JP3588296B2 - Porous ceramic and vaporizing element using the same - Google Patents

Porous ceramic and vaporizing element using the same Download PDF

Info

Publication number
JP3588296B2
JP3588296B2 JP2000027299A JP2000027299A JP3588296B2 JP 3588296 B2 JP3588296 B2 JP 3588296B2 JP 2000027299 A JP2000027299 A JP 2000027299A JP 2000027299 A JP2000027299 A JP 2000027299A JP 3588296 B2 JP3588296 B2 JP 3588296B2
Authority
JP
Japan
Prior art keywords
vaporizing element
porous
alumina
weight
porous alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000027299A
Other languages
Japanese (ja)
Other versions
JP2001215004A (en
Inventor
裕二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000027299A priority Critical patent/JP3588296B2/en
Publication of JP2001215004A publication Critical patent/JP2001215004A/en
Application granted granted Critical
Publication of JP3588296B2 publication Critical patent/JP3588296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Description

【0001】
【発明の属する技術分野】
本発明は、各種フィルターや担持体として用いられる多孔質アルミナセラミックス、特には石油ファンヒータ等の液体燃料気化式燃焼装置の気化器に用いられる気化素子に関するものである。
【0002】
【従来の技術】
石油ファンヒータ等の液体燃料気化式燃焼装置では、気化器によって、液体燃料を気化させ、これをバーナーで燃焼するようになっている。
【0003】
気化器の構造は、図3に示すように、気化素子10を内蔵した気化室20に、液体燃料を供給する送油パイプ21と気化した燃料をバーナー23へ送るためのノズル22を備えたものである。気化素子10は多孔質の円筒状体であり、予熱器24によって気化素子10を加熱しながら送油パイプ21より供給した液体燃料を滴下すれば、液体燃料は気化素子10に拡散吸収されて蒸発気化し、ノズル22からバーナー23に供給されて燃焼するようになっている。
【0004】
また、気化素子10の材質としては、以前は焼結金属等の多孔質金属が使用されていたが、近年では耐熱性、耐食性に優れたアルミナ等の多孔質セラミックスが広く用いられている(特開平4−43206号公報等参照)。
【0005】
【発明が解決しようとする課題】
ところが、上記気化素子10を形成する多孔質アルミナセラミックスは熱伝導率が2.5W/mKと低いため、使用開始時に気化素子10が気化温度に到達して点火可能となるまでの時間が長いだけでなく、熱効率が悪いため消費電力が大きいという問題があった。また、熱伝導率が低いため、気化素子10全体に熱ムラが生じ、長期使用中に気化素子l0の一部に液体燃料がタール化して付着してしまうという不都合もあった。
【0006】
【課題を解決するための手段】
そこで本発明者はこれらに鑑みて、90重量%以上のアルミナと、0.1〜5重量%の酸化鉄を含有し、平均気孔径を0.4〜200μmとして多孔質アルミナセラミックスを形成し、更にこれを用いて気化素子を形成したものである。
【0007】
本発明によれば、多孔質アルミナセラミックスに所定量の酸化鉄を含有させたことによって、熱伝導率を大幅に向上させることができる。そのため、この多孔質アルミナセラミックスを気化素子に用いれば、気化温度に到達するまでの時間を短くし、熱効率を高くできる。しかも、熱ムラをなくして燃料のタール化を防止することができるものである。
【0008】
【発明の実施の形態】
以下本発明の実施形態を石油ファンヒータの気化素子を例にとって図を用いて説明する。
【0009】
気化器の構造は、図3に示すように、気化素子10を内蔵した気化室20に、液体燃料を供給する送油パイプ21と気化した燃料をバーナー23へ送るためのノズル22を備えたものである。気化素子10は多孔質の円筒状体であり、いま予熱器24によって気化素子10を加熱しながら送油パイプ21より供給した液体燃料を滴下すれば、液体燃料は気化素子10に拡散吸収されて蒸発気化し、ノズル22からバーナー23に供給されて燃焼するようになっている。
【0010】
図1に示すように、気化素子10は多孔質アルミナセラミックスからなる円筒状体であり、この多孔質アルミナセラミックスは、90重量%以上のアルミナ(Al)を主成分とし、0.1〜5重量%の酸化鉄(Fe)を含有し、平均気孔径を0.4〜200μmとしたものである。
【0011】
この多孔質アルミナセラミックスの製造方法は、まずアルミナ原料を2000℃程度で溶融させたものを粉砕してアルミナ原料粒子とし、これに上記範囲の酸化鉄粉末及びガラス成分を添加し、押出成形やプレス成形によって円筒形状に成形した後、切削加工する。そして、この成形体を所定条件で焼成することによって、各アルミナ粒子をガラス成分で結合した焼結体を得ることができ、最後に所定の寸法となるように研削加工を施せばよい。
【0012】
このようにして得られた多孔質アルミナセラミックスは、図2に概略の結晶構造を示すように、各アルミナ粒子11がガラス成分12によって部分的に結合し、その隙間に互いに連通する気孔14が形成された構造となる。
【0013】
また、添加した酸化鉄13はアルミナ粒子11の表面に存在して、多孔質アルミナセラミックス全体の熱伝導率を向上させる働きを成す。そして、酸化鉄13の含有量を0.1〜5重量%とすることによって多孔質アルミナセラミックスの熱伝導率を21W/mK程度と大幅に向上させることができる。
【0014】
したがって、この多孔質アルミナセラミックスで構成した気化素子10は熱伝導率を向上できるため、図3に示す気化器に用いれば、気化温度までの到達時を短くできるだけでなく、熱効率が向上し、気化素子10全体の熱ムラがなくなることにより、液体燃料がタール化して付着することを防止できる。また、滴下した液体原料は気化素子10の気孔14に拡散吸収され、良好に気化させることができる。
【0015】
なお、気化素子10を構成する多孔質アルミナセラミックスの組成を上記範囲に限定したのは、アルミナが90重量%未満では強度等の機械的特性が低くなってしまい、取扱時に破損しやすくなるためである。また、酸化鉄については、一般的なアルミナ原料中には不純物として微量に含まれているものであるが、0.1重量%未満では熱伝導率を向上させる効果に乏しく、一方5重量%を超えると成形性が悪くなりまた気孔を塞いでしまうため、0.1〜5重量%の範囲が良い。
【0016】
さらに、この多孔質アルミナセラミックスは、上記成分以外に、ガラス成分あるいは不純物として、SiO、MgO、CaO等を15重量%以下の範囲で含んでいる。
【0017】
また、多孔質アルミナセラミックスの平均気孔径を0.4〜200μmとしたのは、0.4μm未満では燃料を気孔14に拡散吸収させる効果に乏しく、一方200μmを超えると強度が低下してしまうためである。なお、平均気孔径は、上記製造工程における粉砕後のアルミナ原料粒子の粒径で決定され、上記範囲とするためにはアルミナセラミックスの原料粒子の平均径を1〜500μmの範囲内とすれば良い。
【0018】
さらに、上記多孔質アルミナセラミックスの気孔率は30〜45%程度の範囲内とし、吸水率は15〜20%の範囲内とすることが好ましい。また、多孔質アルミナセラミックスの3点曲げ強度は200〜400kg/cmの範囲内とすることが好ましい。
【0019】
以上の例では円筒形状の気化素子10についてのみ述べたが、気化素子10の形状は角筒状、柱状、板状などさまざまな形状とすることができる。また、本発明の気化素子10は、石油ファンヒータに限らず、その他の液体燃料燃焼装置に好適に使用することができる。
【0020】
さらに、本発明の多孔質アルミナセラミックスは、気化素子10以外のさまざまな用途にも使用することができる。
【0021】
例えば、その他の用途として、エアースライダーにおける気体噴出部材、各種フィルター、薬品や香料等の担持体、液状蚊取り器の吸い上げ芯、加熱用吸着プレート、バイオリアクター、バッチ用エアレーションフィルター等として使用することができる。
【0022】
【実施例】
(実験例1)
上述した本発明の多孔質アルミナセラミックスにより石油ファンヒータ用の気化素子10を作製した。
【0023】
平均粒径が180μmのアルミナ原料粒子を用い、最終的な組成がアルミナ92重量%、酸化鉄1.0重量%、残部がガラス成分となるように原料を調合し、これを円筒状に成形して、焼成し、研削加工を施すことによって外径13mm、全長70mmの気化素子10を作製した。この気化素子10の平均気孔径は90μm、気孔率は37%であった。
【0024】
一方、比較例として、酸化鉄を添加せずに、その他は全く上記と同様にして気化素子10を作製した。
【0025】
それぞれの気化素子10の熱伝導率を測定し、また図3に示すような気化器に実装してスイッチを入れてから気化温度に到達して点火可能となるまでの時間を測定した。
【0026】
結果を表1に示すように、本発明実施例では、熱伝導率を大幅に向上させることができ、その結果点火可能となるまでの時間を大幅に短縮できることがわかる。
【0027】
【表1】

Figure 0003588296
【0028】
(実験例2)
次に、上記製造工程におけるアルミナ原料粒子の粒径やアルミナ含有量等を変化させて、平均気孔径等の異なるさまざまな多孔質アルミナセラミックスを作製した。
【0029】
その特性を表2に示すように、アルミナ原料粒子の粒径を小さくすれば平均気孔径を小さくすることができ、平均気孔径0.4〜200μmで、気孔率30〜45%の多孔質アルミナセラミックスを得ることができた。また、いずれも3点曲げ強度が200〜400kg/cmであり、通常の取扱時に破損等が生じることはなかった。
【0030】
なお、表2において、平均気孔径とは、多孔質アルミナセラミックスの開気孔径を水銀圧入法によって測定した時の平均値(累積50%値)のことである。またアルミナ原料粒径とは、多孔質体を構成するアルミナ原料の平均粒径のことである。
【0031】
さらに、嵩比重、見掛比重、吸水率、気孔率とは、
嵩比重=多孔質体重量/(多孔質体物質部分の容積+気孔部分の容積)
見掛比重=多孔質体重量/多孔質体物質部分の容積
吸水率=気孔内に侵入する水の重量/多孔質体重量×100(%)
気孔率=気孔部分の容積/(多孔質体物質部分の容積+気孔部分の容積)×100(%)
によって、それぞれ定義される値である。
【0032】
【表2】
Figure 0003588296
【0033】
【発明の効果】
以上のように本発明によれば、90重量%以上のアルミナと、0.1〜5重量%の酸化鉄を含有し、平均気孔径を0.4〜200μmとして多孔質アルミナセラミックスを構成したことによって、機械的特性や耐熱性等の特性を維持したまま熱伝導率を大幅に向上させた多孔質アルミナセラミックスを得ることができる。
【0034】
また、本発明によれば、上記多孔質アルミナセラミックスで気化素子を構成したことによって、熱伝導率が高いために点火可能となるまでの到達時間を短くすることができるとともに、熱効率を高くして消費電力を小さくできる。また、熱ムラをなくして燃料のタール化を防止できることから、長期間良好に使用することが可能となるなど、優れた特長を有する気化素子を提供できる。
【図面の簡単な説明】
【図1】本発明の気化素子を示す斜視図である。
【図2】本発明の多孔質アルミナセラミックスの結晶構造を示す概略図である。
【図3】一般的な石油ファンヒータ用気化器を示す概略図である。
【符号の説明】
10:気化素子
11:アルミナ粒子
12:ガラス成分
13:酸化鉄
14:気孔
20:気化室
21:送油パイプ
22:ノズル
23:バーナー
24:予熱器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous alumina ceramic used as various filters and supports, and more particularly to a vaporizing element used in a vaporizer of a liquid fuel vaporizing combustion device such as a petroleum fan heater.
[0002]
[Prior art]
In a liquid fuel vaporization type combustion device such as an oil fan heater, a liquid fuel is vaporized by a vaporizer and burned by a burner.
[0003]
As shown in FIG. 3, the structure of the vaporizer is provided with an oil feed pipe 21 for supplying a liquid fuel and a nozzle 22 for feeding the vaporized fuel to a burner 23 in a vaporization chamber 20 containing a vaporizing element 10. It is. The vaporizing element 10 is a porous cylindrical body. If the liquid fuel supplied from the oil supply pipe 21 is dropped while heating the vaporizing element 10 by the preheater 24, the liquid fuel is diffused and absorbed by the vaporizing element 10 and evaporates. It is vaporized and supplied from the nozzle 22 to the burner 23 for combustion.
[0004]
As a material of the vaporizing element 10, porous metal such as sintered metal has been used before, but in recent years, porous ceramics such as alumina having excellent heat resistance and corrosion resistance have been widely used. See Japanese Unexamined Patent Publication No. Hei 4-43206).
[0005]
[Problems to be solved by the invention]
However, since the porous alumina ceramics forming the vaporizing element 10 has a low thermal conductivity of 2.5 W / mK, it takes only a long time for the vaporizing element 10 to reach the vaporization temperature and become ignitable at the start of use. In addition, there is a problem that power consumption is large due to poor thermal efficiency. In addition, since the thermal conductivity is low, heat unevenness occurs in the entire vaporizing element 10, and there is a disadvantage that the liquid fuel is tarified and adheres to a part of the vaporizing element 10 during long-term use.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventor has formed porous alumina ceramics containing 90% by weight or more of alumina and 0.1 to 5% by weight of iron oxide and having an average pore diameter of 0.4 to 200 μm. Further, a vaporizing element is formed by using this.
[0007]
According to the present invention, the thermal conductivity can be significantly improved by including a predetermined amount of iron oxide in the porous alumina ceramics. Therefore, if this porous alumina ceramic is used for a vaporizing element, the time required to reach the vaporizing temperature can be shortened, and the thermal efficiency can be increased. In addition, the fuel can be prevented from tarring by eliminating heat unevenness.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a vaporizing element of an oil fan heater as an example.
[0009]
As shown in FIG. 3, the structure of the vaporizer is provided with an oil feed pipe 21 for supplying a liquid fuel and a nozzle 22 for feeding the vaporized fuel to a burner 23 in a vaporization chamber 20 containing a vaporizing element 10. It is. The vaporizing element 10 is a porous cylindrical body. If the liquid fuel supplied from the oil supply pipe 21 is dropped while heating the vaporizing element 10 by the preheater 24, the liquid fuel is diffused and absorbed by the vaporizing element 10. The fuel is vaporized and supplied from the nozzle 22 to the burner 23 for combustion.
[0010]
As shown in FIG. 1, the vaporizing element 10 is a cylindrical body made of porous alumina ceramics. The porous alumina ceramics contains 90% by weight or more of alumina (Al 2 O 3 ) as a main component, and 0.1% by weight. It contains about 5% by weight of iron oxide (Fe 2 O 3 ) and has an average pore diameter of 0.4 to 200 μm.
[0011]
The method for producing porous alumina ceramics is as follows. First, a material obtained by melting an alumina raw material at about 2000 ° C. is pulverized into alumina raw material particles, and iron oxide powder and a glass component in the above range are added thereto, and extrusion molding or pressing is performed. After forming into a cylindrical shape by molding, cutting is performed. Then, by firing this molded body under predetermined conditions, it is possible to obtain a sintered body in which each alumina particle is bonded with a glass component, and finally, it is sufficient to perform a grinding process to have a predetermined size.
[0012]
In the porous alumina ceramics thus obtained, as shown in a schematic crystal structure in FIG. 2, the alumina particles 11 are partially bonded by the glass component 12, and pores 14 communicating with each other are formed in the gaps. The structure is as follows.
[0013]
The added iron oxide 13 is present on the surface of the alumina particles 11 and functions to improve the thermal conductivity of the entire porous alumina ceramic. By setting the content of the iron oxide 13 to 0.1 to 5% by weight, the thermal conductivity of the porous alumina ceramic can be greatly improved to about 21 W / mK.
[0014]
Therefore, since the vaporization element 10 made of the porous alumina ceramic can improve the thermal conductivity, if it is used for the vaporizer shown in FIG. 3, not only can the time to reach the vaporization temperature be shortened, but also the thermal efficiency improves, Since the heat unevenness of the entire element 10 is eliminated, it is possible to prevent the liquid fuel from being tarified and adhered. Further, the dropped liquid raw material is diffused and absorbed in the pores 14 of the vaporizing element 10 and can be well vaporized.
[0015]
The reason why the composition of the porous alumina ceramic constituting the vaporizing element 10 is limited to the above range is that if the alumina content is less than 90% by weight, mechanical properties such as strength are reduced and the material is easily broken during handling. is there. In addition, iron oxide is contained in trace amounts as impurities in general alumina raw materials. However, if it is less than 0.1% by weight, the effect of improving thermal conductivity is poor. If the amount exceeds the above range, the moldability deteriorates and pores are closed, so that the range of 0.1 to 5% by weight is good.
[0016]
Further, in addition to the above components, the porous alumina ceramic contains 15% by weight or less of SiO 2 , MgO, CaO and the like as glass components or impurities.
[0017]
The reason why the average pore diameter of the porous alumina ceramics is set to 0.4 to 200 μm is that the effect of diffusing and absorbing the fuel into the pores 14 is poor when the average diameter is less than 0.4 μm, and the strength is reduced when the average diameter exceeds 200 μm. It is. Incidentally, the average pore diameter is determined by the particle size of the alumina raw material particles after pulverization in the above manufacturing process, in order to make the above range, the average diameter of the raw material particles of alumina ceramics may be in the range of 1 to 500 μm. .
[0018]
Further, the porosity of the porous alumina ceramic is preferably in the range of about 30 to 45%, and the water absorption is preferably in the range of 15 to 20%. Further, the three-point bending strength of the porous alumina ceramic is preferably in the range of 200 to 400 kg / cm 2 .
[0019]
Although only the cylindrical vaporizing element 10 has been described in the above example, the vaporizing element 10 can have various shapes such as a rectangular tube, a column, and a plate. Further, the vaporizing element 10 of the present invention can be suitably used not only for the oil fan heater but also for other liquid fuel combustion devices.
[0020]
Further, the porous alumina ceramics of the present invention can be used for various uses other than the vaporization element 10.
[0021]
For example, as other uses, it can be used as a gas ejection member in an air slider, various filters, a carrier for chemicals and fragrances, a suction core of a liquid mosquito trap, a heating adsorption plate, a bioreactor, a batch aeration filter, and the like. it can.
[0022]
【Example】
(Experimental example 1)
A vaporizing element 10 for a petroleum fan heater was manufactured from the above-described porous alumina ceramics of the present invention.
[0023]
Using alumina raw material particles having an average particle diameter of 180 μm, raw materials were prepared so that the final composition was 92% by weight of alumina, 1.0% by weight of iron oxide, and the remainder was a glass component, and this was formed into a cylindrical shape. Then, it was baked and subjected to a grinding process to produce the vaporized element 10 having an outer diameter of 13 mm and a total length of 70 mm. The average pore diameter of the vaporizing element 10 was 90 μm, and the porosity was 37%.
[0024]
On the other hand, as a comparative example, a vaporization element 10 was produced in the same manner as described above except that iron oxide was not added.
[0025]
The thermal conductivity of each vaporizing element 10 was measured, and the time from when it was mounted on a vaporizer as shown in FIG. 3 and when the switch was turned on until the vaporization temperature was reached and ignition was possible was measured.
[0026]
As shown in Table 1, it can be seen that in the example of the present invention, the thermal conductivity can be greatly improved, and as a result, the time until ignition becomes possible can be greatly reduced.
[0027]
[Table 1]
Figure 0003588296
[0028]
(Experimental example 2)
Next, various porous alumina ceramics having different average pore diameters and the like were produced by changing the particle size of the alumina raw material particles, the alumina content, and the like in the above-described production process.
[0029]
As shown in Table 2, the average pore diameter can be reduced by reducing the particle size of the alumina raw material particles. The porous alumina having an average pore diameter of 0.4 to 200 μm and a porosity of 30 to 45% is obtained. Ceramics could be obtained. In addition, the three-point bending strength was 200 to 400 kg / cm 2 , and there was no breakage during normal handling.
[0030]
In Table 2, the average pore diameter is an average value (cumulative 50% value) when the open pore diameter of the porous alumina ceramics is measured by a mercury intrusion method. Further, the alumina raw material particle size is an average particle size of the alumina raw material constituting the porous body.
[0031]
Furthermore, bulk specific gravity, apparent specific gravity, water absorption, and porosity are:
Bulk specific gravity = weight of porous material / (volume of porous material portion + volume of pore portion)
Apparent specific gravity = weight of porous body / volume water absorption of porous material portion = weight of water penetrating into pores / weight of porous body × 100 (%)
Porosity = volume of pore portion / (volume of porous material portion + volume of pore portion) × 100 (%)
Is a value defined by
[0032]
[Table 2]
Figure 0003588296
[0033]
【The invention's effect】
As described above, according to the present invention, a porous alumina ceramic containing 90% by weight or more of alumina and 0.1 to 5% by weight of iron oxide and having an average pore diameter of 0.4 to 200 μm is formed. As a result, a porous alumina ceramic having significantly improved thermal conductivity can be obtained while maintaining characteristics such as mechanical characteristics and heat resistance.
[0034]
Further, according to the present invention, by constituting the vaporizing element with the porous alumina ceramics, it is possible to shorten the arrival time until ignition becomes possible due to high thermal conductivity, and to increase thermal efficiency. Power consumption can be reduced. Further, since the fuel can be prevented from tarring by eliminating heat unevenness, it is possible to provide a vaporizing element having excellent features such as being able to be used favorably for a long period of time.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a vaporizing element of the present invention.
FIG. 2 is a schematic view showing a crystal structure of a porous alumina ceramic of the present invention.
FIG. 3 is a schematic view showing a general vaporizer for a petroleum fan heater.
[Explanation of symbols]
10: Vaporization element 11: Alumina particles 12: Glass component 13: Iron oxide 14: Pores 20: Vaporization chamber 21: Oil supply pipe 22: Nozzle 23: Burner 24: Preheater

Claims (2)

90重量%以上のアルミナと、0.1〜5重量%の酸化鉄を含有し、平均気孔径が0.4〜200μmである多孔質セラミックス。A porous ceramic containing 90% by weight or more of alumina and 0.1 to 5% by weight of iron oxide and having an average pore diameter of 0.4 to 200 µm. 気化させた液体燃料をバーナーで燃焼するようにした液体燃料気化式燃焼装置等に用いられる気化素子において、請求項1に記載の多孔質セラミックスで形成したことを特徴とする気化素子。A vaporization element used in a liquid fuel vaporization type combustion device or the like in which a vaporized liquid fuel is burned by a burner, wherein the vaporization element is formed of the porous ceramic according to claim 1.
JP2000027299A 2000-01-31 2000-01-31 Porous ceramic and vaporizing element using the same Expired - Fee Related JP3588296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027299A JP3588296B2 (en) 2000-01-31 2000-01-31 Porous ceramic and vaporizing element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027299A JP3588296B2 (en) 2000-01-31 2000-01-31 Porous ceramic and vaporizing element using the same

Publications (2)

Publication Number Publication Date
JP2001215004A JP2001215004A (en) 2001-08-10
JP3588296B2 true JP3588296B2 (en) 2004-11-10

Family

ID=18552887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027299A Expired - Fee Related JP3588296B2 (en) 2000-01-31 2000-01-31 Porous ceramic and vaporizing element using the same

Country Status (1)

Country Link
JP (1) JP3588296B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086810B2 (en) * 2017-11-09 2022-06-20 日本工機株式会社 Combustion device and bonfire device

Also Published As

Publication number Publication date
JP2001215004A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
EP1364928B1 (en) Honeycomb structure
WO2008032391A1 (en) Process for producing honeycomb structure and raw-material composition for burnt honeycomb
JP5167073B2 (en) Silica container and method for producing the same
WO2008032390A1 (en) Process for producing honeycomb structure
CN105294140A (en) Porous ceramics preparation method, porous ceramics and application thereof
US8871676B2 (en) Method for making porous acicular mullite-containing composites
US20200222891A1 (en) Electrically heated catalyst
CN113349454A (en) Ceramic atomizing core and preparation method thereof
CN115124323B (en) Porous ceramic heating element and preparation method thereof
JP3588296B2 (en) Porous ceramic and vaporizing element using the same
WO2002038513A1 (en) Pollucite-based ceramic with low cte
WO2024027365A1 (en) Atomizing core and electronic atomization device
CN100519476C (en) Super high temperature molybdenum disilicide zirconia composite heating element and its preparation method
JP2010189205A (en) Silica container and method for manufacturing the same
CN113773065A (en) Porous ceramic matrix with high liquid absorption rate and heating element
CN101224361A (en) Spumy ceramic filter capable of high slag resistance and thermal stability, and fabricating method thereof
CN210492619U (en) Atomizer and electronic cigarette cartridge
JP2728457B2 (en) Method for producing sintered conductive silicon carbide porous body
CN113349451A (en) Electronic cigarette ceramic heating body based on open pore firing forming and preparation method
CN113354289A (en) Lead-free porous material and preparation method and application thereof
JPH01194916A (en) Production of silicon carbide honeycomb filter
CN117882893A (en) Porous ceramic body, preparation method thereof, heating component, atomizer and electronic atomization device
CN218650315U (en) Atomizing core and electronic atomization device
CN215075546U (en) Electron cigarette ceramic heating body based on shaping is fired to trompil
JP2724819B2 (en) Ceramic plate for vaporization

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees