトリル、アゾビスバレロニトリル等が挙げられる。これらは目的とする樹脂ラテックスの分子量等にしたがって添加量を決定する事が可能である。更には、必要に応じて、分子量調節剤、例えばチオール化合物に代表される連鎖移動剤、例えばドデカンチオール、オクチルチオール等を挙げることが可能である。
【0038】
本発明に係る樹脂ラテックスは、そのTgが−10〜120℃の範囲にあれば良く、更に好ましくは0〜90℃である。又、軟化点は80〜220℃の範囲である。上記樹脂ラテックスの単量体組成はこの範囲を満足するものであり、かつ、解離性基を有する重合体単位を重合体に対し0.1〜20重量%含有されておれば良く、その他の共重合モノマーの種類及び組成は問わない。
【0039】
本発明に係る樹脂ラテックスの分子量分布は重量平均分子量と数平均分子量の比(Mw/Mnと略記する)で1.5〜100、好ましくは1.8〜50である。
【0040】
(固体成分)
本発明に係る樹脂ラテックスは、前述の如く固体成分と複合することができる。固体成分として一般的なものは着色剤としての顔料、染料等である。その他の定着性改良剤(離型剤)、帯電制御剤等を挙げることができる。これらは単独又は併用して複合することができる。
【0041】
顔料としては、無機顔料、有機顔料が挙げられる。無機顔料としてはカーボンブラック、グラフト化カーボン、ファーネスブラック、サーマトミックカーボン等のカーボン系顔料、マグネタイト、フェライト、ベンガラ、酸化チタン、亜鉛華、シリカ、酸化クロム、コバルトブルー、ウルトラマリーン、セルリアンブルー、ミネラルバイオレット、四酸化三鉛等の金属酸化物系顔料、亜鉛粉、鉄粉、銅粉等の金属粉系顔料、硫化亜鉛、カドミウムレッド、硫化水銀、セレンレッド、カドミウムイエロー等の硫化物系顔料、モリブデンレッド、バリウムイエロー、スチロンチウムイエロー、クロムイエロー等のクロム酸塩系顔料、ミロリブルー等のフェロシアン化塩系顔料などが一例として挙げられる。
【0042】
特に、無機顔料としてはカーボンブラック、ファーネスブラック等が好ましい。
【0043】
有機顔料としては、カラーインデックス等に記載されているような化合物が挙げられる。例えば、シアン又はグリーン顔料として、C.I.ピグメントブルー15、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー16、C.I.ピグメントブルー60、C.I.ピグメントグリーン7等が挙げられる。
【0044】
マゼンタ又はレッド顔料としてC.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド7、C.I.ピグメントレッド15、C.I.ピグメントレッド16、C.I.ピグメントレッド48:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド139、C.I.ピグメントレッド144、C.I.ピグメントレッド149、C.I.ピグメントレッド166、C.I.ピグメントレッド178、C.I.ピグメントレッド222等が挙げられる。
【0045】
イエロー又はオレンジ顔料としてはC.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー15、C.I.ピグメントイエロー17、C.I.ピグメントイエロー93、C.I.ピグメントイエロー94、C.I.ピグメントイエロー138、C.I.ピグメントイエロー180等が挙げられる。
【0046】
一般的には、シアン有機顔料としてはC.I.ピグメントブルー15:3として知られる銅−フタロシアニンが、マゼンタ有機顔料としてはC.I.ピグメントレッド122として知られるジメチルキナクリドンが、イエロー有機顔料としてはC.I.ピグメントイエロー17として知られるジスアゾイエローが用いられる。
【0047】
更に、例えば低分子量ポリエチレン、低分子量ポリプロピレン、酸化処理されたポリエチレン、酸化処理されたポリプロピレン、酸変性処理されたポリエチレン、酸変性処理されたポリプロピレン、ポリオレフィン系ワックス(例えば、東邦化学工業社製のハイテック)等の定着性改良剤を用いることが出来る。
【0048】
又、ニグロシン染料、第4級アンモニウム塩、アルキルアミドなどのプラスの帯電制御剤や、アゾ系金属錯体、塩素化パラフィン、塩素化ポリエステル、銅フタロシアニンのスルホニルアミン等のマイナスの帯電制御剤を用いることが出来る。
【0049】
これらは各々重合体に対し0.1〜25重量%含有させることができる。
【0050】
(凝集・融着)
重合工程によって生成された樹脂ラテックスを用いて、凝集、融着を行いトナーを生成する。融着・会合方法としては、様々な方法例えば特開昭60−220358号、特開平4−284464号等がある。しかし、これらは所望の粒径、粒度分布を制御することがかなり困難である。そこで、本発明者らは特開平5−115572号の方法、即ち、樹脂ラテックスの臨界凝集濃度以上の凝集剤及び水に無限溶解する有機溶媒を添加する方法を用いてトナーを生成した。
【0051】
次にこれに限定されるものではないが、図1にデジタル複写機の例をあげ、本発明に係わる画像形成方法を説明する。
【0052】
既に述べてきたように本発明に係わる画像形成プロセスはプリンタ、デジタル複写機等の反転現像を含む画像形成方法において、特にその効果を発揮する。
【0053】
図1の画像形成装置において、図中に記載はないが、原稿に光源からの光を当てて、反射光を画像読み取り部にて電気信号に変え、この画像データを画像書き込み部1〜3に送っている(1はレーザー光源、2はポリゴンミラー、3がfθレンズである)。
【0054】
一方、像形成を担う感光体ドラム4は帯電ユニット5でコロナ放電により均一に帯電され、続いて画像書き込み部のレーザー光源1から像露光光が感光体ドラム4上に照射される。そして次の現像ユニット6で反転現像され、転写極7で記録紙(転写材)8に転写される。記録紙8は分離極9により、感光体ドラムから分離され、定着器10で定着される。一方感光体ドラム4は、クリーニング装置11により清掃される。また、12は帯電前露光ランプであり、これは分離極9の後で、クリーニング装置11の前にあっても良い。
【0055】
トナー像を転写材に転写した後、感光体上に残留したトナーはクリーニングにより除去され、感光体は次の画像形成プロセスに繰り返し使用される。
【0056】
クリーニングする機構は、いわゆる弾性体ゴムブレードを用いたブレードクリーニング方式が望ましい。13は弾性体ゴムブレードを示す。
【0057】
弾性体ゴムブレード13を構成する材料としては、シリコーンゴム、ウレタンゴムなどの弾性体を使用することができる。
【0058】
上記においては単色によるプロセスについて説明したが、場合によっては2色など複数色での像でもよい。画像読み取り時に色分解された各分解色ごとの信号を、帯電、レーザー光露光による画像書き込みとそれに対応するカラートナーが現像されるというプロセスを繰り返し、イエロー、マゼンタ、シアン、黒トナーの4色トナー像が、感光体上に形成され一括して記録紙に転写されるものでも良い。
【0059】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0060】
[定着性改良剤乳化分散液の製造]
低分子量ポリプロピレン120g(数平均分子量=3300、分子量分布(Mw/Mn)=4.5)に常法に従って、無水マレイン酸5.7gを用い変性させ、溶融粘度を測定後、本発明の定着性改良剤は塩酸を溶解したノニルフェノキシエタノール(エトキシユニット付加モル数=20、HLB=16.0)水溶液280gに添加し、水酸化カリウムを用いてpHを9に調整し、加圧、昇温し変性ポリプロピレンの軟化点以上で乳化分散した。この変性ポリプロピレン分散粒径を光散乱電気永動粒径測定装置(ELS−800:大塚電子工業社製)で測定した結果、182nmであった。この定着性改良剤乳化分散液を定着改良剤乳化分散液とする。
【0061】
[顔料分散液1の製造]
カーボンブラック(リーガル330R、キャボット社製)80.0gをイオン交換水530mlにドデシル硫酸ナトリウム36.78gを添加し、超音波ホモジナイザーと加圧型分散機を用い分散を行った。分散液中のカーボンブラックの平均粒径を光散乱電気永動粒径測定装置(ELS−800:大塚電子工業社製)で測定した結果、95nmであった。
【0062】
[顔料分散液2・3・4の製造]
顔料分散液1の製造例のカーボンブラックの代わりに顔料であるC.I.ピグメントイエロー17、C.I.ピグメントレッド122、C.I.ピグメントブルー15:3をそれぞれ使用した以外は顔料分散液1の製造例と同様に作製した。分散液中の顔料の平均粒径を光散乱電気永動粒径測定装置(ELS−800:大塚電子工業社製)で測定した結果、それぞれ148nm、133nm、105nmであった。
【0063】
[高分子量成分樹脂ラテックス1の合成例]
冷却管、温度計、撹拌装置、窒素導入管を付けた2lの4頭フラスコに、蒸留水1080mlを添加し、そこにスチレン246.4g、n−ブチルアクリレート48g、メタクリル酸25.6g、tert−ドデシルメルカプタン0.30g、更に定着改良剤乳化分散液64gを添加し、攪拌速度250rpmで攪拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム3.28gを純水200mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、攪拌速度250rpmを維持しつつ6時間重合を行った。重合終了後室温まで内温を低下させた後、一部分取しゲルパーミュエーションクロマトグラフィ(以下GPCと略す)を用い分子量を測定した。
なお、高分子量成分樹脂ラテックスを誤解の生じない範囲で高分子量成分ラテックスと略すことがある。
【0064】
上記高分子量成分ラテックスの表面カルボキシル基量を電導度滴定で測定した。
【0065】
電導度滴定は、上記ラテックスを固形分濃度5重量%に希釈し、0.05Nの水酸化ナトリウム水溶液を15秒間隔で0.5mlづつ滴下し、電導度と水酸化ナトリウム水溶液添加量を用いて滴定曲線を作る。滴定曲線より変極点を求めラテックスの表面カルボキシル基量を求めた。
【0066】
[高分子量成分ラテックス2の合成例]
高分子量成分ラテックス1の合成例のモノマー添加量をスチレン259.2g、n−ブチルアクリレート48g、メタクリル酸12.8gに変更した以外は同一として作製した。
【0067】
[高分子量成分ラテックス3の合成例]
冷却管、温度計、攪拌装置、窒素導入管を付けた2lの4頭フラスコに、蒸留水1240mlを添加し、そこにスチレン123.2g、n−ブチルアクリレート24g、メタクリル酸12.8g、tert−ドデシルメルカプタン0.15g、更に定着改良剤乳化分散液32gを添加し、撹拌速度350rpmで撹拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム1.64gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、撹拌速度250rpmを維持しつつ6時間重合を行った。
【0068】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0069】
[高分子量成分ラテックス4の合成例]
冷却管、温度計、攪拌装置、窒素導入管を付けた2lの4頭フラスコに、蒸留水1080mlを添加し、そこにスチレン270.4g、n−ブチルアクリレート48g、メタクリル酸1.6g、tert−ドデシルメルカプタン0.30g、更に定着改良剤乳化分散液64gを添加し、撹拌速度350rpmで撹拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム3.23gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、撹拌速度250rpmを維持しつつ6時間重合を行った。
【0070】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0071】
[高分子量成分ラテックス5の合成例]
冷却管、温度計、攪拌装置、窒素導入管を付けた2lの4頭フラスコに、蒸留水1320mlを添加し、そこにスチレン63.2g、n−ブチルアクリレート12g、メタクリル酸4.8g、tert−ドデシルメルカプタン0.08g、更に定着改良剤乳化分散液16gを添加し、撹拌速度250rpmで撹拌し、且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム0.82gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、撹拌速度250rpmを維持しつつ6時間重合を行った。
【0072】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0073】
[低分子量成分樹脂ラテックス1の合成例]
冷却管、温度計、撹拌装置、窒素導入管を付けた2lの4頭フラスコに、蒸留水1080mlを添加し、そこにスチレン256.0g、n−ブチルアクリレート48g、メタクリル酸16.0g、tert−ドデシルメルカプタン11.0g、更に定着改良剤乳化分散液64gを添加し、攪拌速度350rpmで攪拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム3.26gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、攪拌速度350rpmを維持しつつ6時間重合を行った。
なお、低分子量成分樹脂ラテックスを誤解の生じない範囲で低分子量成分ラテックスと略すことがある。
【0074】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0075】
[低分子量成分ラテックス2の合成例]
低分子量成分ラテックス1の合成例のモノマー添加量をスチレン249.6g、n−ブチルアクリレート48g、メタクリル酸22.4gに変更した以外は同一にして作製した。
【0076】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0077】
[低分子量成分ラテックス3の合成例]
冷却管、温度計、攪拌装置、窒素導入管を付けた1lの4頭フラスコに、蒸留水920mlを添加し、そこにスチレン384.0g、n−ブチルアクリレート72g、メタクリル酸24.0g、tert−ドデシルメルカプタン16.5g、更に定着改良剤乳化分散液96gを添加し、撹拌速度250rpmで撹拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム4.90gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、撹拌速度250rpmを維持しつつ6時間重合を行った。
【0078】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0079】
[低分子量成分ラテックス4の合成例]
冷却管、温度計、攪拌装置、窒素導入管を付けた1lの4頭フラスコに、蒸留水1320mlを添加し、そこにスチレン64.8g、n−ブチルアクリレート12g、メタクリル酸3.2g、tert−ドデシルメルカプタン2.74g、更に定着改良剤乳化分散液16gを添加し、撹拌速度250rpmで撹拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム0.81gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、撹拌速度350rpmを維持しつつ6時間重合を行った。
【0080】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0081】
[低分子量成分ラテックス5の合成例]
冷却管、温度計、攪拌装置、窒素導入管を付けた1lの4頭フラスコに、蒸留水920mlを添加し、そこにスチレン405.6g、n−ブチルアクリレート72g、メタクリル酸2.4g、tert−ドデシルメルカプタン16.3g、更に定着改良剤乳化分散液96gを添加し、撹拌速度250rpmで撹拌し且つ窒素を流しつつフラスコ内温を70℃になるまで加熱した。70℃に内温を維持しつつ、過硫酸カリウム4.85gを純水100mlに溶解した重合開始剤水溶液を添加し、窒素気流下、内温70℃、撹拌速度350rpmを維持しつつ6時間重合を行った。
【0082】
また、高分子量成分ラテックス1の合成例と同様な方法で分子量とラテックス表面カルボキシル基量を測定した。
【0083】
【表1】

Figure 0003588744
【0084】
[トナー合成例1]
低分子ラテックス表面カルボキシル基量A=2.11×10−4、高分子ラテックス表面カルボキシル基量B=2.16×10−4のラテックスの組み合わせのトナー製造例。
【0085】
低分子量成分ラテックス2を400g、高分子量成分ラテックス1を100g、顔料分散液1を65gとイオン交換水340mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム59.4gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール88ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0086】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。トナーの変動係数(CV)は標準偏差σを体積平均粒径d50で割った値である。このトナーをトナー1とする。
【0087】
[トナー合成例2]
低分子ラテックス表面カルボキシル基量A=1.02×10−4、高分子ラテックス表面カルボキシル基量B=1.17×10−4のラテックスの組み合わせのトナー製造例。
【0088】
低分子量成分ラテックス3を267g、高分子量成分ラテックス2を100g、顔料分散液1を65gとイオン交換水473mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム46.9gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール77ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0089】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーをトナー2とする。
【0090】
[トナー合成例3]
低分子ラテックス表面カルボキシル基量A=1.02×10−4、高分子ラテックス表面カルボキシル基量B=2.78×10−4のラテックスの組み合わせのトナー製造例。
【0091】
低分子量成分ラテックス3を267g、高分子量成分ラテックス3を200g、顔料分散液1を65gとイオン交換水373mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム53.2gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール88ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0092】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーをトナー3とする。
【0093】
[トナー合成例4]
低分子ラテックス表面カルボキシル基量A=2.11×10−4、高分子ラテックス表面カルボキシル基量B=2.16×10−4のラテックスの組み合わせのトナー製造例。
【0094】
低分子量成分ラテックス2を267g、高分子量成分ラテックス1を100g、顔料分散液2を65gとイオン交換水473mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム62.5gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール80ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0095】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーをトナー4とする。
【0096】
[トナー合成例5]
低分子ラテックス表面カルボキシル基量A=2.11×10−4、高分子ラテックス表面カルボキシル基量B=2.16×10−4のラテックスの組み合わせのトナー製造例。
【0097】
低分子量成分ラテックス2を267g、高分子量成分ラテックス1を100g、顔料分散液3を65gとイオン交換水473mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム43.8gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール77ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0098】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーをトナー5とする。
【0099】
[トナー合成例6]
低分子ラテックス表面カルボキシル基量A=2.11×10−4、高分子ラテックス表面カルボキシル基量B=2.16×10−4のラテックスの組み合わせのトナー製造例。
【0100】
低分子量成分ラテックス2を267g、高分子量成分ラテックス1を100g、顔料分散液4を65gとイオン交換水473mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム46.9gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール80ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0101】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーをトナー6とする。
【0102】
[比較トナー合成例1]
低分子ラテックス表面カルボキシル基量A=0.26×10−4、高分子ラテックス表面カルボキシル基量B=2.78×10−4のラテックスの組み合わせのトナー製造例。
【0103】
低分子量成分ラテックス5を267g、高分子量成分ラテックス3を200g、顔料分散液1を65gとイオン交換水373mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム43.8gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール77ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0104】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーを比較トナー1とする。
【0105】
[比較トナー合成例2]
低分子ラテックス表面カルボキシル基量A=2.11×10−4、高分子ラテックス表面カルボキシル基量B=0.37×10−4のラテックスの組み合わせのトナー製造例。
【0106】
低分子量成分ラテックス2を400g、高分子量成分ラテックス4を100g、顔料分散液1を65gとイオン交換水340mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム42.5gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール77ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0107】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。トナーの変動係数(CV)は標準偏差σを体積平均粒径d50で割った値である。このトナーを比較トナー2とする。
【0108】
[比較トナー合成例3]
低分子ラテックス表面カルボキシル基量A=1.84×10−4、高分子ラテックス表面カルボキシル基量B=0.37×10−4のラテックスの組み合わせのトナー製造例。
【0109】
低分子量成分ラテックス1を400g、高分子量成分ラテックス4を100g、顔料分散液1を65gとイオン交換水340mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した2lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム38.8gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール77ml、トリトンX−100を9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0110】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーを比較トナー3とする。
【0111】
[比較トナー合成例4]
低分子ラテックス表面カルボキシル基量A=0.26×10−4、高分子ラテックス表面カルボキシル基量B=0.37×10−4のラテックスの組み合わせのトナー製造例。
【0112】
高分子量成分ラテックス5を267g、低分子量成分ラテックス4を100g、顔料分散液1を65gとイオン交換水473mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した1lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム25.0gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール57ml、トリトンX−100 9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0113】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーを比較トナー4とする。
【0114】
[比較トナー合成例5]
低分子ラテックス表面カルボキシル基量A=4.25×10−4、高分子ラテックス表面カルボキシル基量B=4.31×10−4のラテックスの組み合わせのトナー製造例。
【0115】
低分子量成分ラテックス4を600g、高分子量成分ラテックス5を150g、顔料分散液1を25gとイオン交換水90mlを5N水酸化ナトリウム水溶液を用いてpH=9.5に調整した後、撹拌装置、冷却管、温度センサーを装着した1lの4頭フラスコに入れ、250rpmで撹拌を行った。ここに、塩化ナトリウム79.4gを260mlの蒸留水に溶解した電解質水溶液を添加し、更にイソプロピルアルコール93ml、トリトンX−100 9.0gを蒸留水70mlに溶解したノニオン界面活性剤水溶液を順次添加した後、内温を85℃まで昇温し6時間反応を行った。
【0116】
反応液を濾過後、蒸留水を加え再分散し、5Nの水酸化ナトリウム水溶液を用いpH=13に調整し水洗、濾過を繰り返し、界面活性剤及び電解質を除去した後、乾燥を行った。乾燥後粒径をコールターカウンターを用い測定した。このトナーを比較トナー5とする。
【0117】
【表2】
Figure 0003588744
【0118】
評価1
本発明のトナー1〜6及び比較トナー1〜5を用い、これら100重量部に対して疎水性シリカ2重量部、酸化チタン1重量部を添加混合し、この外添処理トナー5重量部とメタクリル酸メチル/スチレン共重合体(MAA/St=7/3重量比)で表面被覆したフェライト粒子(キャリア、平均粒径60μm)95重量部を混合し、本発明の現像剤1〜3及び比較現像剤1〜4とした。この現像剤を振とう機で60分振とうした時の帯電量をブローオフ法を用いて測定した。測定は低温低湿(LL)、高温高湿(HH)で行い、LLとHHの帯電量差を環境差とした。
【0119】
測定結果を表3に示した。
【0120】
【表3】
Figure 0003588744
【0121】
この結果、低分子量成分ラテックスの表面カルボキシル基量が0.6×10−4以上、3.5×10−4以下、高分子量成分ラテックスの表面カルボキシル基量が0.8×10−4以上、4×10−4以下で|A−B|が発明規定内のトナーの帯電量は、環境差が非常に少ない。
【0122】
評価2
定着ローラー温度を180℃へ固定したものを用い、上記現像剤を使用し、コニカ製カラー複写機9028を改造してロングランを実施した。条件は下記に示す条件である。感光体としては積層型有機感光体を使用した。
【0123】
感光体表面電位=−550V
DCバイアス=−250V
ACバイアス=Vp−p:−50〜−450V
交番電界周波数=1800Hz
Dsd=300μm
押圧規制力=10gf/mm
押圧規制棒=SUS416(磁性ステンレス製)/直径3mm
現像剤層厚=150μm
現像スリーブ=20mm
環境条件は高温高湿(33℃/80%RH)にて実施し、5000枚毎にべた黒画像をプリントしながら、連続で画素率が1%の画像を10万枚の印字をし、画像汚れの発生の有無を比較した。
【0124】
画像汚れとは、トナーが現像器等に付着し、べた黒画像に白すじ等が発生する程度を評価した。
【0125】
測定結果を表4に示した。
【0126】
【表4】
Figure 0003588744
【0127】
この結果から、本発明内のトナー1〜6に比して比較トナー1,2は、画像汚れが多いことが明白である。
【0128】
【発明の効果】
本発明により、トナーにおいて分子量の異なる樹脂粒子をトナー粒子中で局在化させて、トナー粒子の機械的強度を改善することが出来る。また、小粒径で粒度分布の狭いトナー粒子を提供することが出来る。
【図面の簡単な説明】
【図1】本発明に係わる画像形成方法を説明する概要断面図。
【符号の説明】
1 レーザー光源
4 感光体ドラム
5 帯電ユニット
6 現像ユニット
7 転写極
11 クリーニング装置
13 弾性体ゴムブレード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrostatic image developing toner used in a copying machine, a printer, and the like, and an image forming method using the same.
[0002]
[Prior art]
Conventionally, a toner for developing an electrostatic image generally used is appropriately dry-mixed with a polymer obtained by various polymerization methods, a coloring agent such as carbon black, a charge controlling agent and / or a magnetic material. It is manufactured by melt-kneading, etc., followed by pulverization and classification.
[0003]
As another method, a method of directly manufacturing a toner by a suspension polymerization method or the like has been proposed. A method using particles produced by an emulsion polymerization method has also been proposed (JP-A-60-220358 and JP-A-4-284461).
[0004]
However, the toner obtained by the above-described melt-kneading and pulverizing method has a limitation in controlling the toner particle size, and it is difficult to produce a toner having a small particle size with high yield. In addition, there is a disadvantage that the components forming the toner are not uniformly dispersed and the charge amount distribution tends to be broad.
[0005]
Further, the direct production method by the suspension polymerization method has a disadvantage that not only is it difficult to reduce the particle size, but also the particle size distribution becomes wide. Furthermore, the toner produced by this method is basically spherical, and has a disadvantage that it is difficult to clean the residual toner during the image forming process.
[0006]
On the other hand, according to the methods disclosed in JP-A-60-220358 and JP-A-4-284461, it is possible to obtain non-spherical particles having irregularities on the surface instead of spherical toner as described above. It is difficult to control the particle size and particle size distribution, and it is necessary to perform classification after the reaction is completed to obtain the desired particle size and particle size distribution.
[0007]
Further, in the method disclosed in JP-A-4-284461, it is necessary to finely adjust the zeta potential of the colorant and the polymer particles. This not only makes it difficult to improve the productivity, but also makes it easy for the coloring agent and the like to be localized in the generated toner particles, and when resin particles having different molecular weights are used, they are uniformly mixed in the toner particles. It has the disadvantage that the resulting toner particles cannot have sufficient mechanical strength.
[0008]
[Problems to be solved by the invention]
It is an object of the present invention to improve the mechanical strength of toner particles by localizing resins having different molecular weights in the toner particles in the toner particles. Another object of the present invention is to provide toner particles having a small particle size and a narrow particle size distribution.
[0009]
[Means for Solving the Problems]
The object of the present invention is achieved by adopting the following configuration.
[0010]
(1) Heavy weight in molecular weight distribution measurement by GPCQuantityLow molecular weight component resin latex having a peak molecular weight between 1,000 and 50,000,QuantityIn a toner for developing an electrostatic image, which is produced by mixing a high molecular weight component resin latex having a peak between 80,000 and 700,000, a colorant and a fixing improver, and coagulating and fusing, When the amount of carboxyl groups present on the surface of the low molecular weight resin latex is A [mol / g] and the amount of carboxyl groups present on the surface of the high molecular weight resin latex is B [mol / g], the following formula (1) A) a toner for developing an electrostatic image.
[0011]
0.6 × 10-Four≦ A ≦ 3.5 × 10-Four
0.8 × 10-Four≦ B ≦ 4 × 10-Four
1 × 10-6≦ | AB | ≦ 2 × 10-Four                    Equation (1)
(2) Weight was measured by molecular weight distribution measurement using GPC.QuantityLow molecular weight component resin latex having a peak molecular weight between 1,000 and 50,000,QuantityIn a toner for developing an electrostatic image, which is produced by mixing a high molecular weight component resin latex having a peak between 80,000 and 700,000, a colorant and a fixing improver, and coagulating and fusing, When the amount of carboxyl groups present on the surface of the low molecular weight component resin latex is A [mol / g] and the amount of carboxyl groups present on the surface of the high molecular weight component resin latex is B [mol / g], the following formula (2) A) a toner for developing an electrostatic image.
[0012]
0.6 × 10-4≦ A ≦ 3.5 × 10-4
0.8 × 10-4≦ B ≦ 4 × 10-4
1 × 10-6≦ BA ≦ 2 × 10-4                        Equation (2)
(3) The toner for developing an electrostatic image according to (1) or (2), wherein the low molecular weight resin latex and the high molecular weight resin latex contain an ionic monomer unit having a carboxyl group.
[0013]
(4) In an image forming method for visualizing an electrostatic latent image formed on a photoreceptor to form a toner image, the toner is the electrostatic image developing toner according to (1) or (2). Image forming method.
[0014]
(5) An image forming method for transferring a toner image formed on a photoreceptor, wherein the toner is the toner for developing an electrostatic image according to (1) or (2).
[0015]
(6) In an image forming method for transferring a toner image formed on a photoreceptor onto a transfer material and then cleaning the toner remaining on the photoreceptor, the toner according to (1) or (2), An image forming method, being a toner for developing a charge image.
[0016]
The reason why the effects of the present invention can be obtained by the above configuration is considered as follows.
[0017]
By adjusting the amount of surface carboxyl groups of the low molecular weight resin latex (A) and the high molecular weight resin latex (B), the positions of A and B in the particles (toner particles) obtained by aggregating the latex particles can be controlled. . That is, when the amount of carboxyl groups on the surface of the latex is increased, the latex is hardly aggregated, so that the latex is easily collected on the surface of the toner particles. On the other hand, when the amount of carboxyl groups on the surface is small, it tends to be easily collected inside the toner particles. By changing the amount of surface carboxyl groups in this way, it is possible to localize in the toner particles.
[0018]
Utilizing the above properties, for example, when the surface carboxyl group content of the high molecular weight latex is larger than the surface carboxyl group content of the low molecular weight latex, the high molecular weight component is localized on the toner particle surface, so that the mechanical strength of the toner is improved. . On the other hand, when the difference in the amount of carboxyl groups on the surface between latexes A and B increases, the difference in cohesiveness also increases, causing the particle size distribution of the toner particles to widen. It is presumed that the best balance among these is the configuration of the present invention described above.
[0019]
In the present invention, the peak of the molecular weight refers to the peak of the voltage detected by the detector when the molecular weight distribution is measured by GPC. The monomer unit is obtained by polymerizing the latex of the present invention in a monomer unit, and indicates the monomer unit.
[0020]
(Amount of carboxyl group on latex surface)
The carboxyl group content on the surface of the low molecular weight resin latex is 0.6 × 10-4mol / g, the amount of carboxyl groups on the surface of the high molecular weight component resin latex is 0.8 × 10-4If it is less than mol / g, the particle size distribution is narrow, and it becomes difficult to produce a toner having a small particle size. Further, the toner cannot have mechanical strength. Further, the amount of each surface carboxyl group is 3.5 × 10-4mol / g or 4 × 10-4If it exceeds mol / g, the hydrophilicity of the toner particles becomes strong and the charge amount becomes unstable.
[0021]
The absolute value of the difference between the surface carboxyl groups of the low molecular weight component resin latex and the high molecular weight component resin latex is 1 × 10-6≦ | AB | ≦ 2 × 10-4The toner particles having a narrow particle size distribution can be generated by adjusting the particle size to the range described above.
[0022]
Further, the low molecular weight component resin latex was used to reduce the surface carboxyl group content of the high molecular weight resin latex to 1 × 10-6≦ BA ≦ 2 × 10-4By adjusting the ratio to the range described above, the high molecular weight component is localized on the surface of the toner particles, so that the toner can have mechanical strength.
[0023]
(Method of adjusting the amount of carboxyl groups on the surface of latex)
The amount of the carboxyl group on the latex surface can be adjusted by changing the ratio of the monomer having a carboxyl group in the monomer added at the time of polymerization. It is also possible to change the amount of monomer and the amount of water added during polymerization.
[0024]
The ratio of the monomer having a carboxyl group in the monomer is preferably 1 to 12 parts by weight, more preferably 2 to 10 parts by weight.
[0025]
The amount of monomer added / the amount of water added can be arbitrarily changed, but if the amount of monomer added is larger than the amount of water added, polymerization does not proceed. The preferred range is 40/60 to 3/97 in weight ratio, and the more preferred range is preferably changed in the range of 35/65 to 5/95.
[0026]
(Measurement of carboxyl group content on latex surface)
The amount of carboxyl groups on the surface of the latex particles can be measured by titration. In the titration method, a strong base solution, for example, an aqueous sodium hydroxide solution is used as a titration reagent, and electrical properties, for example, conductivity, pH, etc., are measured, and the titration is determined from a titration curve. The amount of carboxyl groups on the surface of latex particles is expressed as a value obtained by dividing the amount of carboxyl groups determined by titration by the weight of latex particles, that is, the amount of carboxyl groups per unit latex weight.
[0027]
(Monomer having a carboxyl group)
Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, tetrahydroterephthalic acid, α-alkyl-substituted acrylic acid (substituted alkyl has 1 to 4 carbon atoms), monoalkylitacon Examples thereof include an acid (substituted alkyl has 1 to 4 carbon atoms) and monoalkylmaleic acid (substituted alkyl has 1 to 4 carbon atoms).
[0028]
(Resin latex)
The resin latex can be generally prepared by an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, an interfacial polymerization method, a pulverized fine powder of a synthetic resin, or the like. Resin latex is used.
[0029]
In order to compound the solid component according to the present invention (a component other than the binder resin necessary for the toner for developing an electrostatic image) with a resin latex, the solid component according to the present invention must be dispersed in a desired monomer. Alternatively, if the solid component can be dissolved, it can be synthesized by dissolving in a monomer, then dispersing in a dispersion, and polymerizing.
[0030]
Particularly preferably, the resin latex according to the present invention disperses the solid component according to the present invention in the presence of a surfactant having a concentration equal to or higher than the critical micelle formation concentration (CMC), It is obtained by diluting the agent so as to have a CMC or less, adding a radical polymerizable monomer and a radical polymerization initiator, and performing polymerization at a predetermined temperature.
[0031]
Any particle size of these resin latexes can be used as long as it is equal to or less than the target non-spherical particle size, but the particle size of the resin latex generally used is 0.01 to 10 μm. Are preferred.
[0032]
(Monomer)
In order to obtain the resin latex of the present invention, a hydrophobic monomer is used.
[0033]
Examples of the hydrophobic monomer of the present invention include styrene derivatives such as styrene, p-methylstyrene, o-methylstyrene, p-chlorostyrene, o-chlorostyrene, p-methoxystyrene, o-methoxystyrene and p-methylstyrene. -Ethoxystyrene, p-butoxystyrene, 2,4-dimethylstyrene, 2,4-dichlorostyrene, p-chloromethylstyrene, o-chloromethylstyrene, p-hydroxystyrene, o-hydroxystyrene and the like. In addition, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, dodecyl (meth) acrylate and the like ( Also included are (meth) acrylates. Further, nitrile monomers such as acrylonitrile and methacrylonitrile, vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether, vinyl ester monomers such as vinyl acetate and vinyl butyrate, and olefins such as ethylene, propylene and isobutylene. Conjugated dienes such as system monomers, butadiene, isoprene, chloroprene, and dimethylbutadiene. These may be used alone or in combination of two or more as necessary.
[0034]
These various monomers are selected according to the purpose, for example, according to a desired glass transition temperature, melting temperature and the like.
[0035]
(Radical polymerization initiator)
When synthesizing the resin latex of the present invention, a radical polymerization initiator is selected according to the polymerization method. That is, in the case of the suspension polymerization method, an oil-soluble radical polymerization initiator is used, and in the case of the emulsion polymerization method, a water-soluble radical polymerization initiator is used. Furthermore, in the case of dispersion polymerization, it is appropriately selected depending on the dispersion medium used, but when using a non-aqueous solvent and when using a mixed solvent of water-miscible organic solvent and water, it is possible to use a water-soluble radical polymerization initiator. It is possible.
[0036]
Examples of water-soluble radical polymerization initiators include persulfates, such as potassium persulfate and ammonium persulfate, and water-soluble azo compounds, such as azobisaminodipropane acetate, azobiscyanovaleric acid and salts thereof, and the like, For example, hydrogen peroxide and the like can be mentioned.
[0037]
Examples of the oil-soluble radical polymerization initiator include oil-soluble peroxides such as benzoyl peroxide and lauroyl peroxide. Examples of the oil-soluble azo polymerization initiator include azobisisobutyronitrile, azobisvaleronitrile and the like. The addition amount of these can be determined according to the molecular weight of the target resin latex and the like. Further, if necessary, a molecular weight regulator, for example, a chain transfer agent represented by a thiol compound, for example, dodecanethiol, octylthiol and the like can be used.
[0038]
The resin latex according to the present invention may have a Tg in the range of -10 to 120C, more preferably 0 to 90C. The softening point is in the range of 80 to 220 ° C. The monomer composition of the resin latex satisfies this range, and it is sufficient that the resin latex contains a polymer unit having a dissociable group in an amount of 0.1 to 20% by weight based on the weight of the polymer. The type and composition of the polymerization monomer are not limited.
[0039]
The molecular weight distribution of the resin latex according to the present invention is 1.5 to 100, preferably 1.8 to 50 in terms of the ratio of the weight average molecular weight to the number average molecular weight (abbreviated as Mw / Mn).
[0040]
(Solid component)
The resin latex according to the present invention can be combined with a solid component as described above. Commonly used solid components include pigments and dyes as colorants. Other examples include a fixing property improving agent (release agent) and a charge control agent. These can be used alone or in combination.
[0041]
Examples of the pigment include an inorganic pigment and an organic pigment. Inorganic pigments include carbon pigments such as carbon black, grafted carbon, furnace black, and thermatomic carbon, magnetite, ferrite, red iron oxide, titanium oxide, zinc oxide, silica, chromium oxide, cobalt blue, ultramarine, cerulean blue, and mineral. Metal oxide pigments such as violet and trilead tetroxide; metal powder pigments such as zinc powder, iron powder, and copper powder; sulfide pigments such as zinc sulfide, cadmium red, mercury sulfide, selenium red, and cadmium yellow; Examples thereof include chromate pigments such as molybdenum red, barium yellow, stylonium yellow, and chromium yellow, and ferrocyanide pigments such as milori blue.
[0042]
In particular, carbon black, furnace black and the like are preferable as the inorganic pigment.
[0043]
Examples of the organic pigment include compounds described in Color Index and the like. For example, C.I. I. Pigment Blue 15, C.I. I. Pigment Blue 15: 2, C.I. I. Pigment Blue 15: 3, C.I. I. Pigment Blue 16, C.I. I. Pigment Blue 60, C.I. I. Pigment Green 7 and the like.
[0044]
C. as magenta or red pigments; I. Pigment Red 2, C.I. I. Pigment Red 3, C.I. I. Pigment Red 5, C.I. I. Pigment Red 7, C.I. I. Pigment Red 15, C.I. I. Pigment Red 16, C.I. I. Pigment Red 48: 1, C.I. I. Pigment Red 53: 1, C.I. I. Pigment Red 57: 1, C.I. I. Pigment Red 122, C.I. I. Pigment Red 123, C.I. I. Pigment Red 139, C.I. I. Pigment Red 144, C.I. I. Pigment Red 149, C.I. I. Pigment Red 166, C.I. I. Pigment Red 178, C.I. I. Pigment Red 222 and the like.
[0045]
Yellow or orange pigments include C.I. I. Pigment Yellow 12, C.I. I. Pigment Yellow 13, C.I. I. Pigment Yellow 14, C.I. I. Pigment Yellow 15, C.I. I. Pigment Yellow 17, C.I. I. Pigment Yellow 93, C.I. I. Pigment Yellow 94, C.I. I. Pigment yellow 138, C.I. I. Pigment Yellow 180 and the like.
[0046]
Generally, C.I. I. Pigment Blue 15: 3 is known as copper-phthalocyanine, and magenta organic pigments such as C.I. I. Dimethylquinacridone known as CI Pigment Red 122 is C.I. I. Disazo yellow known as CI Pigment Yellow 17 is used.
[0047]
Further, for example, low-molecular-weight polyethylene, low-molecular-weight polypropylene, oxidized polyethylene, oxidized polypropylene, acid-modified polyethylene, acid-modified polypropylene, polyolefin-based wax (for example, Hitec manufactured by Toho Chemical Industry Co., Ltd.) ) Can be used.
[0048]
Use a positive charge control agent such as a nigrosine dye, a quaternary ammonium salt, or an alkylamide, or a negative charge control agent such as an azo metal complex, chlorinated paraffin, chlorinated polyester, or sulfonylamine of copper phthalocyanine. Can be done.
[0049]
These can each be contained in the polymer in an amount of 0.1 to 25% by weight.
[0050]
(Aggregation / fusion)
Aggregation and fusion are performed using the resin latex generated in the polymerization step to produce a toner. Various methods for fusing and associating include, for example, JP-A-60-220358 and JP-A-4-284664. However, it is quite difficult to control the desired particle size and particle size distribution. Therefore, the present inventors have produced a toner by using the method described in JP-A-5-115572, that is, a method in which a coagulant having a critical coagulation concentration of a resin latex or more and an organic solvent infinitely soluble in water are added.
[0051]
Next, although not limited thereto, FIG. 1 shows an example of a digital copying machine, and an image forming method according to the present invention will be described.
[0052]
As described above, the image forming process according to the present invention is particularly effective in an image forming method including reversal development such as a printer and a digital copying machine.
[0053]
In the image forming apparatus of FIG. 1, although not shown in the figure, light from a light source is applied to a document, reflected light is converted into an electric signal by an image reading unit, and this image data is transmitted to the image writing units 1 to 3. (1 is a laser light source, 2 is a polygon mirror, and 3 is an fθ lens).
[0054]
On the other hand, the photoreceptor drum 4 responsible for image formation is uniformly charged by corona discharge in the charging unit 5, and subsequently, image exposure light is irradiated onto the photoreceptor drum 4 from the laser light source 1 in the image writing unit. Then, the image is reverse-developed by the next developing unit 6 and transferred to a recording paper (transfer material) 8 by a transfer pole 7. The recording paper 8 is separated from the photosensitive drum by the separation pole 9 and is fixed by the fixing device 10. On the other hand, the photosensitive drum 4 is cleaned by the cleaning device 11. Reference numeral 12 denotes a pre-charging exposure lamp, which may be provided after the separation pole 9 and before the cleaning device 11.
[0055]
After transferring the toner image to the transfer material, the toner remaining on the photoconductor is removed by cleaning, and the photoconductor is repeatedly used in the next image forming process.
[0056]
The cleaning mechanism is preferably a blade cleaning method using a so-called elastic rubber blade. Reference numeral 13 denotes an elastic rubber blade.
[0057]
As a material constituting the elastic rubber blade 13, an elastic material such as silicone rubber or urethane rubber can be used.
[0058]
In the above, the process using a single color has been described. However, in some cases, an image in a plurality of colors such as two colors may be used. The process of charging, laser light exposure, and developing the corresponding color toner is repeated for the signals for each separated color that has been color-separated at the time of image reading, and the four color toners of yellow, magenta, cyan, and black toners are repeated. An image may be formed on a photoreceptor and transferred collectively to recording paper.
[0059]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but embodiments of the present invention are not limited thereto.
[0060]
[Production of emulsified dispersion of fixability improver]
According to a conventional method, 120 g of low molecular weight polypropylene (number average molecular weight = 3300, molecular weight distribution (Mw / Mn) = 4.5) was modified with 5.7 g of maleic anhydride, and the melt viscosity was measured. The improver was added to 280 g of an aqueous solution of nonylphenoxyethanol (mol number of added ethoxy units = 20, HLB = 16.0) in which hydrochloric acid was dissolved, the pH was adjusted to 9 with potassium hydroxide, and the pressure was increased to increase the temperature. Emulsified and dispersed above the softening point of polypropylene. The modified polypropylene dispersed particle diameter was measured by a light scattering electric permanent particle diameter measuring apparatus (ELS-800: manufactured by Otsuka Electronics Co., Ltd.), and as a result, was 182 nm. This emulsified dispersion of fixability improver is referred to as emulsified dispersion of fixer.
[0061]
[Production of pigment dispersion 1]
36.78 g of sodium dodecyl sulfate was added to 530 ml of ion-exchanged water, and 80.0 g of carbon black (Regal 330R, manufactured by Cabot) was dispersed using an ultrasonic homogenizer and a pressure type disperser. The average particle size of the carbon black in the dispersion was measured by a light scattering electric permanent particle size analyzer (ELS-800: manufactured by Otsuka Electronics Co., Ltd.), and as a result, was 95 nm.
[0062]
[Production of pigment dispersions 2, 3, 4]
Instead of carbon black in the production example of Pigment Dispersion Liquid 1, C.I. I. Pigment Yellow 17, C.I. I. Pigment Red 122, C.I. I. Pigment Blue 15: 3, except that Pigment Blue 15: 3 was used. The average particle size of the pigment in the dispersion was measured with a light scattering electric permanent particle size analyzer (ELS-800: manufactured by Otsuka Electronics Co., Ltd.), and the results were 148 nm, 133 nm, and 105 nm, respectively.
[0063]
[High molecular weight componentresinExample of synthesis of latex 1]
1080 ml of distilled water was added to a 2-liter four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 246.4 g of styrene, 48 g of n-butyl acrylate, 25.6 g of methacrylic acid, and tert- 0.30 g of dodecyl mercaptan and further 64 g of the emulsifying dispersion of the fixing improver were added, and the mixture was stirred at a stirring speed of 250 rpm and heated to 70 ° C. while flowing nitrogen while flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator obtained by dissolving 3.28 g of potassium persulfate in 200 ml of pure water was added. Was done. After the polymerization was completed, the internal temperature was lowered to room temperature, a part was taken out, and the molecular weight was measured using gel permeation chromatography (hereinafter abbreviated as GPC).
In addition, the high molecular weight component latex may be abbreviated to the high molecular weight component latex within a range that does not cause misunderstanding.
[0064]
The surface carboxyl group content of the high molecular weight component latex was measured by conductivity titration.
[0065]
Conductivity titration is performed by diluting the above latex to a solid concentration of 5% by weight, adding a 0.05 N aqueous solution of sodium hydroxide dropwise at an interval of 15 seconds in 0.5 ml portions, and using the conductivity and the amount of the aqueous sodium hydroxide solution added. Create a titration curve. The inflection point was determined from the titration curve to determine the amount of carboxyl groups on the surface of the latex.
[0066]
[Synthesis example of high molecular weight component latex 2]
A high-molecular-weight component latex 1 was prepared in the same manner as in Synthesis Example 1 except that the amount of added monomer was changed to 259.2 g of styrene, 48 g of n-butyl acrylate, and 12.8 g of methacrylic acid.
[0067]
[Synthesis example of high molecular weight component latex 3]
1240 ml of distilled water was added to a 2 liter four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 123.2 g of styrene, 24 g of n-butyl acrylate, 12.8 g of methacrylic acid, tert- 0.15 g of dodecyl mercaptan and further 32 g of an emulsifying dispersion of a fixing improver were added, and the mixture was stirred at a stirring speed of 350 rpm and heated to 70 ° C. while flowing nitrogen while flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator in which 1.64 g of potassium persulfate was dissolved in 100 ml of pure water was added, and polymerization was performed for 6 hours while maintaining the internal temperature at 70 ° C. and the stirring speed at 250 rpm under a nitrogen stream. Was done.
[0068]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0069]
[Synthesis example of high molecular weight component latex 4]
1080 ml of distilled water was added to a 2 l four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 270.4 g of styrene, 48 g of n-butyl acrylate, 1.6 g of methacrylic acid, tert- 0.30 g of dodecyl mercaptan and further 64 g of the emulsifying dispersion of the fixing improver were added, and the mixture was stirred at a stirring speed of 350 rpm and heated to 70 ° C. while flowing nitrogen while flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator obtained by dissolving 3.23 g of potassium persulfate in 100 ml of pure water was added. Was done.
[0070]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0071]
[Synthesis example of high molecular weight component latex 5]
1320 ml of distilled water was added to a 2 l four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 63.2 g of styrene, 12 g of n-butyl acrylate, 4.8 g of methacrylic acid, tert- To the mixture, 0.08 g of dodecyl mercaptan and 16 g of an emulsified dispersion of a fixing improver were added, and the mixture was stirred at a stirring speed of 250 rpm and heated to 70 ° C. while flowing nitrogen gas. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator in which 0.82 g of potassium persulfate was dissolved in 100 ml of pure water was added, and polymerization was carried out for 6 hours while maintaining an internal temperature of 70 ° C. and a stirring speed of 250 rpm in a nitrogen stream. Was done.
[0072]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0073]
[Low molecular weight componentresinExample of synthesis of latex 1]
1080 ml of distilled water was added to a 2 l four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 256.0 g of styrene, 48 g of n-butyl acrylate, 16.0 g of methacrylic acid, tert- 11.0 g of dodecyl mercaptan and 64 g of a fixing improver emulsified dispersion were added, and the mixture was stirred at a stirring speed of 350 rpm and heated to 70 ° C. while flowing nitrogen while flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator obtained by dissolving 3.26 g of potassium persulfate in 100 ml of pure water was added, and polymerization was performed for 6 hours while maintaining the internal temperature at 70 ° C. and the stirring speed at 350 rpm in a nitrogen stream. Was done.
In addition, the low molecular weight component resin latex may be abbreviated as a low molecular weight component latex to the extent that misunderstanding does not occur.
[0074]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0075]
[Synthesis example of low molecular weight component latex 2]
A low molecular weight component latex 1 was prepared in the same manner as in Synthesis Example 1 except that the amount of added monomer was changed to 249.6 g of styrene, 48 g of n-butyl acrylate, and 22.4 g of methacrylic acid.
[0076]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0077]
[Synthesis example of low molecular weight component latex 3]
920 ml of distilled water was added to a 1 l four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen introducing tube, and 384.0 g of styrene, 72 g of n-butyl acrylate, 24.0 g of methacrylic acid, and tert- 16.5 g of dodecyl mercaptan and 96 g of a fixing improver emulsified dispersion were added, and the mixture was stirred until the inside temperature of the flask reached 70 ° C. while stirring at a stirring speed of 250 rpm and flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator in which 4.90 g of potassium persulfate was dissolved in 100 ml of pure water was added, and polymerization was performed for 6 hours while maintaining an internal temperature of 70 ° C. and a stirring speed of 250 rpm in a nitrogen stream. Was done.
[0078]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0079]
[Synthesis example of low molecular weight component latex 4]
1320 ml of distilled water was added to a 1 l four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 64.8 g of styrene, 12 g of n-butyl acrylate, 3.2 g of methacrylic acid, and tert- 2.74 g of dodecyl mercaptan and 16 g of the emulsified dispersion of the fixing improver were added, and the mixture was stirred at a stirring speed of 250 rpm and heated to 70 ° C. while flowing nitrogen while flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator in which 0.81 g of potassium persulfate was dissolved in 100 ml of pure water was added, and polymerization was performed for 6 hours while maintaining the internal temperature at 70 ° C. and stirring speed at 350 rpm under a nitrogen stream. Was done.
[0080]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0081]
[Synthesis example of low molecular weight component latex 5]
920 ml of distilled water was added to a 1 l four-headed flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen inlet tube, and 405.6 g of styrene, 72 g of n-butyl acrylate, 2.4 g of methacrylic acid, tert- 16.3 g of dodecyl mercaptan and 96 g of an emulsifying dispersion of a fixing improver were added, and the mixture was stirred at a stirring speed of 250 rpm and heated to 70 ° C. while flowing nitrogen while flowing nitrogen. While maintaining the internal temperature at 70 ° C., an aqueous solution of a polymerization initiator in which 4.85 g of potassium persulfate was dissolved in 100 ml of pure water was added, and polymerization was performed for 6 hours while maintaining the internal temperature at 70 ° C. and the stirring speed at 350 rpm under a nitrogen stream. Was done.
[0082]
The molecular weight and the amount of carboxyl groups on the latex surface were measured in the same manner as in the synthesis example of the high molecular weight component latex 1.
[0083]
[Table 1]
Figure 0003588744
[0084]
[Toner Synthesis Example 1]
Low-molecular latex surface carboxyl group content A = 2.11 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 2.16 × 10-4Example of toner production using a combination of latexes.
[0085]
400 g of the low molecular weight component latex 2, 100 g of the high molecular weight component latex 1, 65 g of the pigment dispersion 1 and 340 ml of ion-exchanged water were adjusted to pH = 9.5 using a 5N aqueous sodium hydroxide solution. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. To this, an aqueous electrolyte solution in which 59.4 g of sodium chloride was dissolved in 260 ml of distilled water was added, and further, an aqueous nonionic surfactant solution in which 88 ml of isopropyl alcohol and 9.0 g of Triton X-100 were dissolved in 70 ml of distilled water was sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0086]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. The coefficient of variation (CV) of the toner is expressed as follows:50Divided by. This toner is referred to as toner 1.
[0087]
[Toner Synthesis Example 2]
Low-molecular latex surface carboxyl group content A = 1.02 × 10-4, Amount of carboxyl groups on the surface of the polymer latex B = 1.17 × 10-4Example of toner production using a combination of latexes.
[0088]
After adjusting 267 g of the low molecular weight component latex 3, 100 g of the high molecular weight component latex 2, 65 g of the pigment dispersion 1 and 473 ml of ion-exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirrer and cooling were performed. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. To this, an aqueous electrolyte solution in which 46.9 g of sodium chloride was dissolved in 260 ml of distilled water was added, followed by 77 ml of isopropyl alcohol and an aqueous nonionic surfactant solution in which 9.0 g of Triton X-100 was dissolved in 70 ml of distilled water. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0089]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as toner 2.
[0090]
[Toner Synthesis Example 3]
Low-molecular latex surface carboxyl group content A = 1.02 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 2.78 × 10-4Example of toner production using a combination of latexes.
[0091]
After adjusting 267 g of the low molecular weight component latex 3, 200 g of the high molecular weight component latex 3, 65 g of the pigment dispersion 1 and 373 ml of ion-exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirrer and cooling were performed. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution obtained by dissolving 53.2 g of sodium chloride in 260 ml of distilled water is added thereto, and an aqueous nonionic surfactant solution obtained by dissolving 88 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water is sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0092]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as toner 3.
[0093]
[Toner Synthesis Example 4]
Low-molecular latex surface carboxyl group content A = 2.11 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 2.16 × 10-4Example of toner production using a combination of latexes.
[0094]
After adjusting 267 g of the low molecular weight component latex 2, 100 g of the high molecular weight component latex 1, 65 g of the pigment dispersion 2 and 473 ml of ion-exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirring device and cooling were performed. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. To this, an aqueous electrolyte solution obtained by dissolving 62.5 g of sodium chloride in 260 ml of distilled water was added, and further, an aqueous nonionic surfactant solution obtained by dissolving 80 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water was sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0095]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as toner 4.
[0096]
[Toner Synthesis Example 5]
Low-molecular latex surface carboxyl group content A = 2.11 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 2.16 × 10-4Example of toner production using a combination of latexes.
[0097]
After adjusting 267 g of the low molecular weight component latex 2, 100 g of the high molecular weight component latex 1, 65 g of the pigment dispersion 3 and 473 ml of ion-exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirrer and cooling The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution obtained by dissolving 43.8 g of sodium chloride in 260 ml of distilled water is added thereto, and an aqueous nonionic surfactant solution obtained by dissolving 77 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water is sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0098]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as toner 5.
[0099]
[Toner Synthesis Example 6]
Low-molecular latex surface carboxyl group content A = 2.11 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 2.16 × 10-4Example of toner production using a combination of latexes.
[0100]
After adjusting 267 g of the low molecular weight component latex 2, 100 g of the high molecular weight component latex 1, 65 g of the pigment dispersion 4 and 473 ml of ion-exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirring device and a cooling device were used. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution obtained by dissolving 46.9 g of sodium chloride in 260 ml of distilled water is added thereto, and an aqueous nonionic surfactant solution obtained by dissolving 80 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water is sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0101]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as toner 6.
[0102]
[Comparative Toner Synthesis Example 1]
Low-molecular latex surface carboxyl group content A = 0.26 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 2.78 × 10-4Example of toner production using a combination of latexes.
[0103]
After adjusting 267 g of the low molecular weight component latex 5, 200 g of the high molecular weight component latex 3, 65 g of the pigment dispersion 1 and 373 ml of ion-exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirrer and cooling were performed. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution obtained by dissolving 43.8 g of sodium chloride in 260 ml of distilled water is added thereto, and an aqueous nonionic surfactant solution obtained by dissolving 77 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water is sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0104]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as comparative toner 1.
[0105]
[Comparative Toner Synthesis Example 2]
Low-molecular latex surface carboxyl group content A = 2.11 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 0.37 × 10-4Example of toner production using a combination of latexes.
[0106]
400 g of the low molecular weight component latex 2, 100 g of the high molecular weight component latex 4, 65 g of the pigment dispersion 1 and 340 ml of ion-exchanged water were adjusted to pH = 9.5 using a 5N aqueous solution of sodium hydroxide. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution obtained by dissolving 42.5 g of sodium chloride in 260 ml of distilled water is added thereto, and an aqueous nonionic surfactant solution obtained by dissolving 77 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water is sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0107]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. The coefficient of variation (CV) of the toner is expressed as follows:50Divided by. This toner is referred to as Comparative Toner 2.
[0108]
[Comparative Toner Synthesis Example 3]
Low-molecular latex surface carboxyl group content A = 1.84 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 0.37 × 10-4Example of toner production using a combination of latexes.
[0109]
400 g of the low molecular weight component latex 1, 100 g of the high molecular weight component latex 4, 65 g of the pigment dispersion 1 and 340 ml of ion-exchanged water were adjusted to pH = 9.5 using a 5N aqueous sodium hydroxide solution. The mixture was placed in a 2 l 4-head flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution obtained by dissolving 38.8 g of sodium chloride in 260 ml of distilled water was added thereto, and an aqueous nonionic surfactant solution obtained by dissolving 77 ml of isopropyl alcohol and 9.0 g of Triton X-100 in 70 ml of distilled water was sequentially added. After that, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0110]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as comparative toner 3.
[0111]
[Comparative Toner Synthesis Example 4]
Low-molecular latex surface carboxyl group content A = 0.26 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 0.37 × 10-4Example of toner production using a combination of latexes.
[0112]
After adjusting 267 g of the high molecular weight component latex 5, 100 g of the low molecular weight component latex 4, 65 g of the pigment dispersion liquid 1 and 473 ml of ion exchange water to pH = 9.5 using a 5N aqueous sodium hydroxide solution, a stirring device and cooling were performed. The mixture was placed in a 1-liter four-necked flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. To this, an aqueous electrolyte solution in which 25.0 g of sodium chloride was dissolved in 260 ml of distilled water was added, and further, an aqueous nonionic surfactant solution in which 57 ml of isopropyl alcohol and 9.0 g of Triton X-100 were dissolved in 70 ml of distilled water was sequentially added. Thereafter, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0113]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as comparative toner 4.
[0114]
[Comparative Toner Synthesis Example 5]
Low molecular latex surface carboxyl group content A = 4.25 × 10-4, The amount of carboxyl groups on the surface of the polymer latex B = 4.31 × 10-4Example of toner production using a combination of latexes.
[0115]
The low molecular weight component latex 4 was adjusted to 600 g, the high molecular weight component latex 5 to 150 g, the pigment dispersion 1 to 25 g, and 90 ml of ion exchanged water to pH = 9.5 using a 5N aqueous sodium hydroxide solution. The mixture was placed in a 1-liter four-necked flask equipped with a tube and a temperature sensor, and stirred at 250 rpm. An aqueous electrolyte solution in which 79.4 g of sodium chloride was dissolved in 260 ml of distilled water was added thereto, and an aqueous nonionic surfactant solution in which 93 ml of isopropyl alcohol and 9.0 g of Triton X-100 were dissolved in 70 ml of distilled water was sequentially added. Thereafter, the internal temperature was raised to 85 ° C., and the reaction was carried out for 6 hours.
[0116]
After filtration, the reaction solution was re-dispersed by adding distilled water, adjusted to pH = 13 using a 5N aqueous sodium hydroxide solution, washed with water and filtered repeatedly to remove the surfactant and the electrolyte, and then dried. After drying, the particle size was measured using a Coulter counter. This toner is referred to as comparative toner 5.
[0117]
[Table 2]
Figure 0003588744
[0118]
Evaluation 1
Using toners 1 to 6 of the present invention and comparative toners 1 to 5, 2 parts by weight of hydrophobic silica and 1 part by weight of titanium oxide were added to and mixed with 100 parts by weight of the toner. 95 parts by weight of ferrite particles (carrier, average particle diameter 60 μm) surface-coated with a methyl acid / styrene copolymer (MAA / St = 7/3 weight ratio) are mixed, and the developing agents 1 to 3 of the present invention and comparative development Agents 1-4. The charge amount when this developer was shaken with a shaker for 60 minutes was measured by a blow-off method. The measurement was carried out at low temperature and low humidity (LL) and at high temperature and high humidity (HH), and the difference in charge amount between LL and HH was defined as the environmental difference.
[0119]
Table 3 shows the measurement results.
[0120]
[Table 3]
Figure 0003588744
[0121]
As a result, the surface carboxyl group content of the low molecular weight component latex was 0.6 × 10-4Above 3.5 × 10-4Hereinafter, the surface carboxyl group content of the high molecular weight component latex is 0.8 × 10-44 × 10 or more-4In the following, the amount of charge of the toner in which | AB |
[0122]
Evaluation 2
Using a fixing roller having a temperature of 180 ° C. and using the above developer, a Konica color copier 9028 was modified and a long run was performed. The conditions are as shown below. A laminated organic photoreceptor was used as the photoreceptor.
[0123]
Photoconductor surface potential = -550V
DC bias = -250V
AC bias = Vp-p: -50 to -450V
Alternating electric field frequency = 1800Hz
Dsd = 300 μm
Press regulating force = 10 gf / mm
Pressing control rod = SUS416 (made of magnetic stainless steel) / 3 mm in diameter
Developer layer thickness = 150 μm
Developing sleeve = 20mm
Environmental conditions were high-temperature and high-humidity (33 ° C / 80% RH). While printing a solid black image every 5,000 sheets, an image with a pixel rate of 1% was continuously printed on 100,000 sheets. The presence or absence of dirt was compared.
[0124]
The image stain was evaluated by the degree to which toner adheres to a developing device or the like and white streaks or the like occur in a solid black image.
[0125]
Table 4 shows the measurement results.
[0126]
[Table 4]
Figure 0003588744
[0127]
From this result, it is clear that the comparative toners 1 and 2 have more image stains than the toners 1 to 6 in the present invention.
[0128]
【The invention's effect】
According to the present invention, the resin particles having different molecular weights in the toner can be localized in the toner particles to improve the mechanical strength of the toner particles. Further, toner particles having a small particle size and a narrow particle size distribution can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view illustrating an image forming method according to the present invention.
[Explanation of symbols]
1 Laser light source
4 Photoconductor drum
5 Charging unit
6 Developing unit
7 Transfer pole
11 Cleaning device
13 Elastic rubber blade

Claims (6)

GPCによる分子量分布測定で重量分子量が1,000〜50,000の間にピークを有する低分子量成分樹脂ラテックス、重量分子量が80,000〜700,000の間にピークを有する高分子量成分樹脂ラテックス、着色剤及び定着改良剤を混合し、凝集・融着する事により生成される静電荷像現像用トナーにおいて、該低分子量成分樹脂ラテックス表面に存在するカルボキシル基量をA[mol/g]、該高分子量成分樹脂ラテックス表面に存在するカルボキシル基量をB[mol/g]としたとき、下記の式(1)が成り立つことを特徴とする静電荷像現像用トナー。
0.6×10-4≦A≦3.5×10-4
0.8×10-4≦B≦4×10-4
1×10-6≦|A−B|≦2×10-4 式(1)
Low molecular weight component resin latex Weight fraction molecular weight on a molecular weight distribution measurement by GPC has a peak between 1,000 to 50,000, is Weight fraction molecular weight having a peak between 80,000~700,000 In a toner for developing an electrostatic image formed by mixing a high molecular weight component resin latex, a colorant and a fixing improver, and coagulating and fusing, the amount of carboxyl groups present on the surface of the low molecular weight component resin latex is represented by A [ mol / g], and the following formula (1) is satisfied when the amount of carboxyl groups present on the surface of the high molecular weight resin latex is B [mol / g].
0.6 × 10 −4 ≦ A ≦ 3.5 × 10 −4
0.8 × 10 −4 ≦ B ≦ 4 × 10 −4
1 × 10 −6 ≦ | A−B | ≦ 2 × 10 −4 Equation (1)
GPCによる分子量分布測定で重量分子量が1,000〜50,000の間にピークを有する低分子量成分樹脂ラテックス、重量分子量が80,000〜700,000の間にピークを有する高分子量成分樹脂ラテックス、着色剤及び定着改良剤を混合し、凝集・融着する事により生成される静電荷像現像用トナーにおいて、該低分子量成分樹脂ラテックス表面に存在するカルボキシル基量をA[mol/g]、該高分子量成分樹脂ラテックス表面に存在するカルボキシル基量をB[mol/g]としたときに以下の式(2)が成り立つことを特徴とする静電荷像現像用トナー。
0.6×10-4≦A≦3.5×10-4
0.8×10-4≦B≦4×10-4
1×10-6≦B−A≦2×10-4 式(2)
Low molecular weight component resin latex Weight fraction molecular weight on a molecular weight distribution measurement by GPC has a peak between 1,000 to 50,000, is Weight fraction molecular weight having a peak between 80,000~700,000 In a toner for developing an electrostatic image, which is produced by mixing a high molecular weight component resin latex, a colorant and a fixing improver and aggregating and fusing, the amount of carboxyl groups present on the surface of the low molecular weight component resin latex is represented by A [ mol / g], and the following formula (2) is satisfied when the amount of carboxyl groups present on the surface of the high molecular weight resin latex is B [mol / g].
0.6 × 10 −4 ≦ A ≦ 3.5 × 10 −4
0.8 × 10 −4 ≦ B ≦ 4 × 10 −4
1 × 10 −6BA ≦ 2 × 10 −4 Formula (2)
上記低分子量樹脂ラテックス、高分子量樹脂ラテックスが、カルボキシル基を持つイオン性単量体ユニットを含有することを特徴とする請求項1又は2記載の静電荷像現像用トナー。3. The electrostatic image developing toner according to claim 1, wherein the low molecular weight resin latex and the high molecular weight resin latex contain an ionic monomer unit having a carboxyl group. 感光体上に形成された静電荷潜像を顕像化しトナー像とする画像形成方法において、前記トナーが請求項1又は2記載の静電荷像現像用トナーであることを特徴とする画像形成方法。3. An image forming method for visualizing an electrostatic latent image formed on a photoreceptor to form a toner image, wherein the toner is the toner for developing an electrostatic image according to claim 1 or 2. . 感光体上に形成されたトナー像を転写する画像形成方法において、前記トナーが請求項1又は2記載の静電荷像現像用トナーであることを特徴とする画像形成方法。3. An image forming method for transferring a toner image formed on a photoreceptor, wherein the toner is the toner for developing an electrostatic image according to claim 1 or 2. 感光体上に形成されたトナー像を転写材上に転写した後、該感光体上に残留したトナーをクリーニングする画像形成方法において、前記トナーが請求項1又は2記載の静電荷像現像用トナーであることを特徴とする画像形成方法。3. The electrostatic image developing toner according to claim 1, wherein the toner image formed on the photoconductor is transferred onto a transfer material, and then the toner remaining on the photoconductor is cleaned. An image forming method, characterized in that:
JP83998A 1998-01-06 1998-01-06 Electrostatic image developing toner and image forming method using the same Expired - Fee Related JP3588744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP83998A JP3588744B2 (en) 1998-01-06 1998-01-06 Electrostatic image developing toner and image forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP83998A JP3588744B2 (en) 1998-01-06 1998-01-06 Electrostatic image developing toner and image forming method using the same

Publications (2)

Publication Number Publication Date
JPH11194541A JPH11194541A (en) 1999-07-21
JP3588744B2 true JP3588744B2 (en) 2004-11-17

Family

ID=11484796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP83998A Expired - Fee Related JP3588744B2 (en) 1998-01-06 1998-01-06 Electrostatic image developing toner and image forming method using the same

Country Status (1)

Country Link
JP (1) JP3588744B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4283416B2 (en) * 2000-03-30 2009-06-24 コニカミノルタホールディングス株式会社 Image forming method
JP2001296694A (en) * 2000-04-13 2001-10-26 Konica Corp Method for forming image, and image-forming device
JP2006079116A (en) * 2000-07-06 2006-03-23 Mitsubishi Chemicals Corp Method for manufacturing electrostatic charge image developing toner
JP5002779B2 (en) * 2006-07-11 2012-08-15 綜研化学株式会社 Thermoplastic resin composition for stamper member and molded article thereof

Also Published As

Publication number Publication date
JPH11194541A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
US6506532B2 (en) Toner for the development of electrostatic image and process for the preparation thereof
US5863696A (en) Toner particle for electrophotography and production method thereof
JP3653736B2 (en) Non-spherical particles and method for producing the same
US8283097B2 (en) Process for producing toner for electrostatic charge image development toner for electrostatic charge image development
JP3997724B2 (en) Image forming method using toner for developing electrostatic image
JP3588744B2 (en) Electrostatic image developing toner and image forming method using the same
JP2001027821A (en) Electrostatic charge image developing toner
JP3671701B2 (en) Toner for developing electrostatic image and method for producing the same
JP4033252B2 (en) Toner for developing electrostatic image, method for producing the same, and image forming method
JP3598454B2 (en) Electrostatic latent image developing toner, image forming method and image fixing method using the same
JP3888201B2 (en) Toner for developing electrostatic latent image, method for producing the same, and image forming method
JP4159070B2 (en) Toner and developer for developing electrostatic image and image forming method
JP3780722B2 (en) Toner for developing electrostatic image and method for producing the same
US6921616B2 (en) Electrostatic photographic image forming method
JP4665362B2 (en) Toner for developing electrostatic latent image and method for producing the same
JPH11194540A (en) Non-spherical particle, toner for developing electrostatic charge latent image, developer and image forming method using it
JPH09179331A (en) Electrostatic charge latent image developing toner developer and image forming method
JP3903760B2 (en) Electrostatic latent image developing toner, method for producing the electrostatic latent image developing toner, and image forming method using the electrostatic latent image developing toner
JP2002091067A (en) Electrostatic charge image developing toner and method for manufacturing electrostatic charge image developing toner
JP4026728B2 (en) Toner for developing electrostatic image, developer and image forming method
JPH09265210A (en) Electrostatic charge image developing toner, developer, developing method and fixing method
JP3643995B2 (en) Toner for developing electrostatic image, developer and image forming method
JPH11344827A (en) Electrostatic charge image developing toner and image forming method therefor
JP4063064B2 (en) Toner for developing electrostatic image, method for producing toner for developing electrostatic image, image forming method and image forming apparatus using the same
JP4063059B2 (en) Toner for developing electrostatic image, method for producing toner for developing electrostatic image, image forming method and image forming apparatus using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees