JP3588272B2 - Density measuring device - Google Patents

Density measuring device Download PDF

Info

Publication number
JP3588272B2
JP3588272B2 JP16226999A JP16226999A JP3588272B2 JP 3588272 B2 JP3588272 B2 JP 3588272B2 JP 16226999 A JP16226999 A JP 16226999A JP 16226999 A JP16226999 A JP 16226999A JP 3588272 B2 JP3588272 B2 JP 3588272B2
Authority
JP
Japan
Prior art keywords
density
pressure
differential pressure
pipe
straight pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16226999A
Other languages
Japanese (ja)
Other versions
JP2000346777A (en
Inventor
達也 市原
義和 吉備
俊彦 野中
博幸 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Azbil Corp
Original Assignee
Sumitomo Metal Industries Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Azbil Corp filed Critical Sumitomo Metal Industries Ltd
Priority to JP16226999A priority Critical patent/JP3588272B2/en
Publication of JP2000346777A publication Critical patent/JP2000346777A/en
Application granted granted Critical
Publication of JP3588272B2 publication Critical patent/JP3588272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、立ち上げ、停止、定常運転が比較的頻繁に行われるプロセスに用いて好適な密度測定装置に関するものである。
【0002】
【従来の技術】
本出願人の一人は、先に、特願平3−159946号(特公平8−10186号)として、密度計を提案した。この密度計では、流体が流れる垂直管の上下位置からその差圧を検出し、この検出差圧に基づいて流体の密度を測定するようにしている。
【0003】
図2にその原理図を示す。同図において、101は垂直管、102,103は所定距離Lの高低差をもって垂直管101より分岐された枝管であり、枝管102,103にダイアフラムシール差圧計のダイアフラム104,105が取り付けられている。この垂直管101内を図示矢印方向に流体が流れる。この場合、ダイアフラム104からの検出圧力とダイアフラム105からの検出圧力との差圧Δp(Δp=γ・L)を検出することにより、被測定流体の密度γを測定することができる。
【0004】
この場合、上下2箇所のダイアフラム104,105間で検出される差圧Δpには、流体の圧力損失も含まれるので、流入側の管路に絞り101aを設け、流速を一時的に速め、流体の静圧降下を一時的に生じさせるようにしている。ここで、圧力損失と静圧降下とが等しくなるように絞り101aを選ぶと、検出差圧Δpには圧力損失が含まれなくなるので、流速により変動の生じない密度の測定が可能となる。この密度計では、絞り101aが正確に作製されていることをその要件とする。そうでないと、密度の測定精度に大きな誤差が生じ、使いものにならなくなる。このため、垂直管101としては、絞り101aを高精度で作製し得る金属製とすることが望まれる。
【0005】
【発明が解決しようとする課題】
しかしながら、この密度計において、流体として金属に対して腐食性を有する液体、例えば塩酸や硝酸などの密度を測定しようとした場合、垂直管101の材質としてそれに耐え得るものが求められる。例えば、プラスチックなどの樹脂を用いたり、ライニングを施した管を用いることが考えられる。しかし、このような管に高精度の絞りを設けることは困難である。また、熱膨張係数も一般的に樹脂は大きいので、絞りの精度に影響を与える。なお、垂直管101の材質として耐酸性用金属を用いることも考えられるが、高価となる。
【0006】
最近では、絞りを設けない密度計として、配管の損失を測定するための第1の差圧計と、この配管に連結された同径の垂直管に取り付けられた密度を測定するための第2の差圧計とを用いた密度計が提案されている。この密度計によれば、流速の変動などの損失成分をキャンセルし、追従性の良い密度信号を発信することが可能である。また、絞りがないため、流体抵抗が少なくて済み、かつ汚れなどの付着の心配も少なく、樹脂の使用が可能となる。
【0007】
しかし、この密度計では、流速の影響をキャンセルすることができるものの、その測定精度はあまり期待できない。例えば、鋼板の洗浄用に用いられる塩酸の濃度制御を行う場合、立ち上げ時や停止時には非常に良い追従性を示すものの、ある程度濃度制御が効いてきて濃度が安定してきたような時(定常運転時)には、測定精度が不十分となる。
【0008】
本発明はこのような課題を解決するためになされたもので、その目的とするところは、樹脂製の管を用い、プロセスの立ち上げ時や停止時だけではなく、定常運転時にも精度よく、金属に対して腐食性を有する流体の密度を測定することの可能な密度測定装置を提供することにある。
【0009】
【課題を解決するための手段】
このような目的を達成するために本発明は、密度変化の大きい時は、径の小さい水平直管および垂直直管にその圧力検出部を取り付けた第1および第2の差圧検出手段からの検出差圧に基づいて被測定流体の密度を測定し、密度変化の小さい時は、水平直管および垂直直管よりも径の十分大きい垂直管にその圧力検出部を取り付けた第3の差圧検出手段からの検出差圧に基づいて被測定流体の密度を測定するようにしたものである。
この発明によれば、密度変化の大きい時、すなわちプロセスの立ち上げ時や停止時には、径の小さい水平直管および垂直直管からの検出差圧に基づいて追従性よく被測定流体の密度が測定される。これに対し、密度変化の小さい時、すなわちプロセスの定常運転時には、径の十分大きい垂直管(槽)からの検出差圧に基づいて精度良く被測定流体の密度が測定される。
【0010】
【発明の実施の形態】
以下、本発明を実施の形態に基づき詳細に説明する。図1(a)はこの発明に係る密度測定装置を用いたプロセスの要部を示す側面図である。同図において、1は横配管(水平直管)、2は横配管1と連結された縦配管(垂直直管)、3は縦配管2と連結された槽(垂直管)である。これら横配管1,縦配管2,槽3内を図示矢印A方向へ塩酸が流れる。すなわち、被測定流体である塩酸が流入口4より流入し、横配管1を通り、続いて縦配管2を通り、最後に槽3を通って流出口5より流出する。
【0011】
横配管1と縦配管2とはその径が同径d2とされており、槽3は横配管1および縦配管2の径d2よりも十分に大きな径d1(d1>>d2)、例えばd1=4d2とされている。このd1とd2の関係は測定精度に関係するが、d1=4d2程度であれば、十分であると言える。また、横配管1,縦配管2,槽3は、耐酸性樹脂とされている。
【0012】
横配管1,縦配管2および槽3にはそれそれ差圧を検出する目的で枝管が2箇所ずつ設けられている。両枝管の間隔は所定距離Lだけ離れている。すなわち、横配管1には、この横配管1を下側から見た部分平面図を図1(b)に示すように、枝管31と32とが設けられており、この枝管31と32との水平方向の間隔が所定距離Lとされている。縦配管2には、枝管21と22とが設けられており、この枝管21と22との垂直方向の間隔が所定距離Lとされている。槽3には、枝管11と12とが設けられており、この枝管11と12との垂直方向の間隔が所定距離Lとされている。
【0013】
そして、横配管1の枝管31および32に耐塩酸用金属製のダイアフラム61および62を組み付け、上流側ダイアフラム61で圧力P31を、下流側ダイアフラム62で圧力P32を検出し、この検出圧力P31およびP32を封入液を介して差圧計本体6へ与え、検出圧力P31とP32との差圧Δp3(Δp3=P31−P32)を検出するようにしている。
【0014】
また、縦配管1の枝管21および22に耐塩酸用金属製のダイアフラム71および72を組み付け、上流側ダイアフラム71で圧力P21を、下流側ダイアフラム72で圧力P22を検出し、この検出圧力P21およびP22を封入液を介して差圧計本体7へ与え、検出圧力P21とP22との差圧Δp2(Δp2=P21−P22)を検出するようにしている。
【0015】
また、槽3の枝管11および12に耐塩酸用金属製のダイアフラム81および82を組み付け、上流側ダイアフラム81で圧力P11を、下流側ダイアフラム82で圧力P12を検出し、この検出圧力P11およびP12を封入液を介して差圧計本体8へ与え、検出圧力P11とP12との差圧Δp1(Δp1=P11−P12)を検出するようにしている。
【0016】
〔密度測定原理〕
内径dの管内を流体が流れる間に生じる2地点間の差圧Δpは下記(1)式で計算できる。
Δp=λγνL/(2d)+hγ ・・・・(1)
ここで、λは損失係数、γは流体の密度、νは流速、Lは2地点間の水平距離、hは2地点間の垂直距離。
【0017】
容積流量Qが内径daの管(第1の管)から内径dbの管(第2の管)へと流れ込む時、第2の管内での流速νは第1の管の内径daと第2の管の内径dbによって変わり、第1の管内での流速をνとすると、下記(2)式で計算できる。
ν=(da/db)ν ・・・・(2)
また、流体が距離Lを通過するのに要する時間tは下記(3)式として計算できる。
t=L/ν ・・・・(3)
【0018】
〔槽3に生じる差圧Δp1からの密度測定〕
ここで、槽3に生じる差圧Δp1について検討してみる。
槽3に生じる差圧Δp1は、上記(1)式により下記(4)式として表される。
Δp1=λγν L/(2d1)+hγ ・・・・(4)
また、槽3内の流速νは、上記(2)式により下記(5)式として表される。
ν=(d2/d1)ν ・・・・(5)
【0019】
(4)式に(5)式を代入すると下記(6)式として表される。
Δp1=λγL〔(d2/d1)ν/(2d1)+hγ ・・・・(6)
この(6)式において、d1>>d2のとき、この(6)式は近似的に次の(7)式とみなせる。
Δp1≒hγ ・・・・(7)
この(7)式の垂直距離hは一定値(h=L)なので、塩酸の密度γが変化するとΔp1が変化する。したがって、このΔp1の変化から塩酸の密度γを知ることができる。
【0020】
槽3内において塩酸が枝管81,82間を通過する時間t1は、上記(3)式により、t1=L/νとして計算できる。この場合、槽3内の流速νとして上記(5)式を代入すれば、下記(8)式として表される。
t1=L/〔(d2/d1)ν〕=L(d1/d2)/ν ・・・・(8)
【0021】
この場合、d1≧d2であるので、通過時間t1は大きな値となる。この差圧Δp1の変化をみる方式では、密度変化がなく、ほとんど安定し、緩やかに変化する場合、(7)式から分かるように、不確定要因がないので高精度で密度の測定を行うことができるという長所を有する。しかし、塩酸の密度変化が短時間で起きる場合、これに追随してその密度を迅速に測定することは困難であり、これが短所となる。
【0022】
〔縦配管2に生じる差圧Δp2および横配管1に生じる差圧Δp3からの密度測定〕
次に、縦配管2に生じる差圧Δp2について検討してみる。
縦配管2に生じる差圧Δp2は、上記(1)式より下記(9)式として表される。
Δp2=λγν L/(2d2)+hγ ・・・・(9)
この場合、d1>>d2なので、上記(9)式は先の(7)式のように表すことはできない。従って、差圧Δp2を測定し、これから密度γを測定することはできない。
【0023】
しかし、横配管1に生じる差圧Δp3を使えば、先の(7)式のように変えることができる。すなわち、差圧Δp3はh=0なので、下記(10)式として表される。
Δp3=λγν L/(2d2) ・・・・(10)
ここで、Δp2とΔp3との差を求めると、
Δp2−Δp3=λγν L/(2d2)+hγ−λγν L/(2d2)=hγ ・・・・(11)
となり、(7)式と同様になる。この(11)式の垂直距離hは一定値(h=L)なので、塩酸の密度γが変化するとΔp2−Δp3が変化する。したがって、このΔp2−Δp3の差の変化から塩酸の密度γを知ることができる。
【0024】
縦配管2において塩酸が枝管71,72間を通過する時間t2は、上記(3)式により、t2=L/νとして計算できる。横配管3において塩酸が枝管61,62間を通過する時間t3は、上記(3)式により、t3=L/νとして計算できる。したがって、横配管1と縦配管2の両枝管を通過する時間t12は、t12=2L/νとして表される。
【0025】
この場合、ν>>νなので、通過時間t12は短い。この差圧Δp2とΔp3との差の変化をみる方式では、塩酸の密度変化が短時間で起きる場合、これに追随してその密度を迅速に測定することができるという長所を有する。しかし、差圧Δp2,Δp3を測定して、それを更に引き算して密度信号とするので、不確定要因がその分多く、槽3に生じる差圧Δp1の変化から密度を測定する方式と比較し、精度が悪く、これが短所となる。
【0026】
塩酸の密度を所定の密度に制御するとき、運転開始時は制御幅の変動が多く頻発するので、密度の追跡は素早く行わなければならない。その後、制御系が安定し、塩酸を希釈する制御が定常化すると密度測定の素早い応答は必要なくなり、むしろ密度の高精度測定が必要となる。また、運転停止時には、制御が不安定となるので、密度の追跡は素早く行わなければならない。
【0027】
そこで、本実施の形態では、密度変化の大きい時、すなわち運転開始時や運転停止時(プロセスの立ち上げ時や停止時)には、径の小さい縦配管2に生じる差圧Δp2と横配管1に生じる差圧Δp3との差の変化をみる方式を採用することにより、追従性よく塩酸の密度を測定する。これに対し、密度変化の小さい時、すなわち塩酸を希釈する制御が定常化した時(プロセスの定常運転時)には、径の十分大きい槽3に生じる差圧Δp1の変化をみる方式を採用することにより、精度良く塩酸の密度を測定する。これにより、立ち上げ時や停止時のみではなく、定常運転時にも、精度よく塩酸の密度を測定することができるようになる。
【0028】
なお、この実施の形態では、金属に対して腐食性を有する流体として塩酸の密度測定を行う場合について説明したが、金属に対して腐食性を有さない流体も含めて他の流体の密度測定を行うことも可能である。本実施の形態では、高精度の絞りを必要としないので、横配管1,縦配管2,槽3として樹脂材料の使用が可能であり、塩酸や硝酸などの金属に対して腐食性を有する流体の密度測定を行う場合、高価な耐酸性用金属を用いなくとも安価な耐酸性用樹脂で対応することができる点で優れている。
【0029】
樹脂を使用する場合、材料強度上、構造強度に不安のないことが望まれる。特に、差圧式密度計では、上下に差圧を取り出すための枝管が必要で、流れを安定させるために必要な上流の直管距離を配慮すると背の高い構造になる。これでは、構造強度上、不安定である。また、流体は塩酸なので、装置の破損による流体洩れは絶対に許されない。この装置では、この点を考慮して、次のような工夫が施されている。
【0030】
Δp1について、(5)式から分かるとおり、管内径がd1>>d2としてあることで流速は非常に遅い。それ故、槽3の上流直管距離が無くても、それによる密度測定誤差は小さく、無視できる。図1(a)を見て分かるように、ほとんど槽3の高さのみで纏めることができている。
【0031】
Δp2について、上流側ダイアフラム71からの圧力P21を取り出した後、曲がり管9があり、下流側ダイアフラム72からの圧力P22を測定している。曲がり管9で旋回流が生じるが、距離Lを流れる間に流れが安定し、差圧Δp2に誤差を生じない。圧力P21を取り出す枝管21から次の圧力P22を取り出す枝管22までの高さのみでよいので、装置を小型に纏めることができている。Δp3について、配管が水平の場合、直管距離を作ることは、垂直に比べ容易である。このため、上流側取り出し口を水平管から取り出す構造としている。
【0032】
なお、この実施の形態では、槽3を縦配管2の後に連結するようにしたが、横配管1の前に連結するようにしてもよい。
また、この実施の形態では、差圧計本体7に対してダイアフラム71を、差圧計本体6に対してダイアフラム62を設けるようにしたが、ダイアフラム71を省略し、ダイアフラム62からの検出圧力P32をダイアフラム71による検出圧力P21として差圧計本体7へ与えるようにしてもよい。また、これとは逆に、ダイアフラム62を省略し、ダイアフラム71からの検出圧力P22をダイアフラム62からの検出圧力P32として差圧計本体6へ与えるようにしてもよい。
【0033】
【発明の効果】
以上説明したことから明らかなように本発明によれば、密度変化の大きい時、すなわちプロセスの立ち上げ時や停止時には、径の小さい水平直管および垂直直管からの検出差圧に基づいて追従性よく被測定流体の密度が測定され、密度変化の小さい時、すなわちプロセスの定常運転時には、径の十分大きい垂直管(槽)からの検出差圧に基づいて精度良く被測定流体の密度が測定されるものとなり、樹脂製の管を用い、プロセスの立ち上げ時や停止時だけではなく、定常運転時にも精度よく、金属に対して腐食性を有する液体の密度を測定することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る密度測定装置を用いたプロセスの要部を示す側面図およびこの密度測定装置における横配管部を下側から見た部分平面図である。
【図2】特願平3−159946号(特公平8−10186号)に示された従来の密度計の原理図である。
【符号の説明】
1…横配管(水平直管)、2…縦配管(垂直直管)、3…槽(垂直管)、11,12,21,22,31,32…枝管、4…流入口、5…流出口、6,7,8…差圧計本体、61,62,71,72,81,82…ダイアフラム、9…曲がり管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a density measuring device suitable for a process in which start-up, stop, and steady operation are performed relatively frequently.
[0002]
[Prior art]
One of the present applicants has previously proposed a density meter as Japanese Patent Application No. 3-159946 (Japanese Patent Publication No. Hei 8-10186). In this density meter, the differential pressure is detected from the upper and lower positions of a vertical pipe through which the fluid flows, and the density of the fluid is measured based on the detected differential pressure.
[0003]
FIG. 2 shows the principle diagram. In the figure, 101 is a vertical pipe, 102 and 103 are branch pipes branched from the vertical pipe 101 at a predetermined distance L, and the diaphragm pipes 104 and 105 of the diaphragm seal differential pressure gauge are attached to the branch pipes 102 and 103. ing. Fluid flows in the vertical pipe 101 in the direction of the arrow shown in the figure. In this case, the density γ of the fluid to be measured can be measured by detecting the pressure difference Δp (Δp = γ · L) between the detected pressure from the diaphragm 104 and the detected pressure from the diaphragm 105.
[0004]
In this case, since the pressure difference Δp detected between the upper and lower diaphragms 104 and 105 includes the pressure loss of the fluid, a restrictor 101a is provided in the inflow-side pipe to temporarily increase the flow velocity, The static pressure drop is caused temporarily. Here, if the restrictor 101a is selected so that the pressure loss and the static pressure drop become equal, the pressure difference is not included in the detected differential pressure Δp, so that it is possible to measure the density that does not vary with the flow velocity. In this densitometer, the requirement is that the aperture 101a be accurately manufactured. Otherwise, there will be a large error in the measurement accuracy of the density, making it unusable. For this reason, it is desired that the vertical tube 101 be made of a metal that allows the diaphragm 101a to be manufactured with high accuracy.
[0005]
[Problems to be solved by the invention]
However, when attempting to measure the density of a liquid having a corrosive property to a metal, such as hydrochloric acid or nitric acid, as the fluid, a material capable of withstanding the vertical tube 101 is required. For example, it is conceivable to use a resin such as a plastic or use a lined pipe. However, it is difficult to provide a high-precision aperture in such a tube. In addition, the thermal expansion coefficient of the resin is generally large, which affects the precision of the drawing. It is conceivable to use an acid-resistant metal as the material of the vertical tube 101, but it is expensive.
[0006]
Recently, as a density meter without a restrictor, a first differential pressure gauge for measuring the loss of a pipe and a second differential pressure gauge for measuring a density attached to a vertical pipe of the same diameter connected to the pipe. A density meter using a differential pressure gauge has been proposed. According to this density meter, it is possible to cancel a loss component such as a variation in flow velocity and to transmit a density signal with good followability. In addition, since there is no throttle, the fluid resistance is small, and there is little fear of adhesion of dirt and the like, and the resin can be used.
[0007]
However, although the density meter can cancel the influence of the flow velocity, the measurement accuracy cannot be expected much. For example, when controlling the concentration of hydrochloric acid used for cleaning steel sheets, it shows very good follow-up characteristics at startup and shutdown, but when the concentration control is effective to some extent and the concentration is stable (steady operation) ), The measurement accuracy becomes insufficient.
[0008]
The present invention has been made in order to solve such problems, the purpose of which is to use a resin tube, not only at the time of starting and stopping the process, but also with high accuracy during steady operation, An object of the present invention is to provide a density measuring device capable of measuring the density of a fluid having a corrosive property to a metal.
[0009]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a method for detecting a change in the density from a first and a second differential pressure detecting means in which a pressure detecting portion is attached to a horizontal straight pipe and a vertical straight pipe having a small diameter. The density of the fluid to be measured is measured based on the detected differential pressure, and when the change in the density is small, the third differential pressure in which the pressure detecting section is attached to a vertical pipe having a diameter sufficiently larger than the horizontal straight pipe and the vertical straight pipe. The density of the fluid to be measured is measured based on the differential pressure detected by the detecting means.
According to the present invention, when the density change is large, that is, when the process is started or stopped, the density of the fluid to be measured is measured with good followability based on the detected differential pressure from the horizontal straight pipe and the vertical straight pipe having a small diameter. Is done. On the other hand, when the density change is small, that is, during the steady operation of the process, the density of the fluid to be measured is accurately measured based on the differential pressure detected from the vertical pipe (tank) having a sufficiently large diameter.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1A is a side view showing a main part of a process using the density measuring device according to the present invention. In the figure, 1 is a horizontal pipe (horizontal straight pipe), 2 is a vertical pipe (vertical straight pipe) connected to the horizontal pipe 1, and 3 is a tank (vertical pipe) connected to the vertical pipe 2. Hydrochloric acid flows in the horizontal pipe 1, the vertical pipe 2, and the tank 3 in the direction of arrow A in the figure. That is, hydrochloric acid, which is the fluid to be measured, flows in through the inlet 4, passes through the horizontal pipe 1, subsequently passes through the vertical pipe 2, and finally flows out of the outlet 5 through the tank 3.
[0011]
The horizontal pipe 1 and the vertical pipe 2 have the same diameter d2, and the tank 3 has a diameter d1 (d1 >> d2) that is sufficiently larger than the diameter d2 of the horizontal pipe 1 and the vertical pipe 2, for example, d1 = 4d2. Although the relationship between d1 and d2 is related to the measurement accuracy, it can be said that d1 = 4d2 is sufficient. The horizontal pipe 1, the vertical pipe 2, and the tank 3 are made of acid-resistant resin.
[0012]
Each of the horizontal pipe 1, the vertical pipe 2 and the tank 3 is provided with two branch pipes for detecting a differential pressure. The distance between the two branch pipes is separated by a predetermined distance L. That is, branch pipes 31 and 32 are provided in the horizontal pipe 1 as shown in a partial plan view of the horizontal pipe 1 from below, as shown in FIG. Is a predetermined distance L. Branch pipes 21 and 22 are provided in the vertical pipe 2, and a vertical distance between the branch pipes 21 and 22 is a predetermined distance L. The tank 3 is provided with branch pipes 11 and 12, and a vertical distance between the branch pipes 11 and 12 is a predetermined distance L.
[0013]
Then, diaphragms 61 and 62 made of a metal for hydrochloric acid resistance are assembled to the branch pipes 31 and 32 of the horizontal pipe 1, and a pressure P31 is detected by the upstream diaphragm 61, and a pressure P32 is detected by the downstream diaphragm 62. P32 is supplied to the differential pressure gauge main body 6 via the sealed liquid, and a differential pressure Δp3 (Δp3 = P31−P32) between the detection pressures P31 and P32 is detected.
[0014]
In addition, diaphragms 71 and 72 made of metal for hydrochloric acid resistance are assembled to the branch pipes 21 and 22 of the vertical pipe 1, and a pressure P21 is detected by the upstream diaphragm 71 and a pressure P22 is detected by the downstream diaphragm 72. P22 is supplied to the differential pressure gauge main body 7 through the sealed liquid to detect a differential pressure Δp2 between the detection pressures P21 and P22 (Δp2 = P21−P22).
[0015]
Further, diaphragms 81 and 82 made of a metal for hydrochloric acid resistance are assembled to the branch pipes 11 and 12 of the tank 3, and a pressure P11 is detected by the upstream diaphragm 81 and a pressure P12 is detected by the downstream diaphragm 82, and the detected pressures P11 and P12 Is supplied to the differential pressure gauge main body 8 via the sealed liquid, and the differential pressure Δp1 between the detection pressures P11 and P12 (Δp1 = P11−P12) is detected.
[0016]
(Density measurement principle)
The pressure difference Δp between two points generated while the fluid flows through the pipe having the inner diameter d can be calculated by the following equation (1).
Δp = λγν 2 L / (2d) + hγ (1)
Here, λ is the loss factor, γ is the density of the fluid, ν is the flow velocity, L is the horizontal distance between the two points, and h is the vertical distance between the two points.
[0017]
When the volumetric flow rate Q flows from the inside diameter da tube (first tube) into the inside diameter db tube (second tube), the flow velocity ν 1 in the second tube is equal to the inside diameter da of the first tube and the second inside diameter da. If the flow velocity in the first pipe is ν 2 , it can be calculated by the following equation (2).
ν 1 = (da / db) 2 ν 2 (2)
Further, the time t required for the fluid to pass through the distance L can be calculated as the following equation (3).
t = L / ν (3)
[0018]
[Density measurement from differential pressure Δp1 generated in tank 3]
Here, the pressure difference Δp1 generated in the tank 3 will be examined.
The differential pressure Δp1 generated in the tank 3 is represented by the following equation (4) by the above equation (1).
Δp1 = λγν 1 2 L / (2d1) + hγ (4)
Further, the flow velocity ν 1 in the tank 3 is represented by the following equation (5) by the above equation (2).
ν 1 = (d2 / d1) 2 ν 2 (5)
[0019]
When equation (5) is substituted into equation (4), it is expressed as the following equation (6).
Δp1 = λγL [(d2 / d1) 2 ν 2 ] 2 / (2d1) + hγ (6)
In the expression (6), when d1 >> d2, the expression (6) can be approximately regarded as the following expression (7).
Δp1 ≒ hγ (7)
Since the vertical distance h in the equation (7) is a constant value (h = L), when the density γ of hydrochloric acid changes, Δp1 changes. Therefore, the density γ of hydrochloric acid can be known from the change in Δp1.
[0020]
The time t1 during which the hydrochloric acid passes between the branch pipes 81 and 82 in the tank 3 can be calculated as t1 = L / ν 1 by the above equation (3). In this case, by substituting the equation (5) as flow rate [nu 1 in the vessel 3, expressed as the following equation (8).
t1 = L / [(d2 / d1) 2 ν 2 ] = L (d1 / d2) 2 / ν 2 (8)
[0021]
In this case, since d1 ≧ d2, the passing time t1 has a large value. In the method of observing the change in the differential pressure Δp1, when the density does not change and is almost stable and changes gradually, as can be understood from the equation (7), there is no uncertain factor, so that the density is measured with high accuracy. It has the advantage that it can be. However, when the change in the density of hydrochloric acid occurs in a short time, it is difficult to quickly measure the density following the change, which is a disadvantage.
[0022]
[Density measurement from differential pressure Δp2 generated in vertical pipe 2 and differential pressure Δp3 generated in horizontal pipe 1]
Next, the differential pressure Δp2 generated in the vertical pipe 2 will be examined.
The differential pressure Δp2 generated in the vertical pipe 2 is expressed as the following equation (9) from the above equation (1).
Δp2 = λγν 2 2 L / ( 2d2) + hγ ···· (9)
In this case, since d1 >> d2, the above equation (9) cannot be expressed like the above equation (7). Therefore, it is not possible to measure the differential pressure Δp2 and then measure the density γ.
[0023]
However, if the differential pressure Δp3 generated in the lateral pipe 1 is used, it can be changed as in the above equation (7). That is, since the differential pressure Δp3 is h = 0, it is expressed as the following equation (10).
Δp3 = λγν 2 2 L / ( 2d2) ···· (10)
Here, when the difference between Δp2 and Δp3 is obtained,
Δp2-Δp3 = λγν 2 2 L / (2d2) + hγ-λγν 2 2 L / (2d2) = hγ ···· (11)
Which is similar to equation (7). Since the vertical distance h in this equation (11) is a constant value (h = L), when the density γ of hydrochloric acid changes, Δp2−Δp3 changes. Accordingly, the density γ of hydrochloric acid can be known from the change in the difference Δp2−Δp3.
[0024]
The time t2 during which the hydrochloric acid passes between the branch pipes 71 and 72 in the vertical pipe 2 can be calculated as t2 = L / ν 2 by the above equation (3). The time t3 during which the hydrochloric acid passes between the branch pipes 61 and 62 in the horizontal pipe 3 can be calculated as t3 = L / ν 2 by the above equation (3). Therefore, the time t12 when the gas passes through both branch pipes of the horizontal pipe 1 and the vertical pipe 2 is expressed as t12 = 2L / ν 2 .
[0025]
In this case, since ν 2 >> ν 1 , the passing time t12 is short. The method of observing the change in the difference between the differential pressures Δp2 and Δp3 has an advantage that if the density of hydrochloric acid changes in a short time, the density can be quickly measured following the change. However, since the differential pressures Δp2 and Δp3 are measured and further subtracted to obtain a density signal, the number of uncertain factors is increased by that much, and the density signal is compared with the method of measuring the density from the change in the differential pressure Δp1 generated in the tank 3. The accuracy is poor, which is a disadvantage.
[0026]
When controlling the density of hydrochloric acid to a predetermined density, the fluctuation of the control width frequently occurs at the start of operation, so that the density must be tracked quickly. Thereafter, when the control system is stabilized and the control for diluting hydrochloric acid is stabilized, a quick response of the density measurement is not required, but rather a high-precision measurement of the density is required. Further, when the operation is stopped, the control becomes unstable, so that the density must be tracked quickly.
[0027]
Therefore, in the present embodiment, when the density change is large, that is, when the operation is started or stopped (when the process is started or stopped), the differential pressure Δp2 generated in the small diameter vertical pipe 2 and the horizontal pipe 1 The density of hydrochloric acid is measured with good followability by adopting a method of observing a change in a difference from the differential pressure Δp3 generated in the above. On the other hand, when the change in density is small, that is, when the control for diluting hydrochloric acid is stabilized (during the steady operation of the process), a method is employed in which the change in the differential pressure Δp1 generated in the tank 3 having a sufficiently large diameter is adopted. Thus, the density of hydrochloric acid can be accurately measured. Thus, the density of hydrochloric acid can be accurately measured not only at the time of start-up and stop, but also at the time of steady operation.
[0028]
In this embodiment, the case where the density of hydrochloric acid is measured as a fluid having a corrosive property to a metal has been described, but the density measurement of another fluid including a fluid having no corrosive property to a metal has been described. It is also possible to do. In this embodiment, since a high-precision throttle is not required, a resin material can be used for the horizontal pipe 1, the vertical pipe 2, and the tank 3, and a fluid having a corrosive property to a metal such as hydrochloric acid or nitric acid can be used. When the density measurement is performed, it is excellent in that an inexpensive acid-resistant resin can be used without using an expensive acid-resistant metal.
[0029]
When a resin is used, it is desired that there is no concern about the structural strength in terms of material strength. In particular, a differential pressure type densitometer requires a branch pipe for taking out a differential pressure up and down, and the structure becomes tall when considering the upstream straight pipe distance necessary for stabilizing the flow. This is unstable in structural strength. Further, since the fluid is hydrochloric acid, fluid leakage due to damage to the device is absolutely not allowed. In consideration of this point, the device is devised as follows.
[0030]
As can be seen from equation (5), the flow velocity of Δp1 is very low because the inner diameter of the tube is d1 >> d2. Therefore, even if there is no upstream straight pipe distance of the tank 3, the density measurement error due to the distance is small and can be ignored. As can be seen from FIG. 1 (a), it can be summarized almost only by the height of the tank 3.
[0031]
After taking out the pressure P21 from the upstream diaphragm 71 for Δp2, there is a bent pipe 9 and the pressure P22 from the downstream diaphragm 72 is measured. Although a swirling flow is generated in the bent pipe 9, the flow is stabilized while flowing through the distance L, and no error occurs in the differential pressure Δp2. Since only the height from the branch pipe 21 from which the pressure P21 is taken out to the branch pipe 22 from which the next pressure P22 is taken out is required, the apparatus can be made compact. For Δp3, when the pipe is horizontal, it is easier to make a straight pipe distance than when it is vertical. For this reason, the upstream outlet is taken out of the horizontal pipe.
[0032]
In this embodiment, the tank 3 is connected after the vertical pipe 2, but may be connected before the horizontal pipe 1.
Further, in this embodiment, the diaphragm 71 is provided for the differential pressure gauge main body 7 and the diaphragm 62 is provided for the differential pressure gauge main body 6, but the diaphragm 71 is omitted, and the detected pressure P32 from the diaphragm 62 is reduced. It may be provided to the differential pressure gauge main body 7 as the detection pressure P21 by 71. Conversely, the diaphragm 62 may be omitted, and the detected pressure P22 from the diaphragm 71 may be applied to the differential pressure gauge main body 6 as the detected pressure P32 from the diaphragm 62.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, when the density change is large, that is, when the process is started or stopped, the follow-up is performed based on the detected differential pressure from the horizontal straight pipe and the vertical straight pipe having a small diameter. The density of the fluid to be measured is measured with good accuracy, and when the density change is small, that is, during the steady operation of the process, the density of the fluid to be measured is accurately measured based on the detected differential pressure from the vertical pipe (tank) having a sufficiently large diameter. Using a resin tube, it is possible to accurately measure the density of a liquid that is corrosive to metals, not only when starting or stopping the process, but also during steady operation. .
[Brief description of the drawings]
FIG. 1 is a side view showing a main part of a process using a density measuring device according to the present invention, and a partial plan view of a horizontal pipe portion in the density measuring device as viewed from below.
FIG. 2 is a principle diagram of a conventional density meter disclosed in Japanese Patent Application No. 3-159946 (Japanese Patent Application No. 8-10186).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Horizontal piping (horizontal straight pipe), 2 ... Vertical piping (vertical straight pipe), 3 ... Tank (vertical pipe), 11, 12, 21, 22, 31, 32 ... Branch pipe, 4 ... Inlet, 5 ... Outflow port, 6, 7, 8 ... differential pressure gauge main body, 61, 62, 71, 72, 81, 82 ... diaphragm, 9 ... bent pipe.

Claims (2)

水平直管に所定の距離をおいて取り付けられた第1の圧力検出部からの検出流体圧力と第2の圧力検出部からの検出流体圧力との差圧を検出する第1の差圧検出手段と、
前記水平直管と連結された当該水平直管と同径の垂直直管に前記所定の距離と同じ高低差をもって取り付けられた第3の圧力検出部からの検出流体圧力と第4の圧力検出部からの検出流体圧力との差圧を検出する第2の差圧検出手段と、
前記水平直管および前記垂直直管の何れか一方と連結された当該水平直管および垂直直管の径よりも十分に大きな径を有する垂直管に任意の高低差をもって取り付けられた第5の圧力検出部からの検出流体圧力と第6の圧力検出部からの検出流体圧力との差圧を検出する第3の差圧検出手段とを備え、
密度変化の大きい時は前記第1および第2の差圧検出手段からの検出差圧に基づいて被測定流体の密度を測定し、密度変化の小さい時は前記第3の差圧検出手段からの検出差圧に基づいて被測定流体の密度を測定する
ようにしたことを特徴とする密度測定装置。
First differential pressure detecting means for detecting a differential pressure between a detected fluid pressure from a first pressure detecting unit and a detected fluid pressure from a second pressure detecting unit attached to a horizontal straight pipe at a predetermined distance; When,
A detection fluid pressure from a third pressure detection unit and a fourth pressure detection unit attached to the vertical straight pipe connected to the horizontal straight pipe and having the same height difference as the predetermined distance to the vertical straight pipe having the same diameter as the horizontal straight pipe; Second differential pressure detecting means for detecting a differential pressure from the detected fluid pressure from
Fifth pressure attached to a vertical pipe connected to one of the horizontal straight pipe and the vertical straight pipe and having a diameter sufficiently larger than the diameter of the horizontal straight pipe and the vertical straight pipe with an arbitrary height difference A third differential pressure detecting means for detecting a differential pressure between the detected fluid pressure from the detecting unit and the detected fluid pressure from the sixth pressure detecting unit;
When the density change is large, the density of the fluid to be measured is measured based on the differential pressure detected from the first and second differential pressure detecting means. When the density change is small, the density from the third differential pressure detecting means is measured. A density measuring apparatus characterized in that the density of a fluid to be measured is measured based on a detected differential pressure.
請求項1において、前記第2の圧力検出部と前記第3の圧力検出部とが兼用されていることを特徴とする密度測定装置。2. The density measuring apparatus according to claim 1, wherein the second pressure detecting section and the third pressure detecting section are also used.
JP16226999A 1999-06-09 1999-06-09 Density measuring device Expired - Lifetime JP3588272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16226999A JP3588272B2 (en) 1999-06-09 1999-06-09 Density measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16226999A JP3588272B2 (en) 1999-06-09 1999-06-09 Density measuring device

Publications (2)

Publication Number Publication Date
JP2000346777A JP2000346777A (en) 2000-12-15
JP3588272B2 true JP3588272B2 (en) 2004-11-10

Family

ID=15751257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16226999A Expired - Lifetime JP3588272B2 (en) 1999-06-09 1999-06-09 Density measuring device

Country Status (1)

Country Link
JP (1) JP3588272B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394692B2 (en) * 2020-04-10 2023-12-08 三菱重工業株式会社 Slurry concentration acquisition device, slurry concentration acquisition method, and method for modifying flue gas desulfurization equipment

Also Published As

Publication number Publication date
JP2000346777A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
US11852517B2 (en) Method for generating a diagnostic from a deviation of a flow meter parameter
RU2181477C2 (en) Flowmeter of overflow type
JP2002519630A (en) Method and apparatus for detecting the presence of a leak in a system through which a fluid is flowing
CN105043468A (en) Venturi tube, EGR flow measuring system and measuring method thereof
JP3588272B2 (en) Density measuring device
JP2941255B1 (en) Flow measurement device
CN105021236B (en) Flow meter
US4513625A (en) Flow meter and densitometer apparatus and method of operation
CN204556035U (en) Flowmeter
JPS621209B2 (en)
JP3395637B2 (en) Flow difference type liquid pipeline leak detection method and apparatus
KR102158294B1 (en) Gas flowmeter capable of measuring at sonic speed and subsonic speed
JP2898835B2 (en) Vortex flow meter
JPS6313466Y2 (en)
JP3757009B2 (en) Split flow meter
JPS5928326Y2 (en) differential pressure flowmeter
JP3408341B2 (en) Flow meter
JP3297507B2 (en) Flow measurement device
JPH03239916A (en) Wrong piping detection system of differential flow rate measuring instrument
JPS58214100A (en) Detection method of water leakage in pressure pipeline
JPH10197315A (en) Method for detecting level of tank
JPH0953965A (en) Differential pressure flowmeter
JPH0499918A (en) Mass flowmeter
JP2012159484A (en) Mass flowmeter
JPH04130225A (en) Mass flowmeter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Ref document number: 3588272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term