JP3588408B2 - Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting - Google Patents

Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting Download PDF

Info

Publication number
JP3588408B2
JP3588408B2 JP05777297A JP5777297A JP3588408B2 JP 3588408 B2 JP3588408 B2 JP 3588408B2 JP 05777297 A JP05777297 A JP 05777297A JP 5777297 A JP5777297 A JP 5777297A JP 3588408 B2 JP3588408 B2 JP 3588408B2
Authority
JP
Japan
Prior art keywords
slab
continuous casting
electromagnetic
electromagnetic stirrer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05777297A
Other languages
Japanese (ja)
Other versions
JPH10249491A (en
Inventor
透 芦刈
豊彦 神吉
念 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP05777297A priority Critical patent/JP3588408B2/en
Publication of JPH10249491A publication Critical patent/JPH10249491A/en
Application granted granted Critical
Publication of JP3588408B2 publication Critical patent/JP3588408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多条鋳片の連続鋳造設備において、鋳片鋳型内溶鋼あるいは鋳片鋳型から引き抜かれた鋳片のシェル内未凝固溶鋼を電磁誘導によって撹拌するために用いられる電磁撹拌装置及びこの装置を使用する連続鋳造設備に関する。
【0002】
【従来の技術】
連続鋳造設備において、鋳型内溶鋼あるいはその鋳型から引き抜かれた鋳片のシェル内未凝固溶鋼に電磁誘導による撹拌力を与えることは、鋳片表面性状の改善、鋳片内部品質の改善等に大きな効果があり、そのために電磁撹拌装置を設置することがよく行われている。
【0003】
多条鋳片の連続鋳造設備に適用する電磁撹拌装置は、従来2条以上の鋳片の未凝固溶鋼を同時に撹拌するために、その一つ一つを囲むようにメガネ型に構成した鉄心の内側に突き出た磁極を設け、その磁極に巻線を配置し、2相または3相電源を接続し回転磁界を発生させる電磁撹拌装置が一般的に使用されていることが特開平5−146854号公報に開示されている。
【0004】
図12は従来技術の多条鋳片の電磁撹拌装置を示す。これは鋳型内溶鋼15b,15b′を撹拌するために、2相交流電源で駆動される2条鋳片用の電磁撹拌装置の例である。この電磁撹拌装置は、鋳片鋳型2b,2b′を囲むようにメガネ型に形成した鉄心1の内側に磁極18,18′を設け、その磁極18,18′に巻線3を巻回して構成する。この場合、鋳片鋳型2b,2b′間には、鉄心1及び巻線3を配置した磁極18,18′を必要とするため、鋳片鋳型間距離Lbが大きくなる。
【0005】
図13は、図12のA−A線における磁束密度分布を示す。このような従来技術の多条鋳片の電磁撹拌装置の場合は、一般にポールアークと呼ばれる磁力線の入出部である磁極18の幅が、各辺長以下の限定された長さしかとれないため、対向する磁極間で磁力線を発生しても、その磁極間中心17,17′では、磁力線の分布が磁極18の幅方向に広がるため、磁極間中心の磁束密度は磁極18の付近に比べて大幅に小さくなる。この時の電磁撹拌装置の撹拌中心は、磁束密度分布が最小となるところの磁極間中心17,17′にあり、鋳片鋳型内溶鋼15b,15b′を均一に撹拌するためには、その磁極間中心17,17′と鋳片鋳型中心16b,16b′を一致させるように配置する必要がある。
【0006】
また、このような多条鋳片の連続鋳造設備においては、鋳片鋳型のサイズを変更して何種類かの異なった大きさの鋳片の鋳造を行うことが多い。
【0007】
【発明が解決しようとする課題】
従来型の場合、鋳片鋳型間の距離Lbが大きくなる。このため、連続鋳造設備の機械幅が大きくなり、設備費の増加となっていた。
また、鋳片鋳型内溶鋼15b,15b′を均一に撹拌するためには、電磁撹拌装置の磁極間中心17,17′と鋳片鋳型中心16b,16b′を一致させる必要があるが、たとえば図14で示すように鋳片鋳型2b,2b′のサイズを変更して使用する場合において、上記各中心を一致させることができない場合が多い。図15は、図14のA−A線の磁束密度分布を示す。これに示すように、連続鋳造設備の制約により鋳片鋳型中心16b,16b′を磁極間中心17,17′に一致させるように配置できないときは、電磁撹拌装置の撹拌中心は、磁束密度分布が最小となる磁極間中心17,17′となり、鋳片鋳型中心16b,16b′とずれた位置になる。このため、鋳片鋳型内溶鋼15b,15b′の中心から撹拌中心は偏心し、各鋳片鋳型内で均一な撹拌ができないといった問題が発生する。鋳片鋳型中心16b,16b′と磁極間中心17,17′を一致させることは、連続鋳造設備の設備計画を行う上で、大きな制約条件になっていた。
【0008】
【課題を解決するための手段】
上記課題を解決するための手段として、電磁攪拌装置の鉄心を横断面が矩形で内部が中空の角筒状で形成し、該鉄心を構成する各四辺に、それぞれ各片に直交する如く3相または2相交流電源から接続されてなる電線を巻回すると共に、前記鉄心の中空部に、二つ以上の鋳片通路を形成した。
【0009】
そして、鋳片鋳型の外周に上記電磁撹拌装置を配設した。また、鋳片鋳型の下方で、かつ鋳片未凝固部に上記の電磁撹拌装置を配設した。更にまた、鋳片鋳型の外周に上記電磁撹拌装置を配設して一次電磁撹拌部を形成し、更に、前記電磁撹拌部の下方で、かつ鋳片未凝固部に上記電磁撹拌装置を配設して二次電磁撹拌部を形成した。
【0010】
【発明の実施の形態】
本発明の電磁撹拌装置を図1、図2及び図3を用いて説明する。図1は電磁撹拌装置Mの主要部を示す斜視図である。図2は電磁撹拌装置Mの横断面図である。また図3は図2のA−A線における磁束密度分布を示すグラフである。これらは、2状鋳片の連続鋳造に適用した場合である。電源としては、各相120°位相差のあるU相、V相、W相の3相交流電源を用いた場合である。
【0011】
鉄心1を、横断面が矩形で内部が中空の角筒状の磁性体を2つの鋳片通路2a,2a′を囲むように積層して形成し、前記鉄心1を構成する各四辺に、それぞれ各辺に直交する如く電線を巻回し巻線3〜14を形成し、12個の該巻線3〜14が鉄心1の各辺に3個づつ配置されている。たとえば、巻線3,4,9,10にはU相の交流電源を接続し、巻線7,8,13,14にはV相の交流電源を接続し、また巻線5,6,11,12にはW相の交流電源を接続する。
【0012】
本実施例の如く3相電源に接続して使用する場合の巻線3〜14の必要数は、最少6個で構成し、1個の巻線を複数個に分割することも適宜可能である。このような巻線方式は分布巻と呼ばれるものである。また、鉄心1の各四辺への巻線3〜14の配設位置は、図4に示す如く、U相、V相、W相の合成磁界による回転磁界が発生するように、U相巻線3,4,9,10とV相巻線7,8,13,14及びW相巻線5,6,11,12のそれぞれで発生する磁界φU,φV,φWが120°ずつ角度をもつように配置する。
【0013】
上述の如く鉄心1、巻線3〜14、鋳片通路2a,2a′を構成したことにより、磁力線の入出部であるポールアークを限定せず鉄心1の中空部の表面を全てポールアーク化することができた。これにより図3の如く、鉄心1の中空部の磁束密度分布は均一となり、鉄心1の中空部のどの位置に鋳片通路2a,2a′を配置しても、鋳片通路中心16a,16a′が撹拌中心となるような、均一な撹拌を可能にした。これにより、各鋳片通路間に鉄心を必要としない電磁撹拌装置Mを実現したことにより、鋳片通路間の距離Laを大幅に短くできた。
【0014】
上述の説明において、電源は3相交流電源に接続する場合の説明を行ったが、2相電源にも適用可能であり、2相交流電源に接続する場合には、巻線の必要数は、最少4個で構成し、1個の巻線は3相交流と同時に複数個に適宜分割可能である。
また、巻線3〜14導体は冷却方式に対応した形状とする。浸漬冷却による間接冷却の場合は中実で外側に耐水絶縁を施したものを、内部通水による直接冷却の場合は中空の導体を、直接冷却及び間接冷却を併用して冷却能力を向上させる併用冷却の場合は中空で外側に耐水絶縁を施したものを使用する。
【0015】
本発明の電磁撹拌装置を連続鋳造設備に適用した場合について図7、図8を用いて説明する。図7は連続鋳造の鋳片鋳型部に電磁撹拌装置Mを配置した場合の縦断面図であり、図8は図7をB−B線で切断した横断面図である。2条鋳片用の連続鋳造機は、その上部に鋳片鋳型2b,2b′と連続鋳造機本体20から構成されており、該連続鋳造機本体20の中に鋳片通路2a,2a′が形成される。電磁撹拌装置Mは鋳片鋳型2b,2b′の外周の電磁撹拌部19に配設されている。電磁撹拌部19を連続鋳造の鋳片鋳型2b,2b′の外周に配設し、鋳片鋳型内溶鋼15b,15b′の撹拌に適用することは、鋳片鋳型内溶鋼15b,15b′の凝固界面の注状晶を撹拌による新たな溶鋼流で常に洗浄し、ガス、介在物の浮上を促進するといった大きな冶金的効果がある。また、撹拌により、溶鋼温度が均一化され疑似低温鋳造により等軸晶が増加するといった冶金的効果があることは一般によく知られている。本発明の電磁撹拌装置Mは、その冶金的効果を得るために設置するものであり、鉄心の中空部のどの位置に鋳片鋳型2bを配置しても、鋳片鋳型中心16bが撹拌中心となるような、均一な撹拌を可能にした。これにより、各鋳片鋳型間に鉄心を必要としない電磁撹拌装置を実現したことにより、鋳片鋳型間の距離Lbを大幅に短くできた。
【0016】
次に本発明の電磁撹拌装置を連続鋳造設備に適用した他の実施例について図9、図10を用いて説明する。図9は連続鋳造の鋳片鋳型の下方に電磁撹拌装置Mを配置した場合の縦断面図であり、図10は、図9をC−C線で切断した横断面図である。2条鋳片用の連続鋳造機は、その上部に鋳片鋳型2b,2b′と連続鋳造機本体20から構成されており、前記連続鋳造機本体20の中に鋳片通路2a,2a′が形成される。電磁撹拌装置Mは鋳片鋳型2b,2b′より下方で、かつ鋳片未凝固部15a,15a′の電磁撹拌部19に配設されている。電磁撹拌部19を連続鋳造の鋳片鋳型2b,2b′の下方で、かつ該鋳片通路2a,2a′を囲むように配設し、鋳片鋳型2bから引き抜かれた鋳片のシェル内未凝固部15aの撹拌に適用することは、鋳片未凝固部15aの結晶しつつある注状晶が溶鋼の撹拌流により洗われ、微小結晶に溶断され、等軸晶が増加するといった大きな冶金的効果があることは一般によく知られている。本発明の電磁撹拌装置Mは、その冶金的効果を得るために設置するものであり、鉄心の中空部のどの位置に鋳片通路2a,2a′を配置しても、鋳片通路中心16a,16a′が撹拌中心となるような、均一な撹拌を可能にした。これにより、各鋳片鋳型間に鉄心を必要としない電磁撹拌装置を実現したことにより、鋳片通路間の距離Laを大幅に短くできた。
【0017】
次に本発明の電磁撹拌装置を連続鋳造設備に適用した他の実施例について図11を用いて説明する。図11は連続鋳造の鋳片鋳型部と鋳片鋳型の下方にそれぞれ電磁撹拌装置M,M′を配置した場合の縦断面図である。2条鋳片用の連続鋳造機は、その上部に鋳片鋳型2b,2b′と連続鋳造機本体20から構成されており、この連続鋳造機本体20の中に鋳片通路2a,2a′が形成される。電磁撹拌装置Mは鋳片鋳型2b,2b′の外周の電磁撹拌部19に配設されて一次電磁撹拌部を形成し、更に電磁撹拌装置M′が前記電磁撹拌部19の下方で、かつ鋳片未凝固部15a,15a′の周囲の電磁撹拌部19に設けられて、二次電磁撹拌部を形成した。この実施例では、前記各実施例で説明した冶金的効果を同時に得るために設置するものであり、鉄心の中空部のどの位置に鋳片鋳型2b,2b′及び鋳片通路2a,2a′を配置しても、鋳片鋳型中心16b,16b′及び鋳片通路中心16a,16a′が撹拌中心となるような、均一な撹拌を可能にした。これにより、各鋳片鋳型間及び鋳片通路間に鉄心を必要としない電磁撹拌装置を実現したことにより、鋳片鋳型間の距離La及び鋳片通路間の距離Laを大幅に短くできた。
【0018】
以上の実施例は、2条の鋳片に本発明を適用した例であるが、3条鋳片以上の連続鋳造にも適用できるのは明かである。
図5に、本発明を3条鋳片の連続鋳造に適用した実施例を示す。これは、鉄心1を、横断面が矩形で内部が中空の角筒状の磁性体を3つの鋳片通路2a,2a′,2a′′を囲むように積層して形成し、前記鉄心1を構成する各四辺に、それぞれ各辺に直交する如く電線を巻回し巻線3〜14を形成し、12個の該巻線3〜14が鉄心1の各辺に3個づつ配置されて電磁撹拌装置Mが形成される。この場合も2条の鋳片の場合と同様、鉄心1の中空部のA−A線における磁束密度分布は均一となり、鉄心1の中空部のどの位置に鋳片通路2a,2a′,2a′′を配置しても、鋳片通路中心16a,16a′,16a′′が撹拌中心となるような均一な撹拌を可能にした。これにより、鋳片通路間の距離La,Laを大幅に短くできた。
【0019】
なお、本発明を1条鋳片の連続鋳造に適用できることも明らかである。図6にその実施例を示す。これは、鉄心1を、横断面が矩形で内部が中空の角筒状の磁性体を1つの鋳片通路2aを囲むように積層して形成し、前記鉄心1を構成する各四辺に、それぞれ各辺に直交する如く電線を巻回し巻線3〜14を形成し、12個の該巻線3〜14が鉄心1の各辺に3個づつ配置されて電磁撹拌装置Mが形成される。このように本発明は、1状の大断面鋳片の連続鋳造にも適用できるが、本発明の効果は多条鋳片を同時鋳造する場合に特に発揮される。
【0020】
【発明の効果】
本発明によって以下の効果が期待できる。
1.電磁撹拌装置の鋳片通路の間に鉄心及び磁極を配設しないことにより、鋳片間隔を最小化でき、連続鋳造設備の機械幅を大幅に短縮できるため、連続鋳造設備の設備費を大幅に低減できる。
2.電磁撹拌装置の鉄心の中空部の磁束密度分布を均一化することにより、鋳片配置の自由度が大きくなる。そのため、連続鋳造設備の設備計画時の大きな制約条件をなくすことができる。
3.電磁撹拌装置の鉄心の中空部の磁束密度分布を均一化することにより、鋳片配置の自由度が大きくなる。そのため、大断面1条鋳片と小断面多条鋳片の鋳造を1台の電磁撹拌装置で行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の電磁撹拌装置の主要部を示す斜視図である。
【図2】本発明の電磁撹拌装置の横断面図である。
【図3】図2のA−A線における磁束密度分布を示す。
【図4】本発明の電磁撹拌装置における鉄心の中空部に発生する磁界を示す図である。
【図5】本発明の電磁撹拌装置で3条の鋳片に適用した場合の横断面図である。
【図6】本発明の電磁撹拌装置で1条の大断面鋳片に適用した場合の横断面図である。
【図7】本発明の電磁撹拌装置を使用した鋳造設備の縦断面図である。
【図8】図7のB−B線の断面図である。
【図9】本発明の電磁撹拌装置を使用した鋳造設備の他の実施例の縦断面図である。
【図10】図9のC−C線の断面図である。
【図11】本発明の電磁撹拌装置を使用した鋳造設備の他の実施例の縦断面図である。
【図12】従来技術の電磁撹拌装置を示す横断面図である。
【図13】図12のA−A線における磁束密度分布を示す。
【図14】従来技術の電磁撹拌装置で鋳片鋳型サイズを変更した場合を示す横断面図である。
【図15】図14のA−A線における磁束密度分布を示す。
【符号の説明】
1…鉄心
2a…鋳片通路
2b…鋳片鋳型
3〜14…巻線
15a…鋳片未凝固部
15b…鋳片鋳型内溶鋼
16a…鋳片通路中心
16b…鋳片鋳型中心
17…磁極間中心
18…磁極
19…電磁撹拌部
20…連続鋳造機本体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an electromagnetic stirrer used to stir molten steel in a slab mold or unsolidified molten steel in a shell of a slab drawn from a slab mold by electromagnetic induction in a continuous casting facility for multi-section cast slabs. The present invention relates to a continuous casting facility using the apparatus.
[0002]
[Prior art]
In continuous casting equipment, applying a stirring force by electromagnetic induction to the molten steel in the mold or the unsolidified molten steel in the shell of the slab drawn from the mold has a great effect on improving the slab surface properties and improving the slab internal quality. It is effective, and for that purpose, it is common to install an electromagnetic stirrer.
[0003]
The electromagnetic stirrer applied to the continuous casting equipment for multi-section cast slabs has been designed to be a glasses-shaped iron core that surrounds each of the two or more cast slabs in order to simultaneously stir the unsolidified molten steel. Japanese Patent Application Laid-Open No. 5-146854 discloses that an electromagnetic stirrer is generally used in which a magnetic pole protruding inward is provided, a winding is arranged on the magnetic pole, and a two-phase or three-phase power source is connected to generate a rotating magnetic field. It is disclosed in the gazette.
[0004]
FIG. 12 shows a conventional electromagnetic stirring device for a multi-section slab. This is an example of an electromagnetic stirrer for a two-section cast slab driven by a two-phase AC power supply to stir the molten steel 15b, 15b 'in the mold. This electromagnetic stirrer is constructed by providing magnetic poles 18, 18 'inside an iron core 1 formed in an eyeglass shape so as to surround a slab mold 2b, 2b' and winding a winding 3 around the magnetic poles 18, 18 '. I do. In this case, since the magnetic poles 18, 18 'in which the iron core 1 and the windings 3 are arranged are required between the slab molds 2b, 2b', the slab mold distance Lb is increased.
[0005]
FIG. 13 shows a magnetic flux density distribution along the line AA in FIG. In the case of such a conventional multi-section slab electromagnetic stirrer, the width of the magnetic pole 18, which is generally called a pole arc, which is the entrance and exit of the magnetic field lines, can only take a limited length equal to or less than the length of each side. Even if magnetic lines of force are generated between opposing magnetic poles, the distribution of the magnetic lines of force spreads in the width direction of the magnetic poles 18 at the centers 17 and 17 ′ between the magnetic poles, so that the magnetic flux density at the center between the magnetic poles is larger than that near the magnetic poles 18. Become smaller. At this time, the stirring center of the electromagnetic stirrer is located at the center 17, 17 'between the magnetic poles where the magnetic flux density distribution is minimized. In order to stir the molten steel 15b, 15b' in the slab mold uniformly, the magnetic pole is required. It is necessary to arrange the center 17, 17 'so that the center 16b, 16b' of the slab mold.
[0006]
Also, in such a continuous casting apparatus for multi-section cast pieces, casting of cast pieces of several different sizes is often performed by changing the size of the cast piece mold.
[0007]
[Problems to be solved by the invention]
In the case of the conventional type, the distance Lb between the slab molds becomes large. For this reason, the machine width of the continuous casting equipment has increased, and the equipment cost has increased.
Further, in order to uniformly stir the molten steel 15b, 15b 'in the slab mold, it is necessary to match the centers 17, 17' between the magnetic poles of the electromagnetic stirrer with the slab mold centers 16b, 16b '. In the case where the size of the slab molds 2b and 2b 'is changed and used as shown by 14, it is often impossible to match the centers. FIG. 15 shows a magnetic flux density distribution along the line AA in FIG. As shown in this figure, when the slab mold center 16b, 16b 'cannot be arranged so as to coincide with the magnetic pole center 17, 17' due to the limitation of the continuous casting equipment, the stirring center of the electromagnetic stirrer has a magnetic flux density distribution. The center between the magnetic poles 17 and 17 'becomes the minimum, and is shifted from the center 16b and 16b' of the slab mold. For this reason, the stirring center is eccentric from the center of the molten steel 15b, 15b 'in the slab mold, causing a problem that uniform stirring cannot be performed in each slab mold. Matching the slab mold centers 16b, 16b 'with the magnetic pole centers 17, 17' has been a great constraint in planning a continuous casting facility.
[0008]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, an iron core of an electromagnetic stirrer is formed in the shape of a rectangular tube having a rectangular cross section and a hollow inside, and three phases are formed on each of four sides constituting the iron core so as to be orthogonal to each piece. Alternatively, an electric wire connected from a two-phase AC power supply was wound, and two or more slab passages were formed in the hollow portion of the iron core.
[0009]
And the said electromagnetic stirring apparatus was arrange | positioned at the outer periphery of the slab mold. Further, the above-described electromagnetic stirring device was provided below the slab mold and in the unsolidified portion of the slab. Furthermore, the above-mentioned electromagnetic stirrer is arranged on the periphery of the slab mold to form a primary electromagnetic stirrer, and further, the electromagnetic stirrer is arranged below the electromagnetic stirrer and in the unsolidified part of the slab. As a result, a secondary electromagnetic stirring section was formed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The electromagnetic stirring device of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a main part of the electromagnetic stirring device M. FIG. 2 is a cross-sectional view of the electromagnetic stirring device M. FIG. 3 is a graph showing the magnetic flux density distribution along the line AA in FIG. These are cases where the present invention is applied to continuous casting of two-piece slabs. As a power supply, a three-phase AC power supply of U-phase, V-phase and W-phase having a phase difference of 120 ° is used.
[0011]
An iron core 1 is formed by laminating a rectangular tube-shaped magnetic body having a rectangular cross section and having a hollow inside so as to surround two slab passages 2a and 2a '. The wires are wound so as to be orthogonal to each side to form windings 3 to 14, and twelve windings 3 to 14 are arranged on each side of the iron core 1. For example, windings 3, 4, 9, and 10 are connected to a U-phase AC power supply, windings 7, 8, 13, and 14 are connected to a V-phase AC power supply, and windings 5, 6, 11 , 12 are connected to a W-phase AC power supply.
[0012]
The required number of windings 3 to 14 when used by connecting to a three-phase power supply as in this embodiment is a minimum of six, and one winding can be divided into a plurality as appropriate. . Such a winding system is called a distributed winding. The positions of the windings 3 to 14 on each of the four sides of the iron core 1 are set so that the rotating magnetic field is generated by the combined magnetic field of the U-phase, V-phase, and W-phase as shown in FIG. The magnetic fields φU, φV, φW generated by the 3, 4, 9, 10 and the V-phase windings 7, 8, 13, 14 and the W-phase windings 5, 6, 11, 12 each have an angle of 120 °. To place.
[0013]
By configuring the iron core 1, the windings 3 to 14, and the slab passages 2a and 2a 'as described above, the entire surface of the hollow portion of the iron core 1 is converted into a pole arc without limiting the pole arc which is the entrance and exit of the magnetic field lines. I was able to. As a result, as shown in FIG. 3, the magnetic flux density distribution in the hollow portion of the iron core 1 becomes uniform, and no matter where the slab passages 2a, 2a 'are arranged in the hollow portion of the iron core 1, the slab passage centers 16a, 16a'. , Which became the center of stirring. Thus, by realizing the electromagnetic stirring device M that does not require an iron core between the slab passages, the distance La between the slab passages can be significantly reduced.
[0014]
In the above description, the case where the power supply is connected to the three-phase AC power supply has been described. However, the power supply is also applicable to the two-phase power supply. It is composed of a minimum of four windings, and one winding can be appropriately divided into a plurality of windings simultaneously with the three-phase alternating current.
The conductors of the windings 3 to 14 have a shape corresponding to the cooling system. In the case of indirect cooling by immersion cooling, a solid and water-proof insulation is applied on the outside, and in the case of direct cooling by internal water flow, a hollow conductor is used, and the cooling capacity is improved by using both direct cooling and indirect cooling In the case of cooling, use a hollow, water-resistant insulation on the outside.
[0015]
A case where the electromagnetic stirring device of the present invention is applied to a continuous casting facility will be described with reference to FIGS. FIG. 7 is a longitudinal sectional view in the case where the electromagnetic stirring device M is arranged in the slab mold part of the continuous casting, and FIG. 8 is a transverse sectional view of FIG. 7 cut along the line BB. The continuous caster for two-piece slabs is composed of slab molds 2b, 2b 'and a continuous caster main body 20 at the upper part thereof, and slab passages 2a, 2a' are formed in the continuous caster main body 20. It is formed. The electromagnetic stirrer M is disposed in the electromagnetic stirrer 19 on the outer periphery of the slab molds 2b, 2b '. Disposing the electromagnetic stirrer 19 on the outer periphery of the continuous casting slab molds 2b, 2b 'and applying it to the stirring of the molten steel 15b, 15b' in the slab mold involves solidifying the molten steel 15b, 15b 'in the slab mold. There is a great metallurgical effect such that the cast crystals at the interface are constantly washed with a new molten steel flow by stirring to promote the floating of gas and inclusions. It is generally well known that stirring has a metallurgical effect such that the molten steel temperature is made uniform and pseudo-low-temperature casting increases the number of equiaxed crystals. The electromagnetic stirrer M of the present invention is installed in order to obtain the metallurgical effect, and no matter where the cast slab 2b is disposed in the hollow portion of the iron core, the cast slab mold center 16b becomes the stirring center. As a result, uniform stirring was enabled. Thus, by realizing an electromagnetic stirring device that does not require an iron core between the respective cast slabs, the distance Lb between the cast slabs could be significantly reduced.
[0016]
Next, another embodiment in which the electromagnetic stirring device of the present invention is applied to a continuous casting facility will be described with reference to FIGS. FIG. 9 is a longitudinal sectional view in the case where the electromagnetic stirring device M is arranged below a continuous casting slab mold, and FIG. 10 is a transverse sectional view of FIG. 9 taken along line CC. The continuous caster for two-piece slabs is composed of slab molds 2b, 2b 'and a continuous caster main body 20 at the upper part thereof, and slab passages 2a, 2a' are formed in the continuous caster main body 20. It is formed. The electromagnetic stirring device M is disposed below the slab molds 2b and 2b 'and in the electromagnetic stirring section 19 of the unsolidified portions 15a and 15a' of the slabs. An electromagnetic stirrer 19 is disposed below the continuous cast slab molds 2b, 2b 'and so as to surround the slab passages 2a, 2a'. The application to the agitation of the solidified portion 15a is a large metallurgical process in which the crystallized cast crystals of the slab unsolidified portion 15a are washed by the agitated flow of the molten steel, melted into fine crystals, and the number of equiaxed crystals increases. The effect is generally well known. The electromagnetic stirring device M of the present invention is installed in order to obtain its metallurgical effect. Regardless of the position of the slab passage 2a, 2a 'in the hollow portion of the iron core, the slab passage center 16a, This enabled uniform stirring such that 16a 'became the center of stirring. As a result, by realizing an electromagnetic stirrer that does not require an iron core between the slab molds, the distance La between the slab passages could be significantly reduced.
[0017]
Next, another embodiment in which the electromagnetic stirring device of the present invention is applied to a continuous casting facility will be described with reference to FIG. FIG. 11 is a longitudinal sectional view in the case where electromagnetic stirring devices M and M 'are arranged below the slab mold part and the slab mold for continuous casting, respectively. The continuous caster for two-piece slabs is composed of slab molds 2b, 2b 'and a continuous caster main body 20 at the upper part thereof, and slab passages 2a, 2a' are formed in the continuous caster main body 20. It is formed. The electromagnetic stirrer M is disposed on the electromagnetic stirrer 19 on the outer periphery of the slab molds 2b and 2b 'to form a primary electromagnetic stirrer. A secondary electromagnetic stirrer was formed on the electromagnetic stirrer 19 around the unsolidified portions 15a and 15a '. In this embodiment, the slab molds 2b and 2b 'and the slab passages 2a and 2a' are installed at any position in the hollow portion of the iron core so as to simultaneously obtain the metallurgical effects described in the above embodiments. Even when the slabs are arranged, uniform stirring is enabled such that the slab mold centers 16b and 16b 'and the slab passage centers 16a and 16a' are the stirring centers. Thereby, by realizing an electromagnetic stirrer that does not require an iron core between the respective slab molds and between the slab passages, the distance La between the slab molds and the distance La between the slab passages can be significantly reduced.
[0018]
The above embodiment is an example in which the present invention is applied to a two-section slab, but it is apparent that the invention can also be applied to a continuous casting of three or more slabs.
FIG. 5 shows an embodiment in which the present invention is applied to continuous casting of three-row slabs. In this method, the iron core 1 is formed by laminating a rectangular tube-shaped magnetic body having a rectangular cross section and a hollow inside so as to surround three slab passages 2a, 2a ', 2a''. An electric wire is wound on each of the four sides so as to be orthogonal to each side to form windings 3 to 14. Twelve windings 3 to 14 are arranged on each side of the iron core 1 by three, and electromagnetic stirring is performed. An apparatus M is formed. Also in this case, similarly to the case of the two-piece slab, the magnetic flux density distribution in the AA line in the hollow portion of the iron core 1 becomes uniform, and the slab passages 2a, 2a ', 2a' ′, Uniform agitation such that the slab passage centers 16a, 16a ′, 16a ″ become the agitation center is enabled. As a result, the distances La, La between the slab passages could be significantly reduced.
[0019]
It is also clear that the present invention can be applied to continuous casting of a single cast slab. FIG. 6 shows the embodiment. That is, the iron core 1 is formed by laminating a rectangular tube-shaped magnetic body having a rectangular cross section and a hollow inside so as to surround one slab passage 2a. An electric wire is wound so as to be orthogonal to each side to form windings 3 to 14. Twelve windings 3 to 14 are arranged on each side of the iron core 1 by three to form an electromagnetic stirring device M. As described above, the present invention can be applied to continuous casting of a single large-section cast slab, but the effects of the present invention are particularly exhibited when multi-cast slabs are simultaneously cast.
[0020]
【The invention's effect】
The following effects can be expected by the present invention.
1. By eliminating the iron core and magnetic poles between the slab passages of the electromagnetic stirrer, the slab spacing can be minimized, and the machine width of the continuous casting facility can be significantly reduced. Can be reduced.
2. By homogenizing the magnetic flux density distribution in the hollow portion of the iron core of the electromagnetic stirrer, the degree of freedom in slab arrangement is increased. For this reason, it is possible to eliminate a large constraint condition when planning a continuous casting facility.
3. By homogenizing the magnetic flux density distribution in the hollow portion of the iron core of the electromagnetic stirrer, the degree of freedom in slab arrangement is increased. For this reason, it is possible to perform casting of a single-section slab with a large cross section and a multi-section slab with a small cross section with one electromagnetic stirring device.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main part of an electromagnetic stirring device of the present invention.
FIG. 2 is a cross-sectional view of the electromagnetic stirring device of the present invention.
FIG. 3 shows a magnetic flux density distribution along the line AA in FIG. 2;
FIG. 4 is a diagram showing a magnetic field generated in a hollow portion of an iron core in the electromagnetic stirring device of the present invention.
FIG. 5 is a cross-sectional view when the electromagnetic stirring device of the present invention is applied to three strips.
FIG. 6 is a cross-sectional view when the electromagnetic stirring device of the present invention is applied to a single-section large slab.
FIG. 7 is a longitudinal sectional view of a casting facility using the electromagnetic stirring device of the present invention.
FIG. 8 is a sectional view taken along line BB of FIG. 7;
FIG. 9 is a longitudinal sectional view of another embodiment of a casting facility using the electromagnetic stirring device of the present invention.
FIG. 10 is a sectional view taken along line CC of FIG. 9;
FIG. 11 is a longitudinal sectional view of another embodiment of a casting facility using the electromagnetic stirring device of the present invention.
FIG. 12 is a cross-sectional view showing a conventional electromagnetic stirring device.
FIG. 13 shows a magnetic flux density distribution along the line AA in FIG.
FIG. 14 is a cross-sectional view showing a case where the size of a slab mold is changed by a conventional electromagnetic stirring device.
FIG. 15 shows a magnetic flux density distribution along the line AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Iron core 2a ... Slab passage 2b ... Slab mold 3-14 ... Winding 15a ... Slab unsolidified part 15b ... Smelt steel in a slab mold 16a ... Slab passage center 16b ... Slab mold center 17 ... Center between magnetic poles 18 magnetic pole 19 electromagnetic stirring unit 20 continuous casting machine body

Claims (4)

多条鋳片の連続鋳造であって、該多条鋳片を同時に箔半する電磁攪拌装置において、鉄心を横断面が矩形で内部が中空の角筒状で形成し、該鉄心を構成する各四辺に、それぞれ各片に直交する如く3相または2相交流電源から接続されてなる電線を巻回すると共に、前記鉄心の中空部に、二つ以上の鋳片通路を形成したことを特徴とする連続鋳造における多条鋳片の電磁攪拌装置。A continuous casting of a multi-section slab, in an electromagnetic stirring device that simultaneously foil-slices the multi-section slab, the core is formed in a rectangular tube having a rectangular cross section and a hollow inside, and each of the cores constituting the core An electric wire connected from a three-phase or two-phase AC power supply is wound on each of the four sides so as to be orthogonal to each piece, and two or more cast slab passages are formed in the hollow portion of the iron core. Stirrer for multi-section slabs in continuous casting. 鋳片鋳型の外周に請求項1記載の電磁撹拌装置を配設したことを特徴とする連続鋳造設備。A continuous casting facility, wherein the electromagnetic stirring device according to claim 1 is disposed on an outer periphery of a slab mold. 鋳片鋳型より下方で、かつ鋳片未凝固部に請求項1記載の電磁撹拌装置を設けたことを特徴とする連続鋳造設備。A continuous casting facility, wherein the electromagnetic stirring device according to claim 1 is provided below a slab mold and in an unsolidified portion of the slab. 鋳片鋳型の外周に請求項1記載の電磁撹拌装置を配設して、一次電磁撹拌部を形成し、該電磁撹拌部の下方で、かつ鋳片未凝固部に請求項1記載の電磁撹拌装置を配設して二次電磁撹拌部を形成したことを特徴とする連続鋳造設備。The electromagnetic stirrer according to claim 1, wherein the electromagnetic stirrer according to claim 1 is disposed on an outer periphery of a slab mold to form a primary electromagnetic stirrer, and the electromagnetic stirrer according to claim 1 below the electromagnetic stirrer and in an unsolidified portion of the slab. A continuous casting facility wherein a secondary electromagnetic stirring section is formed by disposing the apparatus.
JP05777297A 1997-03-12 1997-03-12 Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting Expired - Fee Related JP3588408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05777297A JP3588408B2 (en) 1997-03-12 1997-03-12 Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05777297A JP3588408B2 (en) 1997-03-12 1997-03-12 Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting

Publications (2)

Publication Number Publication Date
JPH10249491A JPH10249491A (en) 1998-09-22
JP3588408B2 true JP3588408B2 (en) 2004-11-10

Family

ID=13065172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05777297A Expired - Fee Related JP3588408B2 (en) 1997-03-12 1997-03-12 Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting

Country Status (1)

Country Link
JP (1) JP3588408B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554165B (en) * 2012-01-10 2014-01-29 辽宁科技大学 Electromagnetic device for stirring metal melt spirally
CN104096813B (en) * 2013-04-12 2016-10-05 宝山钢铁股份有限公司 Magnetic field generator and the electromagnetic mixing apparatus of employing magnetic field generator
CN110315042B (en) * 2019-08-14 2020-09-04 燕山大学 A agitating unit for accurate cupronickel alloy pipe of horizontal continuous casting

Also Published As

Publication number Publication date
JPH10249491A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JPS6048265B2 (en) Electromagnetic stirring induction device for continuous casting
JPS637415Y2 (en)
JP3588408B2 (en) Electromagnetic stirrer and continuous casting equipment for multiple cast slabs in continuous casting
JP3570601B2 (en) Electromagnetic stirrer
IE51298B1 (en) Electromagnetic stirring of molten metal in a casting mould
JP2006289448A (en) Linear-moving magnetic field type electromagnetic-stirring apparatus
EP3849726B1 (en) Electromagnetic stirring device in a mould for casting aluminium or aluminium alloys, stirring method in a mould for casting aluminium or aluminium alloys, mould and casting machine for casting aluminium or aluminium alloys
JPS6355389B2 (en)
JPH0131979B2 (en)
CN214349479U (en) Liquid core electromagnetic stirring device and round billet electromagnetic stirring system
US6843305B2 (en) Method and device for controlling stirring in a strand
EP0036302A1 (en) Electromagnetic stirring apparatus
KR20030016869A (en) A electromagnet stirrer in continuous casting machine
JP2961447B2 (en) Electromagnetic stirring method for continuous casting equipment with multiple strands
GB2079195A (en) Stirring Molten Metal in a Casting Mould
JPS58199651A (en) Method and device for promoting agitation of substance, which is made contain in vessel and melt
JP3501997B2 (en) Method for producing continuous cast slab and electromagnetic stirrer in continuous cast mold
JPS6167546A (en) Electromagnetic stirrer in continuous casting installation
JPS61212456A (en) Electromagnetic stirrer of continuous casting installation
JP3542872B2 (en) Flow controller for molten metal
GB2077161A (en) Stirring molten metal in a casting mould
GB2079196A (en) Stirring Molten Metal in a Casting Mould
JPH0767604B2 (en) Electromagnetic stirring method for continuous casting
JPH0137229B2 (en)
JPS61253152A (en) Separation type electromagnetic stirrer in continuous casting installation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040813

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees